/* * Copyright (c) 2006-2021, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2020-11-29 bigmagic first version */ #include <rthw.h> #include <rtthread.h> #include "drv_bluetooth.h" #include "drv_uart.h" #include "raspi4.h" //https://github.com/RPi-Distro/bluez-firmware/tree/master/broadcom //arm-none-eabi-objcopy.exe -I binary -O elf32-littlearm -B arm driver\BCM4345C0.hcd driver\BCM4345C0.a #define BT_UART_NAME "uart0" #define BT_TX_MAX (256) #define BT_RX_MAX (256) #define BT_HEAD_NUM (4) #define BT_TRY_NUM_MAX (3) #define BT_SEND_MIN_PACK (8) unsigned char lo(unsigned int val) { return (unsigned char)(val & 0xff); } unsigned char hi(unsigned int val) { return (unsigned char)((val & 0xff00) >> 8); } #define BT_THREAD_STACK_SIZE (2048) #define BT_THREAD_PRIORITY (15) #define BT_THREAD_TICK (10) enum { LE_EVENT_CODE = 0x3e, LE_CONNECT_CODE = 0x01, LE_ADREPORT_CODE = 0x02, HCI_ACL_PKT = 0x02, HCI_EVENT_PKT = 0x04 }; static char ch; static rt_sem_t bt_rx_sem = RT_NULL; static rt_device_t bt_device; static rt_uint8_t tx_buff[BT_TX_MAX]; static rt_uint8_t rx_buff[BT_RX_MAX]; static rt_err_t bt_rx_ind(rt_device_t dev, rt_size_t size) { rt_sem_release(bt_rx_sem); return RT_EOK; } int bt_uart_send_data(rt_device_t dev, rt_uint32_t *buf, int len) { return rt_device_write(dev, 0, buf, len); } void bt_uart_receive_flush(rt_device_t dev) { rt_device_read(dev, RT_NULL, rx_buff, BT_RX_MAX); } int bt_uart_receive_data(rt_device_t dev, rt_uint8_t *buf, rt_uint32_t *len, rt_int32_t time) { rt_uint16_t ii = 0; ii = rt_device_read(dev, 0, buf, BT_RX_MAX); *len = ii; return ii; } void bt_data_pack(rt_uint8_t *tx_buff, rt_uint8_t ogf, rt_uint8_t ocf, rt_uint32_t data_len) { tx_buff[0] = BT_HCI_COMMAND_PKT; tx_buff[1] = ogf; //hi(ogf << 10 | ocf);//opcode hi tx_buff[2] = ocf; //lo(ogf << 10 | ocf);//opcode lo tx_buff[3] = data_len; } rt_uint32_t bt_reply_check(const rt_uint8_t *buff, rt_uint16_t ogf, rt_uint16_t ocf, int pack_len) { //step 1 if (buff[0] != BT_HCI_EVENT_PKT) { return 1; } //step2 if (buff[1] == BT_CONNECT_COMPLETE_CODE) { if (buff[2] != 4) { return 2; } //err code if (buff[3] != 0) { rt_kprintf("Saw HCI COMMAND STATUS error:%d", buff[3]); return 12; } if (buff[4] == 0) { return 3; } if (buff[5] != ogf) { return 4; } if (buff[6] != ocf) { return 5; } } else if (buff[1] == BT_COMMAND_COMPLETE_CODE) { if (buff[2] != 4) { return 6; } if (buff[3] == 0) { return 7; } if (buff[4] != ogf) { return 8; } if (buff[5] != ocf) { return 9; } if (buff[6] == 0) { return 10; } } else { return 11; } return 0; } rt_err_t bt_loadfirmware(void) { int ii = 0; int ret = 0; int recv_len = BT_RX_MAX; int step = 0; rt_uint8_t ogf, ocf; rt_memset(tx_buff, 0, BT_TX_MAX); ogf = hi(BT_OGF_VENDOR << 10 | BT_COMMAND_LOAD_FIRMWARE); ocf = lo(BT_OGF_VENDOR << 10 | BT_COMMAND_LOAD_FIRMWARE); bt_data_pack(tx_buff, ogf, ocf, 0); int kk = 0; for (ii = 0; ii < BT_TRY_NUM_MAX; ii++) { recv_len = BT_RX_MAX; bt_uart_receive_flush(bt_device); bt_uart_send_data(bt_device, tx_buff, BT_SEND_MIN_PACK); rt_thread_mdelay(5); ret = bt_uart_receive_data(bt_device, rx_buff, &recv_len, 2000); if (ret > 0) { ret = bt_reply_check(rx_buff, ogf, ocf, RT_NULL); if (ret == 0) { step = 1; break; } else { rt_kprintf("err code is %d\n", ret); } } } if (step == 1) { extern unsigned char _binary_driver_BCM4345C0_hcd_size[]; extern unsigned char _binary_driver_BCM4345C0_hcd_start[]; unsigned int c = 0; unsigned int size = (long)&_binary_driver_BCM4345C0_hcd_size; while (c < size) { //unsigned char opcodebytes[] = {_binary_BCM4345C0_hcd_start[c], _binary_BCM4345C0_hcd_start[c + 1]}; unsigned char length = _binary_driver_BCM4345C0_hcd_start[c + 2]; unsigned char *data = &(_binary_driver_BCM4345C0_hcd_start[c + 3]); rt_memset(tx_buff, 0, BT_TX_MAX); ogf = _binary_driver_BCM4345C0_hcd_start[c + 1]; ocf = _binary_driver_BCM4345C0_hcd_start[c]; bt_data_pack(tx_buff, ogf, ocf, length); rt_memcpy(&tx_buff[BT_HEAD_NUM], data, length); int kk = 0; for (ii = 0; ii < BT_TRY_NUM_MAX; ii++) { recv_len = BT_RX_MAX; rt_memset(rx_buff, 0, BT_TX_MAX); bt_uart_receive_flush(bt_device); bt_uart_send_data(bt_device, tx_buff, length + BT_HEAD_NUM); bt_uart_receive_flush(bt_device); rt_thread_mdelay(5); ret = bt_uart_receive_data(bt_device, rx_buff, &recv_len, 1000); if (ret > 0) { ret = bt_reply_check(rx_buff, ogf, ocf, RT_NULL); if (ret == 0) { step = 2; break; } else { rt_kprintf("err code is %d\n", ret); } } } if (ii >= 3) { step = 3; break; } c += 3 + length; } if (step != 3) { return RT_EOK; } } else { return -RT_ERROR; } return -RT_ERROR; } rt_err_t bt_setbaud(void) { static unsigned char params[] = {0, 0, 0x00, 0xc2, 0x01, 0x00}; // little endian, 115200 int params_len = 6; int ii = 0; int ret = 0; int recv_len = BT_RX_MAX; rt_uint16_t ogf, ocf; rt_memset(tx_buff, 0, BT_TX_MAX); ogf = hi(BT_OGF_VENDOR << 10 | BT_COMMAND_SET_BAUD); ocf = lo(BT_OGF_VENDOR << 10 | BT_COMMAND_SET_BAUD); bt_data_pack(tx_buff, ogf, ocf, params_len); //rt_memcpy(&tx_buff[BT_HEAD_NUM], params, params_len); tx_buff[4] = 0x00; tx_buff[5] = 0x01; tx_buff[6] = 0xc2; tx_buff[7] = 0x00; tx_buff[8] = 0x00; tx_buff[9] = 0x00; for (ii = 0; ii < BT_TRY_NUM_MAX; ii++) { recv_len = BT_RX_MAX; bt_uart_receive_flush(bt_device); bt_uart_send_data(bt_device, tx_buff, params_len + BT_HEAD_NUM); rt_thread_mdelay(5); ret = bt_uart_receive_data(bt_device, rx_buff, &recv_len, 1000); if (ret > 0) { ret = bt_reply_check(rx_buff, ogf, ocf, RT_NULL); if (ret == 0) { return RT_EOK; } else { rt_kprintf("err code is %d\n", ret); } } } return -RT_ERROR; } rt_err_t setLEeventmask(unsigned char mask) { unsigned char params[] = {mask, 0, 0, 0, 0, 0, 0, 0}; //static unsigned char params[] = { 0xee, 0xff, 0xc0, 0xee, 0xff, 0xc0 }; // reversed int params_len = 8; int ii = 0; int ret = 0; int recv_len = BT_RX_MAX; rt_uint16_t ogf, ocf; rt_memset(tx_buff, 0, BT_TX_MAX); ogf = hi(BT_OGF_LE_CONTROL << 10 | 0x01); ocf = lo(BT_OGF_LE_CONTROL << 10 | 0x01); bt_data_pack(tx_buff, ogf, ocf, params_len); //rt_memcpy(&tx_buff[BT_HEAD_NUM], params, params_len); tx_buff[4] = params[0]; tx_buff[5] = params[1]; tx_buff[6] = params[2]; tx_buff[7] = params[3]; tx_buff[8] = params[4]; tx_buff[9] = params[5]; tx_buff[10] = params[6]; tx_buff[11] = params[7]; for (ii = 0; ii < BT_TRY_NUM_MAX; ii++) { recv_len = BT_RX_MAX; bt_uart_receive_flush(bt_device); bt_uart_send_data(bt_device, tx_buff, params_len + BT_HEAD_NUM); rt_thread_mdelay(5); ret = bt_uart_receive_data(bt_device, rx_buff, &recv_len, 1000); if (ret > 0) { ret = bt_reply_check(rx_buff, ogf, ocf, RT_NULL); if (ret == 0) { return RT_EOK; } else { rt_kprintf("err code is %d\n", ret); } } } return -RT_ERROR; //if (hciCommand(OGF_LE_CONTROL, 0x01, params, 8)) uart_writeText("setLEeventmask failed\n"); } rt_err_t bt_getbdaddr(unsigned char *bdaddr) { static unsigned char params[] = {0x00, 0x10, 0x09, BT_HCI_COMMAND_PKT}; //get bdaddr int params_len = 4; int recv_len = BT_RX_MAX; // rt_memcpy(tx_buff, params, 4); tx_buff[0] = BT_HCI_COMMAND_PKT; tx_buff[1] = 0x09; tx_buff[2] = 0x10; tx_buff[3] = 0x00; bt_uart_receive_flush(bt_device); bt_uart_send_data(bt_device, tx_buff, 4); rt_thread_mdelay(100); bt_uart_receive_data(bt_device, rx_buff, &recv_len, 1000); if (recv_len > 0) { if ((rx_buff[0] != BT_HCI_EVENT_PKT) || (rx_buff[1] != BT_COMMAND_COMPLETE_CODE)) { return -RT_ERROR; } if ((rx_buff[2] != 0x0a) || (rx_buff[3] != 0x01)) { return -RT_ERROR; } if ((rx_buff[4] != 0x09) || (rx_buff[5] != 0x10)) { return -RT_ERROR; } bdaddr[0] = rx_buff[7]; bdaddr[1] = rx_buff[8]; bdaddr[2] = rx_buff[9]; bdaddr[3] = rx_buff[10]; bdaddr[4] = rx_buff[11]; bdaddr[5] = rx_buff[12]; } else { return -RT_ERROR; } return RT_EOK; } rt_err_t setLEscanenable(unsigned char state, unsigned char duplicates) { unsigned char params[] = {state, duplicates}; //static unsigned char params[] = { 0xee, 0xff, 0xc0, 0xee, 0xff, 0xc0 }; // reversed int params_len = 2; int ii = 0; int ret = 0; int recv_len = BT_RX_MAX; rt_uint16_t ogf, ocf; rt_memset(tx_buff, 0, BT_TX_MAX); ogf = hi(BT_OGF_LE_CONTROL << 10 | 0x0c); ocf = lo(BT_OGF_LE_CONTROL << 10 | 