/* * Copyright (c) 2006-2018, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2016-09-28 armink first version. */ #include #include #include "spi_flash.h" #include "spi_flash_sfud.h" #ifdef RT_USING_SFUD #ifdef RT_DEBUG_SFUD #define DEBUG_TRACE rt_kprintf("[SFUD] "); rt_kprintf #else #define DEBUG_TRACE(...) #endif /* RT_DEBUG_SFUD */ #ifndef RT_SFUD_DEFAULT_SPI_CFG /* read the JEDEC SFDP command must run at 50 MHz or less */ #define RT_SFUD_DEFAULT_SPI_CFG \ { \ .mode = RT_SPI_MODE_0 | RT_SPI_MSB, \ .data_width = 8, \ .max_hz = 50 * 1000 * 1000, \ } #endif #ifdef SFUD_USING_QSPI #define RT_SFUD_DEFAULT_QSPI_CFG \ { \ RT_SFUD_DEFAULT_SPI_CFG, \ .medium_size = 0x800000, \ .ddr_mode = 0, \ .qspi_dl_width = 4, \ } #endif static char log_buf[RT_CONSOLEBUF_SIZE]; void sfud_log_debug(const char *file, const long line, const char *format, ...); static rt_err_t rt_sfud_control(rt_device_t dev, int cmd, void *args) { RT_ASSERT(dev != RT_NULL); switch (cmd) { case RT_DEVICE_CTRL_BLK_GETGEOME: { struct rt_device_blk_geometry *geometry = (struct rt_device_blk_geometry *) args; struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data); if (rtt_dev == RT_NULL || geometry == RT_NULL) { return -RT_ERROR; } geometry->bytes_per_sector = rtt_dev->geometry.bytes_per_sector; geometry->sector_count = rtt_dev->geometry.sector_count; geometry->block_size = rtt_dev->geometry.block_size; break; } case RT_DEVICE_CTRL_BLK_ERASE: { rt_uint32_t *addrs = (rt_uint32_t *) args, start_addr = addrs[0], end_addr = addrs[1], phy_start_addr; struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data); sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data); rt_size_t phy_size; if (addrs == RT_NULL || start_addr > end_addr || rtt_dev == RT_NULL || sfud_dev == RT_NULL) { return -RT_ERROR; } if (end_addr == start_addr) { end_addr ++; } phy_start_addr = start_addr * rtt_dev->geometry.bytes_per_sector; phy_size = (end_addr - start_addr) * rtt_dev->geometry.bytes_per_sector; if (sfud_erase(sfud_dev, phy_start_addr, phy_size) != SFUD_SUCCESS) { return -RT_ERROR; } break; } } return RT_EOK; } static rt_size_t rt_sfud_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size) { struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data); sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data); /* change the block device's logic address to physical address */ rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector; rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector; if (sfud_read(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) { return 0; } else { return size; } } static rt_size_t rt_sfud_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) { struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data); sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data); /* change the block device's logic address to physical address */ rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector; rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector; if (sfud_erase_write(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) { return 0; } else { return size; } } /** * SPI write data then read data */ static sfud_err spi_write_read(const sfud_spi *spi, const uint8_t *write_buf, size_t write_size, uint8_t *read_buf, size_t read_size) { sfud_err result = SFUD_SUCCESS; sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data); struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data); #ifdef SFUD_USING_QSPI struct rt_qspi_device *qspi_dev = RT_NULL; #endif if (write_size) { RT_ASSERT(write_buf); } if (read_size) { RT_ASSERT(read_buf); } #ifdef SFUD_USING_QSPI if(rtt_dev->rt_spi_device->bus->mode & RT_SPI_BUS_MODE_QSPI) { qspi_dev = (struct rt_qspi_device *) (rtt_dev->rt_spi_device); if (write_size && read_size) { if (rt_qspi_send_then_recv(qspi_dev, write_buf, write_size, read_buf, read_size) == 0) { result = SFUD_ERR_TIMEOUT; } } else if (write_size) { if (rt_qspi_send(qspi_dev, write_buf, write_size) == 0) { result = SFUD_ERR_TIMEOUT; } } } else #endif { if (write_size && read_size) { if (rt_spi_send_then_recv(rtt_dev->rt_spi_device, write_buf, write_size, read_buf, read_size) != RT_EOK) { result = SFUD_ERR_TIMEOUT; } } else if (write_size) { if (rt_spi_send(rtt_dev->rt_spi_device, write_buf, write_size) == 0) { result = SFUD_ERR_TIMEOUT; } } else { if (rt_spi_recv(rtt_dev->rt_spi_device, read_buf, read_size) == 0) { result = SFUD_ERR_TIMEOUT; } } } return result; } #ifdef SFUD_USING_QSPI /** * QSPI fast read data */ static sfud_err qspi_read(const struct __sfud_spi *spi, uint32_t addr, sfud_qspi_read_cmd_format *qspi_read_cmd_format, uint8_t *read_buf, size_t read_size) { struct rt_qspi_message message; sfud_err result = SFUD_SUCCESS; sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data); struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data); struct rt_qspi_device *qspi_dev = (struct rt_qspi_device *) (rtt_dev->rt_spi_device); /* set message struct */ message.instruction.content = qspi_read_cmd_format->instruction; message.instruction.qspi_lines = qspi_read_cmd_format->instruction_lines; message.address.content = addr; message.address.size = qspi_read_cmd_format->address_size; message.address.qspi_lines = qspi_read_cmd_format->address_lines; message.alternate_bytes.content = 0; message.alternate_bytes.size = 0; message.alternate_bytes.qspi_lines = 0; message.dummy_cycles = qspi_read_cmd_format->dummy_cycles; message.parent.send_buf = RT_NULL; message.parent.recv_buf = read_buf; message.parent.length = read_size; message.parent.cs_release = 1; message.parent.cs_take = 1; message.qspi_data_lines = qspi_read_cmd_format->data_lines; if (rt_qspi_transfer_message(qspi_dev, &message) != read_size) { result = SFUD_ERR_TIMEOUT; } return result; } #endif static void spi_lock(const sfud_spi *spi) { sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data); struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data); rt_mutex_take(&(rtt_dev->lock), RT_WAITING_FOREVER); } static void spi_unlock(const sfud_spi *spi) { sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data); struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data); rt_mutex_release(&(rtt_dev->lock)); } static void retry_delay_100us(void) { /* 100 microsecond delay */ rt_thread_delay((RT_TICK_PER_SECOND * 1 + 9999) / 10000); } /** * This function is print debug info. * * @param file the file which has call this function * @param line the line number which has call this function * @param format output format * @param ... args */ void sfud_log_debug(const char *file, const long line, const char *format, ...) { va_list args; /* args point to the first variable parameter */ va_start(args, format); rt_kprintf("[SFUD] (%s:%ld) ", file, line); /* must use vprintf to print */ rt_vsnprintf(log_buf, sizeof(log_buf), format, args); rt_kprintf("%s\n", log_buf); va_end(args); } /** * This function is print routine info. * * @param format output format * @param ... args */ void sfud_log_info(const