/* * Copyright (c) 2006-2021, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2022-05-16 shelton first version */ #include "drv_can.h" #ifdef BSP_USING_CAN #define LOG_TAG "drv_can" #include #ifdef SOC_SERIES_AT32F403A /* attention !!! baud calculation example: apbclk / ((ss + bs1 + bs2) * brp), ep: 120 / ((1 + 8 + 3) * 10) = 1MHz*/ /* attention !!! default apbclk 120 mhz */ static const struct at32_baud_rate can_baud_rate_tab[] = { {CAN1MBaud, {10 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}}, {CAN800kBaud, {15 , CAN_RSAW_2TQ, CAN_BTS1_7TQ, CAN_BTS2_2TQ}}, {CAN500kBaud, {20 , CAN_RSAW_2TQ, CAN_BTS1_9TQ, CAN_BTS2_2TQ}}, {CAN250kBaud, {40 , CAN_RSAW_2TQ, CAN_BTS1_9TQ, CAN_BTS2_2TQ}}, {CAN125kBaud, {80 , CAN_RSAW_2TQ, CAN_BTS1_9TQ, CAN_BTS2_2TQ}}, {CAN100kBaud, {75 , CAN_RSAW_2TQ, CAN_BTS1_13TQ, CAN_BTS2_2TQ}}, {CAN50kBaud, {150, CAN_RSAW_2TQ, CAN_BTS1_13TQ, CAN_BTS2_2TQ}}, {CAN20kBaud, {375, CAN_RSAW_2TQ, CAN_BTS1_13TQ, CAN_BTS2_2TQ}}, {CAN10kBaud, {750, CAN_RSAW_2TQ, CAN_BTS1_13TQ, CAN_BTS2_2TQ}} }; #endif #ifdef SOC_SERIES_AT32F407 /* attention !!! baud calculation example: apbclk / ((ss + bs1 + bs2) * brp), ep: 100 / ((1 + 7 + 2) * 10) = 1MHz*/ /* attention !!! default apbclk 100 mhz */ static const struct at32_baud_rate can_baud_rate_tab[] = { {CAN1MBaud, {10 , CAN_RSAW_3TQ, CAN_BTS1_7TQ, CAN_BTS2_2TQ}}, {CAN800kBaud, {25, CAN_RSAW_1TQ, CAN_BTS1_3TQ, CAN_BTS2_1TQ}}, {CAN500kBaud, {10, CAN_RSAW_3TQ, CAN_BTS1_16TQ, CAN_BTS2_3TQ}}, {CAN250kBaud, {20, CAN_RSAW_3TQ, CAN_BTS1_16TQ, CAN_BTS2_3TQ}}, {CAN125kBaud, {40, CAN_RSAW_3TQ, CAN_BTS1_16TQ, CAN_BTS2_3TQ}}, {CAN100kBaud, {50, CAN_RSAW_3TQ, CAN_BTS1_16TQ, CAN_BTS2_3TQ}}, {CAN50kBaud, {100, CAN_RSAW_2TQ, CAN_BTS1_16TQ, CAN_BTS2_3TQ}}, {CAN20kBaud, {250, CAN_RSAW_2TQ, CAN_BTS1_16TQ, CAN_BTS2_3TQ}}, {CAN10kBaud, {500, CAN_RSAW_2TQ, CAN_BTS1_16TQ, CAN_BTS2_3TQ}} }; #endif #ifdef SOC_SERIES_AT32F413 /* attention !!! baud calculation example: apbclk / ((ss + bs1 + bs2) * brp), ep: 96 / ((1 + 8 + 3) * 8) = 1MHz*/ /* attention !!! default apbclk 96 mhz */ static const struct at32_baud_rate can_baud_rate_tab[] = { {CAN1MBaud, {8 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}}, {CAN800kBaud, {20, CAN_RSAW_1TQ, CAN_BTS1_3TQ, CAN_BTS2_2TQ}}, {CAN500kBaud, {16, CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}}, {CAN250kBaud, {32, CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}}, {CAN125kBaud, {64, CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}}, {CAN100kBaud, {160, CAN_RSAW_1TQ, CAN_BTS1_3TQ, CAN_BTS2_2TQ}}, {CAN50kBaud, {320, CAN_RSAW_1TQ, CAN_BTS1_3TQ, CAN_BTS2_2TQ}}, {CAN20kBaud, {800, CAN_RSAW_1TQ, CAN_BTS1_3TQ, CAN_BTS2_2TQ}}, {CAN10kBaud, {800, CAN_RSAW_1TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}}, }; #endif #ifdef SOC_SERIES_AT32F415 /* attention !!! baud calculation example: apbclk / ((ss + bs1 + bs2) * brp), ep: 72 / ((1 + 8 + 3) * 10) = 1MHz*/ /* attention !!! default apbclk 72 mhz */ static const struct at32_baud_rate can_baud_rate_tab[] = { {CAN1MBaud, {6 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}}, {CAN800kBaud, {10 , CAN_RSAW_2TQ, CAN_BTS1_6TQ, CAN_BTS2_2TQ}}, {CAN500kBaud, {12 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}}, {CAN250kBaud, {24 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}}, {CAN125kBaud, {48 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}}, {CAN100kBaud, {60 