/**************************************************************************//** * * @copyright (C) 2019 Nuvoton Technology Corp. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2020-1-16 Wayne First version * ******************************************************************************/ #include #include #if defined(BOARD_USING_STORAGE_SPIFLASH) #if defined(RT_USING_SFUD) #include "spi_flash.h" #include "spi_flash_sfud.h" #endif #include "drv_qspi.h" #define W25X_REG_READSTATUS (0x05) #define W25X_REG_READSTATUS2 (0x35) #define W25X_REG_WRITEENABLE (0x06) #define W25X_REG_WRITESTATUS (0x01) #define W25X_REG_QUADENABLE (0x02) static rt_uint8_t SpiFlash_ReadStatusReg(struct rt_qspi_device *qspi_device) { rt_uint8_t u8Val; rt_err_t result = RT_EOK; rt_uint8_t w25x_txCMD1 = W25X_REG_READSTATUS; result = rt_qspi_send_then_recv(qspi_device, &w25x_txCMD1, 1, &u8Val, 1); RT_ASSERT(result > 0); return u8Val; } static rt_uint8_t SpiFlash_ReadStatusReg2(struct rt_qspi_device *qspi_device) { rt_uint8_t u8Val; rt_err_t result = RT_EOK; rt_uint8_t w25x_txCMD1 = W25X_REG_READSTATUS2; result = rt_qspi_send_then_recv(qspi_device, &w25x_txCMD1, 1, &u8Val, 1); RT_ASSERT(result > 0); return u8Val; } static rt_err_t SpiFlash_WriteStatusReg(struct rt_qspi_device *qspi_device, uint8_t u8Value1, uint8_t u8Value2) { rt_uint8_t w25x_txCMD1; rt_uint8_t au8Val[2]; rt_err_t result; struct rt_qspi_message qspi_message = {0}; /* Enable WE */ w25x_txCMD1 = W25X_REG_WRITEENABLE; result = rt_qspi_send(qspi_device, &w25x_txCMD1, sizeof(w25x_txCMD1)); if (result != sizeof(w25x_txCMD1)) goto exit_SpiFlash_WriteStatusReg; /* Prepare status-1, 2 data */ au8Val[0] = u8Value1; au8Val[1] = u8Value2; /* 1-bit mode: Instruction+payload */ qspi_message.instruction.content = W25X_REG_WRITESTATUS; qspi_message.instruction.qspi_lines = 1; qspi_message.qspi_data_lines = 1; qspi_message.parent.cs_take = 1; qspi_message.parent.cs_release = 1; qspi_message.parent.send_buf = &au8Val[0]; qspi_message.parent.length = sizeof(au8Val); qspi_message.parent.next = RT_NULL; if (rt_qspi_transfer_message(qspi_device, &qspi_message) != sizeof(au8Val)) { result = -RT_ERROR; } result = RT_EOK; exit_SpiFlash_WriteStatusReg: return result; } static void SpiFlash_WaitReady(struct rt_qspi_device *qspi_device) { volatile uint8_t u8ReturnValue; do { u8ReturnValue = SpiFlash_ReadStatusReg(qspi_device); u8ReturnValue = u8ReturnValue & 1; } while (u8ReturnValue != 0); // check the BUSY bit } static void SpiFlash_EnterQspiMode(struct rt_qspi_device *qspi_device) { rt_err_t result = RT_EOK; uint8_t u8Status1 = SpiFlash_ReadStatusReg(qspi_device); uint8_t u8Status2 = SpiFlash_ReadStatusReg2(qspi_device); u8Status2 |= W25X_REG_QUADENABLE; result = SpiFlash_WriteStatusReg(qspi_device, u8Status1, u8Status2); RT_ASSERT(result == RT_EOK); SpiFlash_WaitReady(qspi_device); } static void SpiFlash_ExitQspiMode(struct rt_qspi_device *qspi_device) { rt_err_t result = RT_EOK; uint8_t u8Status1 = SpiFlash_ReadStatusReg(qspi_device); uint8_t u8Status2 = SpiFlash_ReadStatusReg2(qspi_device); u8Status2 &= ~W25X_REG_QUADENABLE; result = SpiFlash_WriteStatusReg(qspi_device, u8Status1, u8Status2); RT_ASSERT(result == RT_EOK); SpiFlash_WaitReady(qspi_device); } static int rt_hw_spiflash_init(void) { /* Here, we use Dual I/O to drive the SPI flash by default. */ /* If you want to use Quad I/O, you can modify to 4 from 2 and crossover D2/D3 pin of SPI flash. */ if (nu_qspi_bus_attach_device("qspi0", "qspi01", 2, SpiFlash_EnterQspiMode, SpiFlash_ExitQspiMode) != RT_EOK) return -1; #if defined(RT_USING_SFUD) if (rt_sfud_flash_probe("flash0", "qspi01") == RT_NULL) { return -(RT_ERROR); } #endif return 0; } INIT_COMPONENT_EXPORT(rt_hw_spiflash_init); #endif /* BOARD_USING_STORAGE_SPIFLASH */ #if defined(BOARD_USING_SRAM0_AS_MEMHEAP) /* In Advance board design, SRAM address bus A16/A17/A18 are GPIO-controlled by SW, not EBI. So we just remap 128KB only to RTT memory heap, due to it is out of control. AD0~AD15: 2^16*16bit = 128KB */ #include #include "NuMicro.h" static struct rt_memheap system_heap; int nu_use_exsram_as_heap(void) { rt_err_t ret; /* Open ebi bank1 */ ret = nu_ebi_init(EBI_BANK1, EBI_BUSWIDTH_16BIT, EBI_TIMING_SLOWEST, EBI_OPMODE_NORMAL, EBI_CS_ACTIVE_LOW); if (ret != RT_EOK) return ret; /* Initial sram as heap */ return rt_memheap_init(&system_heap, "nu_sram_heap", (void *)EBI_BANK1_BASE_ADDR, 128 * 1024); } INIT_BOARD_EXPORT(nu_use_exsram_as_heap); #endif /* BOARD_USING_SRAM0_AS_MEMHEAP */ #if defined(BOARD_USING_MAX31875) #include int rt_hw_max31875_port(void) { struct rt_sensor_config cfg; cfg.intf.dev_name = "i2c1"; cfg.intf.user_data = (void *)MAX31875_I2C_SLAVE_ADR_R0; cfg.irq_pin.pin = PIN_IRQ_PIN_NONE; rt_hw_max31875_init("max31875", &cfg); return 0; } INIT_APP_EXPORT(rt_hw_max31875_port); #endif /* BOARD_USING_MAX31875 */ #if defined(BOARD_USING_MPU6500) #include int rt_hw_mpu6500_port(void) { struct rt_sensor_config cfg; cfg.intf.dev_name = "i2c2"; cfg.intf.user_data = (void *)MPU6XXX_ADDR_DEFAULT; cfg.irq_pin.pin = PIN_IRQ_PIN_NONE; rt_hw_mpu6xxx_init("mpu", &cfg); return 0; } INIT_APP_EXPORT(rt_hw_mpu6500_port); #endif /* BOARD_USING_MPU6500 */ #if defined(BOARD_USING_LCD_ILI9341) && defined(NU_PKG_USING_ILI9341_EBI) #if defined(NU_PKG_USING_ADC_TOUCH_SW) #include "adc_touch.h" #include "touch_sw.h" #define NU_MFP_POS(PIN) ((PIN % 8) * 4) #define NU_MFP_MSK(PIN) (0xful << NU_MFP_POS(PIN)) S_CALIBRATION_MATRIX g_sCalMat = { -7, 6358, -3727548, 4990, 30, -2368560, 65536 }; static void nu_pin_func(rt_base_t pin, int data) { uint32_t pin_index = NU_GET_PINS(pin); uint32_t port_index = NU_GET_PORT(pin); __IO uint32_t *GPx_MFPx = ((__IO uint32_t *) &SYS->GPA_MFPL) + port_index * 2 + (pin_index / 8); uint32_t MFP_Msk = NU_MFP_MSK(pin_index); *GPx_MFPx = (*GPx_MFPx & (~MFP_Msk)) | data; } static void tp_switch_to_analog(rt_base_t pin) { GPIO_T *port = (GPIO_T *)(GPIOA_BASE + (0x40) * NU_GET_PORT(pin)); if (pin == NU_GET_PININDEX(NU_PB, 8)) nu_pin_func(pin, SYS_GPB_MFPH_PB8MFP_EADC0_CH8); else if (pin == NU_GET_PININDEX(NU_PB, 9)) nu_pin_func(pin, SYS_GPB_MFPH_PB9MFP_EADC0_CH9); GPIO_DISABLE_DIGITAL_PATH(port, NU_GET_PIN_MASK(NU_GET_PINS(pin))); } static void tp_switch_to_digital(rt_base_t