/* * Copyright (c) 2006-2018, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2018-11-27 zylx first version */ #include "board.h" #include "drv_qspi.h" #include "drv_config.h" #ifdef RT_USING_QSPI #define DRV_DEBUG #define LOG_TAG "drv.qspi" #include #if defined(BSP_USING_QSPI) struct stm32_hw_spi_cs { uint16_t pin; }; struct stm32_qspi_bus { QSPI_HandleTypeDef QSPI_Handler; char *bus_name; #ifdef BSP_QSPI_USING_DMA DMA_HandleTypeDef hdma_quadspi; #endif }; struct rt_spi_bus _qspi_bus1; struct stm32_qspi_bus _stm32_qspi_bus; static int stm32_qspi_init(struct rt_qspi_device *device, struct rt_qspi_configuration *qspi_cfg) { int result = RT_EOK; unsigned int i = 1; RT_ASSERT(device != RT_NULL); RT_ASSERT(qspi_cfg != RT_NULL); struct rt_spi_configuration *cfg = &qspi_cfg->parent; struct stm32_qspi_bus *qspi_bus = device->parent.bus->parent.user_data; rt_memset(&qspi_bus->QSPI_Handler, 0, sizeof(qspi_bus->QSPI_Handler)); QSPI_HandleTypeDef QSPI_Handler_config = QSPI_BUS_CONFIG; qspi_bus->QSPI_Handler = QSPI_Handler_config; #if defined(SOC_SERIES_STM32MP1) while (cfg->max_hz < HAL_RCC_GetACLKFreq() / (i + 1)) #else while (cfg->max_hz < HAL_RCC_GetHCLKFreq() / (i + 1)) #endif { i++; if (i == 255) { LOG_E("QSPI init failed, QSPI frequency(%d) is too low.", cfg->max_hz); return -RT_ERROR; } } /* 80/(1+i) */ qspi_bus->QSPI_Handler.Init.ClockPrescaler = i; if (!(cfg->mode & RT_SPI_CPOL)) { /* QSPI MODE0 */ qspi_bus->QSPI_Handler.Init.ClockMode = QSPI_CLOCK_MODE_0; } else { /* QSPI MODE3 */ qspi_bus->QSPI_Handler.Init.ClockMode = QSPI_CLOCK_MODE_3; } /* flash size */ qspi_bus->QSPI_Handler.Init.FlashSize = POSITION_VAL(qspi_cfg->medium_size) - 1; result = HAL_QSPI_Init(&qspi_bus->QSPI_Handler); if (result == HAL_OK) { LOG_D("qspi init success!"); } else { LOG_E("qspi init failed (%d)!", result); } #ifdef BSP_QSPI_USING_DMA /* QSPI interrupts must be enabled when using the HAL_QSPI_Receive_DMA */ HAL_NVIC_SetPriority(QSPI_IRQn, 0, 0); HAL_NVIC_EnableIRQ(QSPI_IRQn); HAL_NVIC_SetPriority(QSPI_DMA_IRQ, 0, 0); HAL_NVIC_EnableIRQ(QSPI_DMA_IRQ); /* init QSPI DMA */ if(QSPI_DMA_RCC == RCC_AHB1ENR_DMA1EN) { __HAL_RCC_DMA1_CLK_ENABLE(); } else { __HAL_RCC_DMA2_CLK_ENABLE(); } HAL_DMA_DeInit(qspi_bus->QSPI_Handler.hdma); DMA_HandleTypeDef hdma_quadspi_config = QSPI_DMA_CONFIG; qspi_bus->hdma_quadspi = hdma_quadspi_config; if (HAL_DMA_Init(&qspi_bus->hdma_quadspi) != HAL_OK) { LOG_E("qspi dma init failed (%d)!", result); } __HAL_LINKDMA(&qspi_bus->QSPI_Handler, hdma, qspi_bus->hdma_quadspi); #endif /* BSP_QSPI_USING_DMA */ return result; } static void qspi_send_cmd(struct stm32_qspi_bus *qspi_bus, struct rt_qspi_message *message) { RT_ASSERT(qspi_bus != RT_NULL); RT_ASSERT(message != RT_NULL); QSPI_CommandTypeDef Cmdhandler; /* set QSPI cmd struct */ Cmdhandler.Instruction = message->instruction.content; Cmdhandler.Address = message->address.content; Cmdhandler.DummyCycles = message->dummy_cycles; if (message->instruction.qspi_lines == 0) { Cmdhandler.InstructionMode = QSPI_INSTRUCTION_NONE; } else if (message->instruction.qspi_lines == 1) { Cmdhandler.InstructionMode = QSPI_INSTRUCTION_1_LINE; } else if (message->instruction.qspi_lines == 2) { Cmdhandler.InstructionMode = QSPI_INSTRUCTION_2_LINES; } else if (message->instruction.qspi_lines == 4) { Cmdhandler.InstructionMode = QSPI_INSTRUCTION_4_LINES; } if (message->address.qspi_lines == 0) { Cmdhandler.AddressMode = QSPI_ADDRESS_NONE; } else if (message->address.qspi_lines == 1) { Cmdhandler.AddressMode = QSPI_ADDRESS_1_LINE; } else if (message->address.qspi_lines == 2) { Cmdhandler.AddressMode = QSPI_ADDRESS_2_LINES; } else if (message->address.qspi_lines == 4) { Cmdhandler.AddressMode = QSPI_ADDRESS_4_LINES; } if (message->address.size == 24) { Cmdhandler.AddressSize = QSPI_ADDRESS_24_BITS; } else { Cmdhandler.AddressSize = QSPI_ADDRESS_32_BITS; } if (message->qspi_data_lines == 0) { Cmdhandler.DataMode = QSPI_DATA_NONE; } else if (message->qspi_data_lines == 1) { Cmdhandler.DataMode = QSPI_DATA_1_LINE; } else if (message->qspi_data_lines == 2) { Cmdhandler.DataMode = QSPI_DATA_2_LINES; } else if (message->qspi_data_lines == 4) { Cmdhandler.DataMode = QSPI_DATA_4_LINES; } Cmdhandler.SIOOMode = QSPI_SIOO_INST_EVERY_CMD; Cmdhandler.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE; Cmdhandler.DdrMode = QSPI_DDR_MODE_DISABLE; Cmdhandler.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY; Cmdhandler.NbData = message->parent.length; HAL_QSPI_Command(&qspi_bus->QSPI_Handler, &Cmdhandler, 5000); } static rt_uint32_t qspixfer(struct rt_spi_device *device, struct rt_spi_message *message) { rt_size_t len = 0; RT_ASSERT(device != RT_NULL); RT_ASSERT(device->bus != RT_NULL); struct rt_qspi_message *qspi_message = (struct rt_qspi_message *)message; struct stm32_qspi_bus *qspi_bus = device->bus->parent.user_data; #ifdef BSP_QSPI_USING_SOFTCS struct stm32_hw_spi_cs *cs = device->parent.user_data; #endif const rt_uint8_t *sndb = message->send_buf; rt_uint8_t *rcvb = message->recv_buf; rt_int32_t length = message->length; #ifdef BSP_QSPI_USING_SOFTCS if (message->cs_take) { rt_pin_write(cs->pin, 0); } #endif /* send data */ if (sndb) { qspi_send_cmd(qspi_bus, qspi_message); if (qspi_message->parent.length != 0) { if (HAL_QSPI_Transmit(&qspi_bus->QSPI_Handler, (rt_uint8_t *)sndb, 5000) == HAL_OK) { len = length; } else { LOG_E("QSPI send data failed(%d)!", qspi_bus->QSPI_Handler.ErrorCode); qspi_bus->QSPI_Handler.State = HAL_QSPI_STATE_READY; goto __exit; } } else { len = 1; } } else if (rcvb)/* recv data */ { qspi_send_cmd(qspi_bus, qspi_message); #ifdef BSP_QSPI_USING_DMA if (HAL_QSPI_Receive_DMA(&qspi_bus->QSPI_Handler, rcvb) == HAL_OK) #else if (HAL_QSPI_Receive(&qspi_bus->QSPI_Handler, rcvb, 5000) == HAL_OK) #endif { len = length; #ifdef BSP_QSPI_USING_DMA while (qspi_bus->QSPI_Handler.RxXferCount != 0); #endif } else { LOG_E("QSPI recv data failed(%d)!", qspi_bus->QSPI_Handler.ErrorCode); qspi_bus->QSPI_Handler.State = HAL_QSPI_STATE_READY; goto __exit; } } __exit: #ifdef BSP_QSPI_USING_SOFTCS