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}}, {CAN50kBaud, {120, CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}}, {CAN20kBaud, {300, CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}}, {CAN10kBaud, {600, CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}} }; #endif #ifdef SOC_SERIES_AT32F435 /* attention !!! baud calculation example: apbclk / ((ss + bs1 + bs2) * brp), ep: 144 / ((1 + 8 + 3) * 12) = 1MHz*/ /* attention !!! default apbclk 144 mhz */ static const struct at32_baud_rate can_baud_rate_tab[] = { {CAN1MBaud, {12 , CAN_RSAW_3TQ, CAN_BTS1_8TQ, CAN_BTS2_3TQ}}, {CAN800kBaud, {18 , CAN_RSAW_2TQ, CAN_BTS1_7TQ, CAN_BTS2_2TQ}}, {CAN500kBaud, {24 , CAN_RSAW_2TQ, CAN_BTS1_9TQ, CAN_BTS2_2TQ}}, {CAN250kBaud, {48 , CAN_RSAW_2TQ, CAN_BTS1_9TQ, CAN_BTS2_2TQ}}, {CAN125kBaud, {96 , CAN_RSAW_2TQ, CAN_BTS1_9TQ, CAN_BTS2_2TQ}}, {CAN100kBaud, {90 , CAN_RSAW_2TQ, CAN_BTS1_13TQ, CAN_BTS2_2TQ}}, {CAN50kBaud, {180, CAN_RSAW_2TQ, CAN_BTS1_13TQ, CAN_BTS2_2TQ}}, {CAN20kBaud, {450, CAN_RSAW_2TQ, CAN_BTS1_13TQ, CAN_BTS2_2TQ}}, {CAN10kBaud, {900, CAN_RSAW_2TQ, CAN_BTS1_13TQ, CAN_BTS2_2TQ}} }; #endif #ifdef SOC_SERIES_AT32F437 /* attention !!! baud calculation example: apbclk / ((ss + bs1 + bs2) * brp), ep: 125 / ((1 + 3 + 1) * 25) = 1MHz*/ /* attention !!! default apbclk 125 mhz */ static const struct at32_baud_rate can_baud_rate_tab[] = { {CAN1MBaud, {25 , CAN_RSAW_1TQ, CAN_BTS1_3TQ, CAN_BTS2_1TQ}}, //none {CAN500kBaud, {25 , CAN_RSAW_2TQ, CAN_BTS1_7TQ, CAN_BTS2_2TQ}}, {CAN250kBaud, {25 , CAN_RSAW_3TQ, CAN_BTS1_16TQ, CAN_BTS2_3TQ}}, {CAN125kBaud, {50 , CAN_RSAW_2TQ, CAN_BTS1_16TQ, CAN_BTS2_3TQ}}, {CAN100kBaud, {125, CAN_RSAW_1TQ, CAN_BTS1_8TQ, CAN_BTS2_1TQ}}, {CAN50kBaud, {125, CAN_RSAW_2TQ, CAN_BTS1_16TQ, CAN_BTS2_3TQ}}, {CAN20kBaud, {625, CAN_RSAW_1TQ, CAN_BTS1_8TQ, CAN_BTS2_1TQ}}, {CAN10kBaud, {625, CAN_RSAW_2TQ, CAN_BTS1_16TQ, CAN_BTS2_3TQ}} }; #endif #if defined (SOC_SERIES_AT32F415) || defined (SOC_SERIES_AT32F435) || \ defined (SOC_SERIES_AT32F437) #define CAN1_RX0_IRQ_NUM CAN1_RX0_IRQn #define CAN1_RX1_IRQ_NUM CAN1_RX1_IRQn #define CAN1_TX_IRQ_NUM CAN1_TX_IRQn #define CAN1_RX0_IRQ_HANDLER CAN1_RX0_IRQHandler #define CAN1_RX1_IRQ_HANDLER CAN1_RX1_IRQHandler #define CAN1_TX_IRQ_HANDLER CAN1_TX_IRQHandler #else #define CAN1_RX0_IRQ_NUM USBFS_L_CAN1_RX0_IRQn #define CAN1_RX1_IRQ_NUM CAN1_RX1_IRQn #define CAN1_TX_IRQ_NUM USBFS_H_CAN1_TX_IRQn #define CAN1_RX0_IRQ_HANDLER USBFS_L_CAN1_RX0_IRQHandler #define CAN1_RX1_IRQ_HANDLER CAN1_RX1_IRQHandler #define CAN1_TX_IRQ_HANDLER USBFS_H_CAN1_TX_IRQHandler #endif #ifdef BSP_USING_CAN1 static struct at32_can can_instance1 = { .name = "can1", .config.can_x = CAN1, }; #endif #ifdef BSP_USING_CAN2 static struct at32_can can_instance2 = { .name = "can2", .config.can_x = CAN2, }; #endif static rt_uint32_t get_can_baud_index(rt_uint32_t baud) { rt_uint32_t len, index; len = sizeof(can_baud_rate_tab) / sizeof(can_baud_rate_tab[0]); for (index = 0; index < len; index++) { if (can_baud_rate_tab[index].baud_rate == baud) return index; } /* default baud is CAN1MBaud */ return 0; } static rt_err_t _can_config(struct rt_can_device *can, struct can_configure *cfg) { struct at32_can *can_instance; rt_uint32_t baud_index; RT_ASSERT(can); RT_ASSERT(cfg); can_instance = (struct at32_can *)can->parent.user_data; RT_ASSERT(can_instance); at32_msp_can_init((void *)can_instance->config.can_x); baud_index = get_can_baud_index(cfg->baud_rate); /* get baudrate parameters */ can_baudrate_default_para_init(&can_instance->config.baudrate_init_struct); can_instance->config.baudrate_init_struct.rsaw_size = can_baud_rate_tab[baud_index].baud_struct.rsaw_size; can_instance->config.baudrate_init_struct.bts1_size = can_baud_rate_tab[baud_index].baud_struct.bts1_size; can_instance->config.baudrate_init_struct.bts2_size = can_baud_rate_tab[baud_index].baud_struct.bts2_size; can_instance->config.baudrate_init_struct.baudrate_div = can_baud_rate_tab[baud_index].baud_struct.baudrate_div; /* config can baudrate */ if(can_baudrate_set(can_instance->config.can_x, &(can_instance->config.baudrate_init_struct)) != SUCCESS) { return -RT_ERROR; } /* config can base parameters */ can_default_para_init(&(can_instance->config.base_init_struct)); switch (cfg->mode) { case RT_CAN_MODE_NORMAL: can_instance->config.base_init_struct.mode_selection = CAN_MODE_COMMUNICATE; break; case RT_CAN_MODE_LISTEN: can_instance->config.base_init_struct.mode_selection = CAN_MODE_LISTENONLY; break; case RT_CAN_MODE_LOOPBACK: can_instance->config.base_init_struct.mode_selection = CAN_MODE_LOOPBACK; break; case RT_CAN_MODE_LOOPBACKANLISTEN: can_instance->config.base_init_struct.mode_selection = CAN_MODE_LISTENONLY_LOOPBACK; break; } can_instance->config.base_init_struct.aebo_enable = TRUE; can_instance->config.base_init_struct.aed_enable = TRUE; can_instance->config.base_init_struct.prsf_enable = FALSE; can_instance->config.base_init_struct.mdrsel_selection = CAN_DISCARDING_FIRST_RECEIVED; can_instance->config.base_init_struct.mmssr_selection = CAN_SENDING_BY_REQUEST; /* init can base function */ if (can_base_init(can_instance->config.can_x, &(can_instance->config.base_init_struct)) != SUCCESS) { return -RT_ERROR; } /* config filter parameters */ can_filter_init(can_instance->config.can_x, &can_instance->config.filter_init_struct); return RT_EOK; } static rt_err_t _can_control(struct rt_can_device *can, int cmd, void *arg) { rt_uint32_t argval; struct at32_can *can_instance; struct rt_can_filter_config *filter_cfg; RT_ASSERT(can != RT_NULL); can_instance = (struct at32_can *)can->parent.user_data; RT_ASSERT(can_instance != RT_NULL); switch (cmd) { case RT_DEVICE_CTRL_CLR_INT: argval = (rt_uint32_t) arg; if (argval == RT_DEVICE_FLAG_INT_RX) { if (CAN1 == can_instance->config.can_x) { nvic_irq_disable(CAN1_RX0_IRQ_NUM); nvic_irq_disable(CAN1_RX1_IRQ_NUM); } #if defined (CAN2) if (CAN2 == can_instance->config.can_x) { nvic_irq_disable(CAN2_RX0_IRQn); nvic_irq_disable(CAN2_RX1_IRQn); } #endif /* disable interrupt */ can_interrupt_enable(can_instance->config.can_x, CAN_RF0MIEN_INT, FALSE); can_interrupt_enable(can_instance->config.can_x, CAN_RF0FIEN_INT, FALSE); can_interrupt_enable(can_instance->config.can_x, CAN_RF0OIEN_INT, FALSE); can_interrupt_enable(can_instance->config.can_x, CAN_RF1MIEN_INT, FALSE); can_interrupt_enable(can_instance->config.can_x, CAN_RF1FIEN_INT, FALSE); can_interrupt_enable(can_instance->config.can_x, CAN_RF1OIEN_INT, FALSE); } else if (argval == RT_DEVICE_FLAG_INT_TX) { if (CAN1 == can_instance->config.can_x) { nvic_irq_disable(CAN1_TX_IRQ_NUM); } #if defined (CAN2) if (CAN2 == can_instance->config.can_x) { nvic_irq_disable(CAN2_TX_IRQn); } #endif can_interrupt_enable(can_instance->config.can_x, CAN_TCIEN_INT, FALSE); } else if (argval == RT_DEVICE_CAN_INT_ERR) { if (CAN1 == can_instance->config.can_x) { nvic_irq_disable(CAN1_SE_IRQn); } #if defined (CAN2) if (CAN2 == can_instance->config.can_x) { nvic_irq_disable(CAN2_SE_IRQn); } #endif