0x0c); bt_data_pack(tx_buff, ogf, ocf, params_len); tx_buff[4] = params[0]; tx_buff[5] = params[1]; //rt_memcpy(&tx_buff[BT_HEAD_NUM], params, params_len); for (ii = 0; ii < BT_TRY_NUM_MAX; ii++) { recv_len = BT_RX_MAX; bt_uart_receive_flush(bt_device); bt_uart_send_data(bt_device, tx_buff, params_len + BT_HEAD_NUM); rt_thread_mdelay(5); ret = bt_uart_receive_data(bt_device, rx_buff, &recv_len, 1000); if (ret > 0) { ret = bt_reply_check(rx_buff, ogf, ocf, RT_NULL); if (ret == 0) { return RT_EOK; } else { rt_kprintf("err code is %d\n", ret); } } } return -RT_ERROR; } rt_err_t setLEscanparameters(unsigned char type, unsigned char linterval, unsigned char hinterval, unsigned char lwindow, unsigned char hwindow, unsigned char own_address_type, unsigned char filter_policy) { unsigned char params[] = {type, linterval, hinterval, lwindow, hwindow, own_address_type, filter_policy}; int params_len = 7; int ii = 0; int ret = 0; int recv_len = BT_RX_MAX; rt_uint16_t ogf, ocf; rt_memset(tx_buff, 0, BT_TX_MAX); ogf = hi(BT_OGF_LE_CONTROL << 10 | 0x0b); ocf = lo(BT_OGF_LE_CONTROL << 10 | 0x0b); bt_data_pack(tx_buff, ogf, ocf, params_len); tx_buff[4] = params[0]; tx_buff[5] = params[1]; tx_buff[6] = params[2]; tx_buff[7] = params[3]; tx_buff[8] = params[4]; tx_buff[9] = params[5]; tx_buff[10] = params[6]; //rt_memcpy(&tx_buff[BT_HEAD_NUM], params, params_len); for (ii = 0; ii < BT_TRY_NUM_MAX; ii++) { recv_len = BT_RX_MAX; bt_uart_receive_flush(bt_device); bt_uart_send_data(bt_device, tx_buff, params_len + BT_HEAD_NUM); rt_thread_mdelay(5); ret = bt_uart_receive_data(bt_device, rx_buff, &recv_len, 1000); if (ret > 0) { ret = bt_reply_check(rx_buff, ogf, ocf, RT_NULL); if (ret == 0) { return RT_EOK; } else { rt_kprintf("err code is %d\n", ret); } } } return -RT_ERROR; } rt_err_t startActiveScanning() { float BleScanInterval = 60; // every 60ms float BleScanWindow = 60; float BleScanDivisor = 0.625; unsigned int p = BleScanInterval / BleScanDivisor; unsigned int q = BleScanWindow / BleScanDivisor; if (setLEscanparameters(BT_LL_SCAN_ACTIVE, lo(p), hi(p), lo(q), hi(q), 0, 0) == RT_EOK) { rt_kprintf("setLEscanparameters ok!\n"); } if (setLEscanenable(1, 0) == RT_EOK) { rt_kprintf("setLEscanenable ok!\n"); } } rt_err_t bt_setbdaddr(void) { static unsigned char params[] = {0xee, 0xff, 0xc0, 0xee, 0xff, 0xc0}; // reversed int params_len = 6; int ii = 0; int ret = 0; int recv_len = BT_RX_MAX; rt_uint16_t ogf, ocf; rt_memset(tx_buff, 0, BT_TX_MAX); ogf = hi(BT_OGF_VENDOR << 10 | BT_COMMAND_SET_BDADDR); ocf = lo(BT_OGF_VENDOR << 10 | BT_COMMAND_SET_BDADDR); bt_data_pack(tx_buff, ogf, ocf, params_len); tx_buff[4] = 0xc0; tx_buff[5] = 0xff; tx_buff[6] = 0xee; tx_buff[7] = 0xc0; tx_buff[8] = 0xff; tx_buff[9] = 