if (message->cs_release) { rt_pin_write(cs->pin, 1); } #endif return len; } static rt_err_t qspi_configure(struct rt_spi_device *device, struct rt_spi_configuration *configuration) { RT_ASSERT(device != RT_NULL); RT_ASSERT(configuration != RT_NULL); struct rt_qspi_device *qspi_device = (struct rt_qspi_device *)device; return stm32_qspi_init(qspi_device, &qspi_device->config); } static const struct rt_spi_ops stm32_qspi_ops = { .configure = qspi_configure, .xfer = qspixfer, }; static int stm32_qspi_register_bus(struct stm32_qspi_bus *qspi_bus, const char *name) { RT_ASSERT(qspi_bus != RT_NULL); RT_ASSERT(name != RT_NULL); _qspi_bus1.parent.user_data = qspi_bus; return rt_qspi_bus_register(&_qspi_bus1, name, &stm32_qspi_ops); } /** * @brief This function attach device to QSPI bus. * @param device_name QSPI device name * @param pin QSPI cs pin number * @param data_line_width QSPI data lines width, such as 1, 2, 4 * @param enter_qspi_mode Callback function that lets FLASH enter QSPI mode * @param exit_qspi_mode Callback function that lets FLASH exit QSPI mode * @retval 0 : success * -1 : failed */ rt_err_t stm32_qspi_bus_attach_device(const char *bus_name, const char *device_name, rt_uint32_t pin, rt_uint8_t data_line_width, void (*enter_qspi_mode)(), void (*exit_qspi_mode)()) { struct rt_qspi_device *qspi_device = RT_NULL; struct stm32_hw_spi_cs *cs_pin = RT_NULL; rt_err_t result = RT_EOK; RT_ASSERT(bus_name != RT_NULL); RT_ASSERT(device_name != RT_NULL); RT_ASSERT(data_line_width == 1 || data_line_width == 2 || data_line_width == 4); qspi_device = (struct rt_qspi_device *)rt_malloc(sizeof(struct rt_qspi_device)); if (qspi_device == RT_NULL) { LOG_E("no memory, qspi bus attach device failed!"); result = RT_ENOMEM; goto __exit; } cs_pin = (struct stm32_hw_spi_cs *)rt_malloc(sizeof(struct stm32_hw_spi_cs)); if (qspi_device == RT_NULL) { LOG_E("no memory, qspi bus attach device failed!"); result = RT_ENOMEM; goto __exit; } qspi_device->enter_qspi_mode = enter_qspi_mode; qspi_device->exit_qspi_mode = exit_qspi_mode; qspi_device->config.qspi_dl_width = data_line_width; cs_pin->Pin = pin; #ifdef BSP_QSPI_USING_SOFTCS rt_pin_mode(pin, PIN_MODE_OUTPUT); rt_pin_write(pin, 1); #endif result = rt_spi_bus_attach_device(&qspi_device->parent, device_name, bus_name, (void *)cs_pin); __exit: if (result != RT_EOK) { if (qspi_device) { rt_free(qspi_device); } if (cs_pin) { rt_free(cs_pin); } } return result; } #ifdef BSP_QSPI_USING_DMA void QSPI_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_QSPI_IRQHandler(&_stm32_qspi_bus.QSPI_Handler); /* leave interrupt */ rt_interrupt_leave(); } void QSPI_DMA_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_DMA_IRQHandler(&_stm32_qspi_bus.hdma_quadspi); /* leave interrupt */ rt_interrupt_leave(); } #endif /* BSP_QSPI_USING_DMA */ static int rt_hw_qspi_bus_init(void) { return stm32_qspi_register_bus(&_stm32_qspi_bus, "qspi1"); } INIT_BOARD_EXPORT(rt_hw_qspi_bus_init); #endif /* BSP_USING_QSPI */ #endif /* RT_USING_QSPI */