can_interrupt_enable(can_instance->config.can_x, CAN_EAIEN_INT, FALSE); can_interrupt_enable(can_instance->config.can_x, CAN_EPIEN_INT, FALSE); can_interrupt_enable(can_instance->config.can_x, CAN_BOIEN_INT, FALSE); can_interrupt_enable(can_instance->config.can_x, CAN_ETRIEN_INT, FALSE); can_interrupt_enable(can_instance->config.can_x, CAN_EOIEN_INT, FALSE); } break; case RT_DEVICE_CTRL_SET_INT: argval = (rt_uint32_t) arg; if (argval == RT_DEVICE_FLAG_INT_RX) { can_interrupt_enable(can_instance->config.can_x, CAN_RF0MIEN_INT, TRUE); can_interrupt_enable(can_instance->config.can_x, CAN_RF0FIEN_INT, TRUE); can_interrupt_enable(can_instance->config.can_x, CAN_RF0OIEN_INT, TRUE); can_interrupt_enable(can_instance->config.can_x, CAN_RF1MIEN_INT, TRUE); can_interrupt_enable(can_instance->config.can_x, CAN_RF1FIEN_INT, TRUE); can_interrupt_enable(can_instance->config.can_x, CAN_RF1OIEN_INT, TRUE); if (CAN1 == can_instance->config.can_x) { nvic_irq_enable(CAN1_RX0_IRQ_NUM, 1, 0); nvic_irq_enable(CAN1_RX1_IRQ_NUM, 1, 0); } #if defined (CAN2) if (CAN2 == can_instance->config.can_x) { nvic_irq_enable(CAN2_RX0_IRQn, 1, 0); nvic_irq_enable(CAN2_RX1_IRQn, 1, 0); } #endif } else if (argval == RT_DEVICE_FLAG_INT_TX) { can_interrupt_enable(can_instance->config.can_x, CAN_TCIEN_INT, TRUE); if (CAN1 == can_instance->config.can_x) { nvic_irq_enable(CAN1_TX_IRQ_NUM, 1, 0); } #if defined (CAN2) if (CAN2 == can_instance->config.can_x) { nvic_irq_enable(CAN2_TX_IRQn, 1, 0); } #endif } else if (argval == RT_DEVICE_CAN_INT_ERR) { can_interrupt_enable(can_instance->config.can_x, CAN_EAIEN_INT, TRUE); can_interrupt_enable(can_instance->config.can_x, CAN_EPIEN_INT, TRUE); can_interrupt_enable(can_instance->config.can_x, CAN_BOIEN_INT, TRUE); can_interrupt_enable(can_instance->config.can_x, CAN_ETRIEN_INT, TRUE); can_interrupt_enable(can_instance->config.can_x, CAN_EOIEN_INT, TRUE); if (CAN1 == can_instance->config.can_x) { nvic_irq_enable(CAN1_SE_IRQn, 1, 0); } #if defined (CAN2) if (CAN2 == can_instance->config.can_x) { nvic_irq_enable(CAN2_SE_IRQn, 1, 0); } #endif } break; case RT_CAN_CMD_SET_FILTER: { rt_uint32_t id_h = 0; rt_uint32_t id_l = 0; rt_uint32_t mask_h = 0; rt_uint32_t mask_l = 0; rt_uint32_t mask_l_tail = 0; if (RT_NULL == arg) { /* default filter config */ can_filter_init(can_instance->config.can_x, &can_instance->config.filter_init_struct); } else { filter_cfg = (struct rt_can_filter_config *)arg; /* get default filter */ for (int i = 0; i < filter_cfg->count; i++) { if (filter_cfg->items[i].hdr_bank == -1) { can_instance->config.filter_init_struct.filter_number = i; } else { can_instance->config.filter_init_struct.filter_number = filter_cfg->items[i].hdr_bank; } /** * ID | CAN_FxR1[31:24] | CAN_FxR1[23:16] | CAN_FxR1[15:8] | CAN_FxR1[7:0] | * MASK | CAN_FxR2[31:24] | CAN_FxR1[23:16] | CAN_FxR1[15:8] | CAN_FxR1[7:0] | * STD ID | STID[10:3] | STDID[2:0] |<- 21bit ->| * EXT ID | EXTID[28:21] | EXTID[20:13] | EXTID[12:5] | EXTID[4:0] IDE RTR 0| * @note the 32bit STD ID must << 21 to fill CAN_FxR1[31:21] and EXT ID must << 3, * -> but the id bit of struct rt_can_filter_item is 29, * -> so STD id << 18 and EXT id Don't need << 3, when get the high 16bit. * -> FilterIdHigh : (((STDid << 18) or (EXT id)) >> 13) & 0xFFFF, * -> FilterIdLow: ((STDid << 18) or (EXT id << 3)) & 0xFFFF. * @note the mask bit of struct rt_can_filter_item is 32, * -> FilterMaskIdHigh: (((STD mask << 21) or (EXT mask <<3)) >> 16) & 0xFFFF * -> FilterMaskIdLow: ((STD mask << 21) or (EXT mask <<3)) & 0xFFFF */ if (filter_cfg->items[i].mode == CAN_FILTER_MODE_ID_MASK) { mask_l_tail = 0x06; } else if (filter_cfg->items[i].mode == CAN_FILTER_MODE_ID_LIST) { mask_l_tail = (filter_cfg->items[i].ide << 2) | (filter_cfg->items[i].rtr << 1); } if (filter_cfg->items[i].ide == RT_CAN_STDID) { id_h = ((filter_cfg->items[i].id << 18) >> 13) & 0xFFFF; id_l = ((filter_cfg->items[i].id << 18) | (filter_cfg->items[i].ide << 2) | (filter_cfg->items[i].rtr << 1)) & 0xFFFF; mask_h = ((filter_cfg->items[i].mask << 21) >> 16) & 0xFFFF; mask_l = ((filter_cfg->items[i].mask << 21) | mask_l_tail) & 0xFFFF; } else if (filter_cfg->items[i].ide == RT_CAN_EXTID) { id_h = (filter_cfg->items[i].id >> 13) & 0xFFFF; id_l = ((filter_cfg->items[i].id << 3) | (filter_cfg->items[i].ide << 2) | (filter_cfg->items[i].rtr << 1)) & 0xFFFF; mask_h = ((filter_cfg->items[i].mask << 3) >> 16) & 0xFFFF; mask_l = ((filter_cfg->items[i].mask << 3) | mask_l_tail) & 0xFFFF; } can_instance->config.filter_init_struct.filter_id_high = id_h; can_instance->config.filter_init_struct.filter_id_low = id_l; can_instance->config.filter_init_struct.filter_mask_high = mask_h; can_instance->config.filter_init_struct.filter_mask_low = mask_l; can_instance->config.filter_init_struct.filter_mode = (can_filter_mode_type)filter_cfg->items[i].mode; /* filter conf */ can_filter_init(can_instance->config.can_x, &can_instance->config.filter_init_struct); } } break; } case RT_CAN_CMD_SET_MODE: argval = (rt_uint32_t) arg; if (argval != RT_CAN_MODE_NORMAL && argval != RT_CAN_MODE_LISTEN && argval != RT_CAN_MODE_LOOPBACK && argval != RT_CAN_MODE_LOOPBACKANLISTEN) { return -RT_ERROR; } if (argval != can_instance->device.config.mode) { can_instance->device.config.mode = argval; return _can_config(&can_instance->device, &can_instance->device.config); } break; case RT_CAN_CMD_SET_BAUD: argval = (rt_uint32_t) arg; if (argval != CAN1MBaud && argval != CAN800kBaud && argval != CAN500kBaud && argval != CAN250kBaud && argval != CAN125kBaud && argval != CAN100kBaud && argval != CAN50kBaud && argval != CAN20kBaud && argval != CAN10kBaud) { return -RT_ERROR; } if (argval != can_instance->device.config.baud_rate) { can_instance->device.config.baud_rate = argval; return _can_config(&can_instance->device, &can_instance->device.config); } break; case RT_CAN_CMD_SET_PRIV: argval = (rt_uint32_t) arg; if (argval != RT_CAN_MODE_PRIV && argval != RT_CAN_MODE_NOPRIV) { return -RT_ERROR; } if (argval != can_instance->device.config.privmode) { can_instance->device.config.privmode = argval; return _can_config(&can_instance->device, &can_instance->device.config); } break; case RT_CAN_CMD_GET_STATUS: { rt_uint32_t errtype; errtype = can_instance->config.can_x->ests; can_instance->device.status.rcverrcnt = errtype >> 24; can_instance->device.status.snderrcnt = (errtype >> 16 & 0xFF); can_instance->device.status.lasterrtype = errtype & 0x70; can_instance->device.status.errcode = errtype & 0x07; rt_memcpy(arg, &can_instance->device.status, sizeof(can_instance->device.status)); } break; } return RT_EOK; } static int _can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t box_num) { struct can_config *hcan; hcan = &((struct at32_can *) can->parent.user_data)->config; struct rt_can_msg *pmsg = (struct rt_can_msg *) buf; can_tx_message_type tx_message; /* check select mailbox is empty */ switch (box_num) { case CAN_TX_MAILBOX0: if (hcan->can_x->tsts_bit.tm0ef != 1) { /* return function status */ return -RT_ERROR; } break; case CAN_TX_MAILBOX1: if (hcan->can_x->tsts_bit.tm1ef != 1) { /* return function status */ return -RT_ERROR; } break; case CAN_TX_MAILBOX2: if (hcan->can_x->tsts_bit.tm2ef != 1) { /* return function