char *format, ...) { va_list args; /* args point to the first variable parameter */ va_start(args, format); rt_kprintf("[SFUD] "); /* must use vprintf to print */ rt_vsnprintf(log_buf, sizeof(log_buf), format, args); rt_kprintf("%s\n", log_buf); va_end(args); } sfud_err sfud_spi_port_init(sfud_flash *flash) { sfud_err result = SFUD_SUCCESS; /* port SPI device interface */ flash->spi.wr = spi_write_read; #ifdef SFUD_USING_QSPI flash->spi.qspi_read = qspi_read; #endif flash->spi.lock = spi_lock; flash->spi.unlock = spi_unlock; flash->spi.user_data = flash; if (RT_TICK_PER_SECOND < 1000) { rt_kprintf("[SFUD] Warning: The OS tick(%d) is less than 1000. So the flash write will take more time.\n", RT_TICK_PER_SECOND); } /* 100 microsecond delay */ flash->retry.delay = retry_delay_100us; /* 60 seconds timeout */ flash->retry.times = 60 * 10000; return result; } #ifdef RT_USING_DEVICE_OPS const static struct rt_device_ops flash_device_ops = { RT_NULL, RT_NULL, RT_NULL, rt_sfud_read, rt_sfud_write, rt_sfud_control }; #endif /** * Probe SPI flash by SFUD(Serial Flash Universal Driver) driver library and though SPI device. * * @param spi_flash_dev_name the name which will create SPI flash device * @param spi_dev_name using SPI device name * * @return probed SPI flash device, probe failed will return RT_NULL */ rt_spi_flash_device_t rt_sfud_flash_probe(const char *spi_flash_dev_name, const char *spi_dev_name) { rt_spi_flash_device_t rtt_dev = RT_NULL; sfud_flash *sfud_dev = RT_NULL; char *spi_flash_dev_name_bak = RT_NULL, *spi_dev_name_bak = RT_NULL; /* using default flash SPI configuration for initialize SPI Flash * @note you also can change the SPI to other configuration after initialized finish */ struct rt_spi_configuration cfg = RT_SFUD_DEFAULT_SPI_CFG; extern sfud_err sfud_device_init(sfud_flash *flash); #ifdef SFUD_USING_QSPI struct rt_qspi_configuration qspi_cfg = RT_SFUD_DEFAULT_QSPI_CFG; struct rt_qspi_device *qspi_dev = RT_NULL; #endif RT_ASSERT(spi_flash_dev_name); RT_ASSERT(spi_dev_name); rtt_dev = (rt_spi_flash_device_t) rt_malloc(sizeof(struct spi_flash_device)); sfud_dev = (sfud_flash_t) rt_malloc(sizeof(sfud_flash)); spi_flash_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_flash_dev_name) + 1); spi_dev_name_bak = (char *) rt_malloc(rt_strlen(spi_dev_name) + 1); if (rtt_dev) { rt_memset(rtt_dev, 0, sizeof(struct spi_flash_device)); /* initialize lock */ rt_mutex_init(&(rtt_dev->lock), spi_flash_dev_name, RT_IPC_FLAG_FIFO); } if (rtt_dev && sfud_dev && spi_flash_dev_name_bak && spi_dev_name_bak) { rt_memset(sfud_dev, 0, sizeof(sfud_flash)); rt_strncpy(spi_flash_dev_name_bak, spi_flash_dev_name, rt_strlen(spi_flash_dev_name)); rt_strncpy(spi_dev_name_bak, spi_dev_name, rt_strlen(spi_dev_name)); /* make string end sign */ spi_flash_dev_name_bak[rt_strlen(spi_flash_dev_name)] = '\0'; spi_dev_name_bak[rt_strlen(spi_dev_name)] = '\0'; /* SPI configure */ { /* RT-Thread SPI device initialize */ rtt_dev->rt_spi_device = (struct rt_spi_device *) rt_device_find(spi_dev_name); if (rtt_dev->rt_spi_device == RT_NULL || rtt_dev->rt_spi_device->parent.type != RT_Device_Class_SPIDevice) { rt_kprintf("ERROR: SPI device %s not found!