pin) { GPIO_T *port = (GPIO_T *)(GPIOA_BASE + (0x40) * NU_GET_PORT(pin)); nu_pin_func(pin, 0); /* Enable digital path on these EADC pins */ GPIO_ENABLE_DIGITAL_PATH(port, NU_GET_PIN_MASK(NU_GET_PINS(pin))); } static S_TOUCH_SW sADCTP = { .adc_name = "eadc0", .i32ADCChnYU = 8, .i32ADCChnXR = 9, .pin = { NU_GET_PININDEX(NU_PH, 4), // XL NU_GET_PININDEX(NU_PB, 8), // YU NU_GET_PININDEX(NU_PB, 9), // XR NU_GET_PININDEX(NU_PH, 5), // YD }, .switch_to_analog = tp_switch_to_analog, .switch_to_digital = tp_switch_to_digital, }; #endif #include #if defined(PKG_USING_GUIENGINE) #include #endif int rt_hw_ili9341_port(void) { rt_err_t ret = RT_EOK; /* Open ebi BOARD_USING_ILI9341_EBI_PORT */ ret = nu_ebi_init(BOARD_USING_ILI9341_EBI_PORT, EBI_BUSWIDTH_16BIT, EBI_TIMING_NORMAL, EBI_OPMODE_NORMAL, EBI_CS_ACTIVE_LOW); if (ret != RT_EOK) return ret; switch (BOARD_USING_ILI9341_EBI_PORT) { case 0: EBI->CTL0 |= EBI_CTL0_CACCESS_Msk; EBI->TCTL0 |= (EBI_TCTL0_WAHDOFF_Msk | EBI_TCTL0_RAHDOFF_Msk); break; case 1: EBI->CTL1 |= EBI_CTL1_CACCESS_Msk; EBI->TCTL1 |= (EBI_TCTL1_WAHDOFF_Msk | EBI_TCTL1_RAHDOFF_Msk); break; case 2: EBI->CTL2 |= EBI_CTL2_CACCESS_Msk; EBI->TCTL2 |= (EBI_TCTL2_WAHDOFF_Msk | EBI_TCTL2_RAHDOFF_Msk); break; default: return -1; } if (rt_hw_lcd_ili9341_ebi_init(EBI_BANK0_BASE_ADDR + BOARD_USING_ILI9341_EBI_PORT * EBI_MAX_SIZE) != RT_EOK) return -1; rt_hw_lcd_ili9341_init(); #if defined(PKG_USING_GUIENGINE) rt_device_t lcd_ili9341; lcd_ili9341 = rt_device_find("lcd"); if (lcd_ili9341) { rtgui_graphic_set_device(lcd_ili9341); } #endif #if defined(NU_PKG_USING_ADC_TOUCH_SW) nu_adc_touch_sw_register(&sADCTP); #endif return 0; } INIT_COMPONENT_EXPORT(rt_hw_ili9341_port); #endif /* BOARD_USING_LCD_ILI9341 */ #if defined(BOARD_USING_NAU88L25) && defined(NU_PKG_USING_NAU88L25) #include S_NU_NAU88L25_CONFIG sCodecConfig = { .i2c_bus_name = "i2c2", .i2s_bus_name = "sound0", .pin_phonejack_en = NU_GET_PININDEX(NU_PE, 13), .pin_phonejack_det = 0, }; int rt_hw_nau88l25_port(void) { if (nu_hw_nau88l25_init(&sCodecConfig) != RT_EOK) return -1; return 0; } INIT_COMPONENT_EXPORT(rt_hw_nau88l25_port); #endif /* BOARD_USING_NAU88L25 */ #if defined(BOARD_USING_BUZZER) #define BPWM_DEV_NAME "bpwm0" #define BPWM_DEV_CHANNEL (5) static void PlayRingTone(void) { struct rt_device_pwm *bpwm_dev; rt_uint32_t period; int i, j; period = 1000; if ((bpwm_dev = (struct rt_device_pwm *)rt_device_find(BPWM_DEV_NAME)) != RT_NULL) { rt_pwm_set(bpwm_dev, BPWM_DEV_CHANNEL, period, period); rt_pwm_enable(bpwm_dev, BPWM_DEV_CHANNEL); for (j = 0; j < 5; j++) { for (i = 0; i < 10; i++) { rt_pwm_set(bpwm_dev, BPWM_DEV_CHANNEL, period, period); rt_thread_mdelay(50); rt_pwm_set(bpwm_dev, BPWM_DEV_CHANNEL, period, period / 2); rt_thread_mdelay(50); } /* Mute 2 seconds */ rt_pwm_set(bpwm_dev, BPWM_DEV_CHANNEL, period, period); rt_thread_mdelay(2000); } rt_pwm_disable(bpwm_dev, BPWM_DEV_CHANNEL); } else { rt_kprintf("Can't find %s\n", BPWM_DEV_NAME); } } int buzzer_test(void) { PlayRingTone(); return 0; } #ifdef FINSH_USING_MSH MSH_CMD_EXPORT(buzzer_test, Buzzer - Play ring tone); #endif #endif /* BOARD_USING_BUZZER */