status */ return -RT_ERROR; } break; default: RT_ASSERT(0); break; } if (RT_CAN_STDID == pmsg->ide) { tx_message.id_type = CAN_ID_STANDARD; tx_message.standard_id = pmsg->id; } else { tx_message.id_type = CAN_ID_EXTENDED; tx_message.extended_id = pmsg->id; } if (RT_CAN_DTR == pmsg->rtr) { tx_message.frame_type = CAN_TFT_DATA; } else { tx_message.frame_type = CAN_TFT_REMOTE; } /* set up the dlc */ tx_message.dlc = pmsg->len & 0x0FU; /* set up the data field */ tx_message.data[0] = (uint32_t)pmsg->data[0]; tx_message.data[1] = (uint32_t)pmsg->data[1]; tx_message.data[2] = (uint32_t)pmsg->data[2]; tx_message.data[3] = (uint32_t)pmsg->data[3]; tx_message.data[4] = (uint32_t)pmsg->data[4]; tx_message.data[5] = (uint32_t)pmsg->data[5]; tx_message.data[6] = (uint32_t)pmsg->data[6]; tx_message.data[7] = (uint32_t)pmsg->data[7]; can_message_transmit(hcan->can_x, &tx_message); return RT_EOK; } static int _can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t fifo) { struct can_config *hcan; hcan = &((struct at32_can *) can->parent.user_data)->config; struct rt_can_msg *pmsg = (struct rt_can_msg *) buf; can_rx_message_type rx_message; RT_ASSERT(can); /* get data */ can_message_receive(hcan->can_x, (can_rx_fifo_num_type)fifo, &rx_message); pmsg->data[0] = rx_message.data[0]; pmsg->data[1] = rx_message.data[1]; pmsg->data[2] = rx_message.data[2]; pmsg->data[3] = rx_message.data[3]; pmsg->data[4] = rx_message.data[4]; pmsg->data[5] = rx_message.data[5]; pmsg->data[6] = rx_message.data[6]; pmsg->data[7] = rx_message.data[7]; pmsg->len = rx_message.dlc; pmsg->id = rx_message.id_type; if (rx_message.id_type == CAN_ID_STANDARD) pmsg->id = rx_message.standard_id; else pmsg->ide = rx_message.extended_id; pmsg->rtr = rx_message.frame_type; pmsg->hdr_index = rx_message.filter_index; return RT_EOK; } static const struct rt_can_ops _can_ops = { _can_config, _can_control, _can_sendmsg, _can_recvmsg, }; static void _can_rx_isr(struct rt_can_device *can, rt_uint32_t fifo) { struct can_config *hcan; RT_ASSERT(can); hcan = &((struct at32_can *) can->parent.user_data)->config; switch (fifo) { case CAN_RX_FIFO0: /* save to user list */ if (can_receive_message_pending_get(hcan->can_x, CAN_RX_FIFO0) && \ can_flag_get(hcan->can_x, CAN_RF0MN_FLAG)) { rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8); } /* check full flag for fifo0 */ if (can_flag_get(hcan->can_x, CAN_RF0FF_FLAG) == SET) { /* clear fifo0 full flag */ can_flag_clear(hcan->can_x, CAN_RF0FF_FLAG); } /* check overrun flag for fifo0 */ if (can_flag_get(hcan->can_x, CAN_RF0OF_FLAG) == SET) { /* clear fifo0 overrun flag */ can_flag_clear(hcan->can_x, CAN_RF0OF_FLAG); rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8); } break; case CAN_RX_FIFO1: /* save to user list */ if (can_receive_message_pending_get(hcan->can_x, CAN_RX_FIFO1) && \ can_flag_get(hcan->can_x, CAN_RF1MN_FLAG)) { rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8); } /* check full flag for fifo1 */ if (can_flag_get(hcan->can_x, CAN_RF1FF_FLAG) == SET) { /* clear fifo1 full flag */ can_flag_clear(hcan->can_x, CAN_RF1FF_FLAG); } /* check overrun flag for fifo1 */ if (can_flag_get(hcan->can_x, CAN_RF1OF_FLAG) == SET) { /* clear fifo1 overrun flag */ can_flag_clear(hcan->can_x, CAN_RF1OF_FLAG); rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8); } break; } } #ifdef BSP_USING_CAN1 /** * @brief this function handles can1 tx interrupts. transmit fifo0/1/2 is empty can trigger this interrupt */ void CAN1_TX_IRQ_HANDLER(void) { rt_interrupt_enter(); struct