\n", spi_dev_name); goto error; } sfud_dev->spi.name = spi_dev_name_bak; #ifdef SFUD_USING_QSPI /* set the qspi line number and configure the QSPI bus */ if(rtt_dev->rt_spi_device->bus->mode &RT_SPI_BUS_MODE_QSPI) { qspi_dev = (struct rt_qspi_device *)rtt_dev->rt_spi_device; qspi_cfg.qspi_dl_width = qspi_dev->config.qspi_dl_width; rt_qspi_configure(qspi_dev, &qspi_cfg); } else #endif rt_spi_configure(rtt_dev->rt_spi_device, &cfg); } /* SFUD flash device initialize */ { sfud_dev->name = spi_flash_dev_name_bak; /* accessed each other */ rtt_dev->user_data = sfud_dev; rtt_dev->rt_spi_device->user_data = rtt_dev; rtt_dev->flash_device.user_data = rtt_dev; sfud_dev->user_data = rtt_dev; /* initialize SFUD device */ if (sfud_device_init(sfud_dev) != SFUD_SUCCESS) { rt_kprintf("ERROR: SPI flash probe failed by SPI device %s.\n", spi_dev_name); goto error; } /* when initialize success, then copy SFUD flash device's geometry to RT-Thread SPI flash device */ rtt_dev->geometry.sector_count = sfud_dev->chip.capacity / sfud_dev->chip.erase_gran; rtt_dev->geometry.bytes_per_sector = sfud_dev->chip.erase_gran; rtt_dev->geometry.block_size = sfud_dev->chip.erase_gran; #ifdef SFUD_USING_QSPI /* reconfigure the QSPI bus for medium size */ if(rtt_dev->rt_spi_device->bus->mode &RT_SPI_BUS_MODE_QSPI) { qspi_cfg.medium_size = sfud_dev->chip.capacity; rt_qspi_configure(qspi_dev, &qspi_cfg); if(qspi_dev->enter_qspi_mode != RT_NULL) qspi_dev->enter_qspi_mode(qspi_dev); } /* set data lines width */ sfud_qspi_fast_read_enable(sfud_dev, qspi_dev->config.qspi_dl_width); #endif /* SFUD_USING_QSPI */ } /* register device */ rtt_dev->flash_device.type = RT_Device_Class_Block; #ifdef RT_USING_DEVICE_OPS rtt_dev->flash_device.ops = &flash_device_ops; #else rtt_dev->flash_device.init = RT_NULL; rtt_dev->flash_device.open = RT_NULL; rtt_dev->flash_device.close = RT_NULL; rtt_dev->flash_device.read = rt_sfud_read; rtt_dev->flash_device.write = rt_sfud_write; rtt_dev->flash_device.control = rt_sfud_control; #endif rt_device_register(&(rtt_dev->flash_device), spi_flash_dev_name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE); DEBUG_TRACE("Probe SPI flash %s by SPI device %s success.\n",spi_flash_dev_name, spi_dev_name); return rtt_dev; } else { rt_kprintf("ERROR: Low memory.\n"); goto error; } error: if (rtt_dev) { rt_mutex_detach(&(rtt_dev->lock)); } /* may be one of objects memory was malloc success, so need free all */ rt_free(rtt_dev); rt_free(sfud_dev); rt_free(spi_flash_dev_name_bak); rt_free(spi_dev_name_bak); return RT_NULL; } /** * Delete SPI flash device * * @param spi_flash_dev SPI flash device * * @return the operation status, RT_EOK on successful */ rt_err_t rt_sfud_flash_delete(rt_spi_flash_device_t spi_flash_dev) { sfud_flash *sfud_flash_dev = (sfud_flash *) (spi_flash_dev->user_data); RT_ASSERT(spi_flash_dev); RT_ASSERT(sfud_flash_dev); rt_device_unregister(&(spi_flash_dev->flash_device)); rt_mutex_detach(&(spi_flash_dev->lock)); rt_free(sfud_flash_dev->spi.name); rt_free(sfud_flash_dev->name); rt_free(sfud_flash_dev); rt_free(spi_flash_dev); return RT_EOK; } #if defined(RT_USING_FINSH) && defined(FINSH_USING_MSH) #include static void sf(uint8_t argc, char **argv) { #define CMD_PROBE_INDEX 0 #define CMD_READ_INDEX 1 #define CMD_WRITE_INDEX 2 #define CMD_ERASE_INDEX 3 #define CMD_RW_STATUS_INDEX 4 #define CMD_BENCH_INDEX 5 sfud_err result = SFUD_SUCCESS; static const sfud_flash *sfud_dev = NULL; static rt_spi_flash_device_t rtt_dev = NULL, rtt_dev_bak = NULL; size_t i = 0; const char* sf_help_info[] = { [CMD_PROBE_INDEX] = "sf probe [spi_device] - probe and init SPI flash by given 'spi_device'", [CMD_READ_INDEX] = "sf read addr size - read 'size' bytes starting at 'addr'", [CMD_WRITE_INDEX] = "sf write addr data1 ... dataN - write some bytes 'data' to flash