0xee; //rt_memcpy(&tx_buff[BT_HEAD_NUM], params, params_len); for (ii = 0; ii < BT_TRY_NUM_MAX; ii++) { recv_len = BT_RX_MAX; bt_uart_receive_flush(bt_device); bt_uart_send_data(bt_device, tx_buff, params_len + BT_HEAD_NUM); rt_thread_mdelay(5); ret = bt_uart_receive_data(bt_device, rx_buff, &recv_len, 1000); if (ret > 0) { ret = bt_reply_check(rx_buff, ogf, ocf, RT_NULL); if (ret == 0) { return RT_EOK; } else { rt_kprintf("err code is %d\n", ret); } } } return -RT_ERROR; } rt_err_t bt_reset(void) { int ii = 0; int ret = 0; int recv_len = BT_RX_MAX; rt_uint16_t ogf, ocf; rt_memset(tx_buff, 0, BT_TX_MAX); ogf = hi(BT_OGF_HOST_CONTROL << 10 | BT_COMMAND_RESET_CHIP); ocf = lo(BT_OGF_HOST_CONTROL << 10 | BT_COMMAND_RESET_CHIP); bt_data_pack(tx_buff, ogf, ocf, 0); for (ii = 0; ii < BT_TRY_NUM_MAX; ii++) { recv_len = BT_RX_MAX; bt_uart_receive_flush(bt_device); bt_uart_send_data(bt_device, tx_buff, 8); rt_thread_mdelay(5); ret = bt_uart_receive_data(bt_device, rx_buff, &recv_len, 1000); //rt_kprintf("recv_len is %d\n", recv_len); if (ret > 0) { ret = bt_reply_check(rx_buff, ogf, ocf, RT_NULL); if (ret == 0) { return RT_EOK; } else { rt_kprintf("err code is %d\n", ret); } } } return -RT_ERROR; } rt_device_t bt_uart_init(const char *uartname) { rt_device_t dev = RT_NULL; if (strcmp(uartname, BT_UART_NAME) == 0) { bt_rx_sem = rt_sem_create("btbuf", 0, RT_IPC_FLAG_FIFO); dev = rt_device_find(uartname); if (dev == RT_NULL) { rt_kprintf("can no find dev %s\n", uartname); return dev; } if (rt_device_open(dev, RT_DEVICE_OFLAG_RDWR) == RT_EOK) { rt_device_set_rx_indicate(dev, bt_rx_ind); } return dev; } return dev; } static void bt_task_entry(void *param) { while (1) { rt_thread_delay(1000); } } #define MAX_MSG_LEN 50 #define MAX_READ_RUN 100 unsigned char data_buf[MAX_MSG_LEN]; unsigned int data_len; unsigned int messages_received = 0; unsigned int poll_state = 0; unsigned int got_echo_sid = 0; unsigned int got_echo_name = 0; unsigned char echo_addr[6]; void hci_poll2(unsigned char byte) { switch (poll_state) { case 0: if (byte != HCI_EVENT_PKT) poll_state = 0; else poll_state = 1; break; case 1: if (byte != LE_EVENT_CODE) poll_state = 0; else poll_state = 2; break; case 2: if (byte > MAX_MSG_LEN) poll_state = 0; else { poll_state = 3; data_len = byte; } break; default: data_buf[poll_state - 3] = byte; if (poll_state == data_len + 3 - 1) { messages_received++; poll_state = 0; } else poll_state++; } } unsigned char *hci_poll() { int recv_len = 256; unsigned int goal = messages_received + 1; bt_uart_receive_data(bt_device, rx_buff, &recv_len, 1000); rt_thread_mdelay(10); if (recv_len > 0) { unsigned int run = 0; while (run < MAX_READ_RUN && messages_received < goal) { recv_len = recv_len - 1; hci_poll2(rx_buff[recv_len]); run++; if (recv_len == 0) { break; } } if (run == MAX_READ_RUN) return 0; else return data_buf; } return 0; } void bt_search() { unsigned char *buf; while ((buf = hci_poll())) { if (data_len >= 2) { if (buf[0] == LE_ADREPORT_CODE) { unsigned char numreports = buf[1]; if (numreports == 1) { unsigned char event_type = buf[2]; if (event_type == 0x00) { unsigned char buf_len = buf[10]; unsigned char ad_len = buf[11]; if (ad_len < data_len && buf_len + 11 == data_len - 1) { for (int c = 9; c >= 4; c--) echo_addr[9 - c] = buf[c]; buf += 11; got_echo_sid = 0; got_echo_name = 0; // Reset the search state machine do { ad_len = buf[0]; unsigned char ad_type = buf[1]; buf += 2; if (ad_len >= 2) { if (ad_type == 0x03) { unsigned int sid = 0; for (int d = 0; d < ad_len - 1; d += 2) { sid = buf[d] | (buf[d + 1] << 8); if (sid == 0xEC00) { rt_kprintf("sid is %d\n", sid); //uart_hex(sid); uart_writeText(" "); got_echo_sid = 1; } } } else if (ad_type == 0x09) { char remote_name[ad_len - 1]; unsigned int d = 0; while (d < ad_len - 1) { remote_name[d] = buf[d]; d++; } if (!memcmp(remote_name, "echo", 4)) { rt_kprintf("remote_name is %s\n", remote_name); got_echo_name = 1; } } } buf += ad_len - 1; } while (buf[1]); } } } } } } } void bt_uart_protocol_init() { rt_thread_t bt_tid = RT_NULL; bt_device = bt_uart_init(BT_UART_NAME); bt_tid = rt_thread_create("bt_task", bt_task_entry, RT_NULL, BT_THREAD_STACK_SIZE, BT_THREAD_PRIORITY, BT_THREAD_TICK); if (bt_tid == RT_NULL) { rt_kprintf("bt_task create err!\n"); return 0; } rt_thread_startup(bt_tid); } int rt_hw_bluetooth_init(void) { bt_uart_protocol_init(); if (bt_reset() == RT_EOK) { rt_kprintf("bluetooth reset ok!\n"); } else { rt_kprintf("bluetooth reset err!\n"); } rt_thread_delay(10); if (bt_loadfirmware() == RT_EOK) { rt_kprintf("loadfirmware ok!\n"); } else { rt_kprintf("loadfirmware err!\n"); } rt_thread_delay(10); if (bt_setbaud() == RT_EOK) { rt_kprintf("setbaud ok!\n"); } else { rt_kprintf("setbaud err!\n"); } rt_thread_delay(10); if (bt_setbdaddr() == RT_EOK) { rt_kprintf("setbdaddr ok!\n"); } else { rt_kprintf("setbdaddr err!\n"); } rt_thread_delay(100); rt_uint8_t bdaddr[6]; if (bt_getbdaddr(bdaddr) == RT_EOK) { rt_kprintf("bdaddr :%02x:%02x:%02x:%02x:%02x:%02x\n", bdaddr[0], bdaddr[1], bdaddr[2], bdaddr[3], bdaddr[4], bdaddr[5]); } else { rt_kprintf("getbdaddr err!\n"); } rt_thread_delay(100); if (setLEeventmask(0xff) == RT_EOK) { rt_kprintf("setLEeventmask ok!\n"); } rt_thread_delay(100); startActiveScanning(); rt_thread_delay(500); rt_kprintf("start!\n"); while (1) { bt_search(); if (got_echo_sid && got_echo_name) { break; } rt_thread_mdelay(10); } rt_kprintf("stop scan!\n"); }