can_config *hcan; hcan = &can_instance1.config; if (can_flag_get(hcan->can_x, CAN_TM0TCF_FLAG) == SET) { if (hcan->can_x->tsts_bit.tm0tsf == 1) { rt_hw_can_isr(&can_instance1.device, RT_CAN_EVENT_TX_DONE | 0 << 8); } else { rt_hw_can_isr(&can_instance1.device, RT_CAN_EVENT_TX_FAIL | 0 << 8); } /* write 0 to clear transmission status flag */ can_flag_clear(hcan->can_x, CAN_TM0TCF_FLAG); } else if (can_flag_get(hcan->can_x, CAN_TM1TCF_FLAG) == SET) { if (hcan->can_x->tsts_bit.tm1tsf == 1) { rt_hw_can_isr(&can_instance1.device, RT_CAN_EVENT_TX_DONE | 1 << 8); } else { rt_hw_can_isr(&can_instance1.device, RT_CAN_EVENT_TX_FAIL | 1 << 8); } /* write 0 to clear transmission status flag */ can_flag_clear(hcan->can_x, CAN_TM1TCF_FLAG); } else if (can_flag_get(hcan->can_x, CAN_TM2TCF_FLAG) == SET) { if (hcan->can_x->tsts_bit.tm2tsf == 1) { rt_hw_can_isr(&can_instance1.device, RT_CAN_EVENT_TX_DONE | 2 << 8); } else { rt_hw_can_isr(&can_instance1.device, RT_CAN_EVENT_TX_FAIL | 2 << 8); } /* write 0 to clear transmission status flag */ can_flag_clear(hcan->can_x, CAN_TM2TCF_FLAG); } rt_interrupt_leave(); } /** * @brief this function handles can1 rx0 interrupts. */ void CAN1_RX0_IRQ_HANDLER(void) { rt_interrupt_enter(); _can_rx_isr(&can_instance1.device, CAN_RX_FIFO0); rt_interrupt_leave(); } /** * @brief this function handles can1 rx1 interrupts. */ void CAN1_RX1_IRQ_HANDLER(void) { rt_interrupt_enter(); _can_rx_isr(&can_instance1.device, CAN_RX_FIFO1); rt_interrupt_leave(); } /** * @brief this function handles can1 sce interrupts. */ void CAN1_SE_IRQHandler(void) { rt_uint32_t errtype; struct can_config *hcan; hcan = &can_instance1.config; errtype = hcan->can_x->ests; rt_interrupt_enter(); switch ((errtype & 0x70) >> 4) { case RT_CAN_BUS_BIT_PAD_ERR: can_instance1.device.status.bitpaderrcnt++; break; case RT_CAN_BUS_FORMAT_ERR: can_instance1.device.status.formaterrcnt++; break; case RT_CAN_BUS_ACK_ERR:/* attention !!! test ack err's unit is transmit unit */ can_instance1.device.status.ackerrcnt++; if (!(can_instance1.config.can_x->tsts_bit.tm0tsf == 1)) rt_hw_can_isr(&can_instance1.device, RT_CAN_EVENT_TX_FAIL | 0 << 8); else if (!(can_instance1.config.can_x->tsts_bit.tm1tsf == 1)) rt_hw_can_isr(&can_instance1.device, RT_CAN_EVENT_TX_FAIL | 1 << 8); else if (!(can_instance1.config.can_x->tsts_bit.tm2tsf == 1)) rt_hw_can_isr(&can_instance1.device, RT_CAN_EVENT_TX_FAIL | 2 << 8); break; case RT_CAN_BUS_IMPLICIT_BIT_ERR: case RT_CAN_BUS_EXPLICIT_BIT_ERR: can_instance1.device.status.biterrcnt++; break; case RT_CAN_BUS_CRC_ERR: can_instance1.device.status.crcerrcnt++; break; } can_instance1.device.status.lasterrtype = errtype & 0x70; can_instance1.device.status.rcverrcnt = errtype >> 24; can_instance1.device.status.snderrcnt = (errtype >> 16 & 0xFF); can_instance1.device.status.errcode = errtype & 0x07; /* clear error flags */ can_flag_clear(hcan->can_x, CAN_ETR_FLAG); rt_interrupt_leave(); } #endif #ifdef BSP_USING_CAN2 /** * @brief this function handles can2 tx interrupts. */ void CAN2_TX_IRQHandler(void) { rt_interrupt_enter(); struct can_config *hcan; hcan = &can_instance2.config; if (can_flag_get(hcan->can_x, CAN_TM0TCF_FLAG) == SET) { if (hcan->can_x->tsts_bit.tm0tsf == 1) { rt_hw_can_isr(&can_instance2.device, RT_CAN_EVENT_TX_DONE | 0 << 8); } else { rt_hw_can_isr(&can_instance2.device, RT_CAN_EVENT_TX_FAIL | 0 << 8); } /* write 0 to clear transmission status flag rqcpx */ can_flag_clear(hcan->can_x, CAN_TM0TCF_FLAG); } else if (can_flag_get(hcan->can_x, CAN_TM1TCF_FLAG) == SET) { if (hcan->can_x->tsts_bit.tm1tsf == 1) { rt_hw_can_isr(&can_instance2.device, RT_CAN_EVENT_TX_DONE | 1 << 8); } else { rt_hw_can_isr(&can_instance2.device, RT_CAN_EVENT_TX_FAIL | 1 << 8); } /* write 0 to clear transmission status flag rqcpx */ can_flag_clear(hcan->can_x, CAN_TM1TCF_FLAG); } else if (can_flag_get(hcan->can_x, CAN_TM2TCF_FLAG) == SET) { if (hcan->can_x->tsts_bit.tm2tsf == 1) { rt_hw_can_isr(&can_instance2.device, RT_CAN_EVENT_TX_DONE | 2 << 8); } else { rt_hw_can_isr(&can_instance2.device, RT_CAN_EVENT_TX_FAIL | 2 << 8); } /* write 0 to clear transmission status flag rqcpx */ can_flag_clear(hcan->can_x, CAN_TM2TCF_FLAG); } rt_interrupt_leave(); } /** * @brief this function handles can2 rx0 interrupts. */ void CAN2_RX0_IRQHandler(void) { rt_interrupt_enter(); _can_rx_isr(&can_instance2.device, CAN_RX_FIFO0); rt_interrupt_leave(); } /** * @brief this function handles can2 rx1 interrupts. */ void CAN2_RX1_IRQHandler(void) { rt_interrupt_enter(); _can_rx_isr(&can_instance2.device, CAN_RX_FIFO1); rt_interrupt_leave(); } /** * @brief this function handles can2 sce interrupts. */ void CAN2_SE_IRQHandler(void) { rt_uint32_t errtype; struct can_config *hcan; hcan = &can_instance2.config; errtype = hcan->can_x->ests; rt_interrupt_enter(); switch ((errtype & 0x70) >> 4) { case RT_CAN_BUS_BIT_PAD_ERR: can_instance2.device.status.bitpaderrcnt++; break; case RT_CAN_BUS_FORMAT_ERR: can_instance2.device.status.formaterrcnt++; break; case RT_CAN_BUS_ACK_ERR: can_instance2.device.status.ackerrcnt++; if (!(can_instance2.config.can_x->tsts_bit.tm0tsf == 1)) rt_hw_can_isr(&can_instance2.device, RT_CAN_EVENT_TX_FAIL | 0 << 8); else if (!(can_instance2.config.can_x->tsts_bit.tm1tsf == 1)) rt_hw_can_isr(&can_instance2.device, RT_CAN_EVENT_TX_FAIL | 1 << 8); else if (!(can_instance2.config.can_x->tsts_bit.tm2tsf == 1)) rt_hw_can_isr(&can_instance2.device, RT_CAN_EVENT_TX_FAIL | 2 << 8); break; case RT_CAN_BUS_IMPLICIT_BIT_ERR: case RT_CAN_BUS_EXPLICIT_BIT_ERR: can_instance2.device.status.biterrcnt++; break; case RT_CAN_BUS_CRC_ERR: can_instance2.device.status.crcerrcnt++; break; } can_instance2.device.status.lasterrtype = errtype & 0x70; can_instance2.device.status.rcverrcnt = errtype >> 24; can_instance2.device.status.snderrcnt = (errtype >> 16 & 0xFF); can_instance2.device.status.errcode = errtype & 0x07; /* clear error flags */ can_flag_clear(hcan->can_x, CAN_ETR_FLAG); rt_interrupt_leave(); } #endif int rt_hw_can_init(void) { struct can_configure config = CANDEFAULTCONFIG; config.privmode = RT_CAN_MODE_NOPRIV; config.ticks = 50; #ifdef RT_CAN_USING_HDR config.maxhdr = 14; #endif /* config default filter */ can_filter_init_type filter_conf; can_filter_default_para_init(&filter_conf); filter_conf.filter_activate_enable = TRUE; filter_conf.filter_bit = CAN_FILTER_32BIT; #ifdef BSP_USING_CAN1 filter_conf.filter_number = 0; can_instance1.config.filter_init_struct = filter_conf; can_instance1.device.config = config; /* register can1 device */ rt_hw_can_register(&can_instance1.device, can_instance1.name, &_can_ops, &can_instance1); #endif /* BSP_USING_CAN1 */ #ifdef BSP_USING_CAN2 filter_conf.filter_number = 0; can_instance2.config.filter_init_struct = filter_conf; can_instance2.device.config = config; /* register can2 device */ rt_hw_can_register(&can_instance2.device, can_instance2.name, &_can_ops, &can_instance2); #endif /* BSP_USING_CAN2 */ return 0; } INIT_BOARD_EXPORT(rt_hw_can_init); #endif /* BSP_USING_CAN */