starting at 'addr'", [CMD_ERASE_INDEX] = "sf erase addr size - erase 'size' bytes starting at 'addr'", [CMD_RW_STATUS_INDEX] = "sf status [ ] - read or write '1:volatile|0:non-volatile' 'status'", [CMD_BENCH_INDEX] = "sf bench - full chip benchmark. DANGER: It will erase full chip!", }; if (argc < 2) { rt_kprintf("Usage:\n"); for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) { rt_kprintf("%s\n", sf_help_info[i]); } rt_kprintf("\n"); } else { const char *operator = argv[1]; uint32_t addr, size; if (!strcmp(operator, "probe")) { if (argc < 3) { rt_kprintf("Usage: %s.\n", sf_help_info[CMD_PROBE_INDEX]); } else { char *spi_dev_name = argv[2]; rtt_dev_bak = rtt_dev; /* delete the old SPI flash device */ if(rtt_dev_bak) { rt_sfud_flash_delete(rtt_dev_bak); } rtt_dev = rt_sfud_flash_probe("sf_cmd", spi_dev_name); if (!rtt_dev) { return; } sfud_dev = (sfud_flash_t)rtt_dev->user_data; if (sfud_dev->chip.capacity < 1024 * 1024) { rt_kprintf("%d KB %s is current selected device.\n", sfud_dev->chip.capacity / 1024, sfud_dev->name); } else { rt_kprintf("%d MB %s is current selected device.\n", sfud_dev->chip.capacity / 1024 / 1024, sfud_dev->name); } } } else { if (!sfud_dev) { rt_kprintf("No flash device selected. Please run 'sf probe'.\n"); return; } if (!rt_strcmp(operator, "read")) { if (argc < 4) { rt_kprintf("Usage: %s.\n", sf_help_info[CMD_READ_INDEX]); return; } else { addr = atol(argv[2]); size = atol(argv[3]); uint8_t *data = rt_malloc(size); if (data) { result = sfud_read(sfud_dev, addr, size, data); if (result == SFUD_SUCCESS) { rt_kprintf("Read the %s flash data success. Start from 0x%08X, size is %ld. The data is:\n", sfud_dev->name, addr, size); rt_kprintf("Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F\n"); for (i = 0; i < size; i++) { if (i % 16 == 0) { rt_kprintf("[%08X] ", addr + i); } rt_kprintf("%02X ", data[i]); if (((i + 1) % 16 == 0) || i == size - 1) { rt_kprintf("\n"); } } rt_kprintf("\n"); } rt_free(data); } else { rt_kprintf("Low memory!\n"); } } } else if (!rt_strcmp(operator, "write")) { if (argc < 4) { rt_kprintf("Usage: %s.\n", sf_help_info[CMD_WRITE_INDEX]); return; } else { addr = atol(argv[2]); size = argc - 3; uint8_t *data = rt_malloc(size); if (data) { for (i = 0; i < size; i++) { data[i] = atoi(argv[3 + i]); } result = sfud_write(sfud_dev, addr, size, data); if (result == SFUD_SUCCESS) { rt_kprintf("Write the %s flash data success. Start from 0x%08X, size is %ld.\n", sfud_dev->name, addr, size); rt_kprintf("Write data: "); for (i = 0; i < size; i++) { rt_kprintf("%d ", data[i]); } rt_kprintf(".\n"); } rt_free(data); } else { rt_kprintf("Low memory!\n"); } } } else if (!rt_strcmp(operator, "erase")) { if (argc < 4) { rt_kprintf("Usage: %s.\n", sf_help_info[CMD_ERASE_INDEX]); return; } else { addr = atol(argv[2]); size = atol(argv[3]); result = sfud_erase(sfud_dev, addr, size); if (result == SFUD_SUCCESS) { rt_kprintf("Erase the %s flash data success. Start from 0x%08X, size is %ld.\n", sfud_dev->name, addr, size); } } } else if (!rt_strcmp(operator, "status")) { if (argc < 3) { uint8_t status; result = sfud_read_status(sfud_dev, &status); if (result == SFUD_SUCCESS) { rt_kprintf("The %s flash status register current value is 0x%02X.\n", sfud_dev->name, status); } } else if (argc == 4) { bool is_volatile = atoi(argv[2]); uint8_t status = atoi(argv[3]); result = sfud_write_status(sfud_dev, is_volatile, status); if (result == SFUD_SUCCESS) { rt_kprintf("Write the %s flash status register to 0x%02X success.\n", sfud_dev->name, status); } } else { rt_kprintf("Usage: %s.\n", sf_help_info[CMD_RW_STATUS_INDEX]); return; } } else if (!rt_strcmp(operator, "bench")) { if ((argc > 2 && rt_strcmp(argv[2], "yes")) || argc < 3) { rt_kprintf("DANGER: It will erase full chip! Please run 'sf bench yes'.\n"); return; } /* full chip benchmark test */ addr = 0; size = sfud_dev->chip.capacity; uint32_t start_time, time_cast; size_t write_size = SFUD_WRITE_MAX_PAGE_SIZE, read_size = 4096; uint8_t *write_data = rt_malloc(write_size), *read_data = rt_malloc(read_size); if (write_data && read_data) { rt_memset(write_data, 0x55, write_size); /* benchmark testing */ rt_kprintf("Erasing the %s %ld bytes data, waiting...\n", sfud_dev->name, size); start_time = rt_tick_get(); result = sfud_erase(sfud_dev, addr, size); if (result == SFUD_SUCCESS) { time_cast = rt_tick_get() - start_time; rt_kprintf("Erase benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND, time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000)); } else { rt_kprintf("Erase benchmark has an error. Error code: %d.\n", result); } /* write test */ rt_kprintf("Writing the %s %ld bytes data, waiting...\n", sfud_dev->name, size); start_time = rt_tick_get(); for (i = 0; i < size; i += write_size) { result = sfud_write(sfud_dev, addr + i, write_size, write_data); if (result != SFUD_SUCCESS) { break; } } if (result == SFUD_SUCCESS) { time_cast = rt_tick_get() - start_time; rt_kprintf("Write benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND, time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000)); } else { rt_kprintf("Write benchmark has an error. Error code: %d.\n", result); } /* read test */ rt_kprintf("Reading the %s %ld bytes data, waiting...\n", sfud_dev->name, size); start_time = rt_tick_get(); for (i = 0; i < size; i += read_size) { if (i + read_size <= size) { result = sfud_read(sfud_dev, addr + i, read_size, read_data); } else { result = sfud_read(sfud_dev, addr + i, size - i, read_data); } if (result != SFUD_SUCCESS) { break; } } if (result == SFUD_SUCCESS) { time_cast = rt_tick_get() - start_time; rt_kprintf("Read benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND, time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000)); } else { rt_kprintf("Read benchmark has an error. Error code: %d.\n", result); } } else { rt_kprintf("Low memory!\n"); } rt_free(write_data); rt_free(read_data); } else { rt_kprintf("Usage:\n"); for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) { rt_kprintf("%s\n", sf_help_info[i]); } rt_kprintf("\n"); return; } if (result != SFUD_SUCCESS) { rt_kprintf("This flash operate has an error. Error code: %d.\n", result); } } } } MSH_CMD_EXPORT(sf, SPI Flash operate.); sfud_flash_t rt_sfud_flash_find(const char *spi_dev_name) { rt_spi_flash_device_t rtt_dev = RT_NULL; struct rt_spi_device *rt_spi_device = RT_NULL; sfud_flash_t sfud_dev = RT_NULL; rt_spi_device = (struct rt_spi_device *) rt_device_find(spi_dev_name); if (rt_spi_device == RT_NULL || rt_spi_device->parent.type != RT_Device_Class_SPIDevice) { rt_kprintf("ERROR: SPI device %s not found!\n", spi_dev_name); goto error; } rtt_dev = (rt_spi_flash_device_t)(rt_spi_device->user_data); if (rtt_dev && rtt_dev->user_data) { sfud_dev = (sfud_flash_t)(rtt_dev->user_data); return sfud_dev; } else { rt_kprintf("ERROR: SFUD flash device not found!\n"); goto error; } error: return RT_NULL; } #endif /* defined(RT_USING_FINSH) && defined(FINSH_USING_MSH) */ #endif /* RT_USING_SFUD */