/* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2022-03-06 BalanceTWK first version * 2022-04-16 wolfJane fix spixfer, add time out check */ #include #include #include #ifdef RT_USING_SPI #ifdef BSP_USING_SPI #if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) || defined(BSP_USING_SPI4) || defined(BSP_USING_SPI5) || defined(BSP_USING_SPI6) #include "drv_spi.h" #define DRV_DEBUG #define LOG_TAG "drv.spi" #include #define SPI_TIME_OUT (1000) enum { #ifdef BSP_USING_SPI1 SPI1_INDEX, #endif #ifdef BSP_USING_SPI2 SPI2_INDEX, #endif #ifdef BSP_USING_SPI3 SPI3_INDEX, #endif #ifdef BSP_USING_SPI4 SPI4_INDEX, #endif #ifdef BSP_USING_SPI5 SPI5_INDEX, #endif #ifdef BSP_USING_SPI6 SPI6_INDEX, #endif }; struct n32_spi_config { SPI_Module *module; char *bus_name; }; /* n32 spi dirver class */ struct n32_spi { SPI_InitType SPI_InitStructure; struct n32_spi_config *config; struct rt_spi_configuration *cfg; struct rt_spi_bus spi_bus; }; static struct n32_spi_config spi_config[] = { #ifdef BSP_USING_SPI1 { .module = SPI1, .bus_name = "spi1", }, #endif #ifdef BSP_USING_SPI2 { .module = SPI2, .bus_name = "spi2", }, #endif #ifdef BSP_USING_SPI3 { .module = SPI3, .bus_name = "spi3", }, #endif }; static struct n32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0}; static rt_err_t n32_spi_init(struct n32_spi *spi_drv, struct rt_spi_configuration *cfg) { RT_ASSERT(spi_drv != RT_NULL); RT_ASSERT(cfg != RT_NULL); SPI_InitType *SPI_InitStructure = &spi_drv->SPI_InitStructure; SPI_Module *spi_handle = spi_drv->config->module; /* GPIO configuration ------------------------------------------------------*/ n32_msp_spi_init(spi_drv->config->module); if (cfg->mode & RT_SPI_SLAVE) { /* SPI_InitStructure->SpiMode = SPI_MODE_SLAVE; */ return -RT_ERROR; } else { SPI_InitStructure->SpiMode = SPI_MODE_MASTER; } if (cfg->mode & RT_SPI_3WIRE) { SPI_InitStructure->DataDirection = SPI_DIR_SINGLELINE_TX; } else { SPI_InitStructure->DataDirection = SPI_DIR_DOUBLELINE_FULLDUPLEX; } if (cfg->data_width == 8) { SPI_InitStructure->DataLen = SPI_DATA_SIZE_8BITS; } else if (cfg->data_width == 16) { SPI_InitStructure->DataLen = SPI_DATA_SIZE_16BITS; } else { return -RT_EIO; } if (cfg->mode & RT_SPI_CPHA) { SPI_InitStructure->CLKPHA = SPI_CLKPHA_SECOND_EDGE; } else { SPI_InitStructure->CLKPHA = SPI_CLKPHA_FIRST_EDGE; } if (cfg->mode & RT_SPI_CPOL) { SPI_InitStructure->CLKPOL = SPI_CLKPOL_HIGH; } else { SPI_InitStructure->CLKPOL = SPI_CLKPOL_LOW; } if (cfg->mode & RT_SPI_NO_CS) { SPI_InitStructure->NSS = SPI_NSS_HARD; } else { SPI_InitStructure->NSS = SPI_NSS_SOFT; } RCC_ClocksType RCC_Clock; RCC_GetClocksFreqValue(&RCC_Clock); rt_uint64_t SPI_APB_CLOCK; if (SPI1 == spi_handle) { SPI_APB_CLOCK = RCC_Clock.Pclk1Freq; } else if (SPI2 == spi_handle || SPI3 == spi_handle) { SPI_APB_CLOCK = RCC_Clock.Pclk2Freq; } if (cfg->max_hz >= SPI_APB_CLOCK / 2) { SPI_InitStructure->BaudRatePres = SPI_BR_PRESCALER_2; } else if (cfg->max_hz >= SPI_APB_CLOCK / 4) { SPI_InitStructure->BaudRatePres = SPI_BR_PRESCALER_4; } else if (cfg->max_hz >= SPI_APB_CLOCK / 8) { SPI_InitStructure->BaudRatePres = SPI_BR_PRESCALER_8; } else if (cfg->max_hz >= SPI_APB_CLOCK / 16) { SPI_InitStructure->BaudRatePres = SPI_BR_PRESCALER_16; } else if (cfg->max_hz >= SPI_APB_CLOCK / 32) { SPI_InitStructure->BaudRatePres = SPI_BR_PRESCALER_32; } else if (cfg->max_hz >= SPI_APB_CLOCK / 64) { SPI_InitStructure->BaudRatePres = SPI_BR_PRESCALER_64; } else if (cfg->max_hz >= SPI_APB_CLOCK / 128) { SPI_InitStructure->BaudRatePres = SPI_BR_PRESCALER_128; } else { SPI_InitStructure->BaudRatePres = SPI_BR_PRESCALER_256; } if (cfg->mode & RT_SPI_MSB) { SPI_InitStructure->FirstBit = SPI_FB_MSB; } else { SPI_InitStructure->FirstBit = SPI_FB_LSB; } SPI_InitStructure->CRCPoly = 7; SPI_Init(spi_handle, SPI_InitStructure); /* Enable SPI_MASTER TXE interrupt */ SPI_I2S_EnableInt(spi_handle, SPI_I2S_INT_TE, ENABLE); /* Enable SPI_MASTER */ SPI_Enable(spi_handle, ENABLE); return RT_EOK; } static rt_err_t spi_configure(struct rt_spi_device *device, struct rt_spi_configuration *configuration) { RT_ASSERT(device != RT_NULL); RT_ASSERT(configuration != RT_NULL); struct n32_spi *spi_drv = rt_container_of(device->bus, struct n32_spi, spi_bus); spi_drv->cfg = configuration; return n32_spi_init(spi_drv, configuration); } static rt_ssize_t _spi_recv(SPI_Module *hspi, uint8_t *tx_buff, uint8_t *rx_buff, uint32_t length, uint32_t timeout) { /* Init tickstart for timeout management*/ uint32_t tickstart = rt_tick_get(); uint8_t dat = 0; if ((tx_buff == RT_NULL) && (rx_buff == RT_NULL) || (length == 0)) { return -RT_EIO; } while (length--) { while (SPI_I2S_GetStatus(hspi, SPI_I2S_TE_FLAG) == RESET) { if ((rt_tick_get() - tickstart) > timeout) { return RT_ETIMEOUT; } } SPI_I2S_TransmitData(hspi, *tx_buff++); while (SPI_I2S_GetStatus(hspi, SPI_I2S_RNE_FLAG) == RESET) { if ((rt_tick_get() - tickstart) > timeout) { return RT_ETIMEOUT; } } dat = SPI_I2S_ReceiveData(hspi); if (rx_buff) { *rx_buff++ = dat; } } return RT_EOK; } static rt_ssize_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message) { rt_size_t send_length; rt_uint8_t *recv_buf; const rt_uint8_t *send_buf; rt_ssize_t stat = RT_EOK; /* Check Direction parameter */ RT_ASSERT(device != RT_NULL); RT_ASSERT(device->bus != RT_NULL); RT_ASSERT(device->bus->parent.user_data != RT_NULL); RT_ASSERT(message != RT_NULL); struct n32_spi *spi_drv = rt_container_of(device->bus, struct n32_spi, spi_bus); struct n32_hw_spi_cs *cs = device->parent.user_data; SPI_Module *spi_handle = spi_drv->config->module; if (message->cs_take && !(device->config.mode & RT_SPI_NO_CS)) { if (device->config.mode & RT_SPI_CS_HIGH) { GPIO_SetBits(cs->module, cs->pin); } else { GPIO_ResetBits(cs->module, cs->pin); } } send_length = message->length; recv_buf = message->recv_buf; send_buf = message->send_buf; /* start once data exchange in DMA mode */ if (message->send_buf && message->recv_buf) { LOG_D("%s:%d", __FUNCTION__, __LINE__); stat = -RT_EIO; } else if (message->send_buf) { stat = _spi_recv(spi_handle, (uint8_t *)send_buf, RT_NULL, send_length, SPI_TIME_OUT); } else { rt_memset(recv_buf, 0xff, send_length); stat = _spi_recv(spi_handle, (uint8_t *)recv_buf, (uint8_t *)recv_buf, send_length, SPI_TIME_OUT); } if (message->cs_release && !(device->config.mode & RT_SPI_NO_CS)) { if (device->config.mode & RT_SPI_CS_HIGH) { GPIO_ResetBits(cs->module, cs->pin); } else { GPIO_SetBits(cs->module, cs->pin); } } if (stat != RT_EOK) { send_length = 0; } return send_length; } static const struct rt_spi_ops n32_spi_ops = { .configure = spi_configure, .xfer = spixfer, }; static int rt_hw_spi_bus_init(void) { rt_err_t result; for (int i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++) { spi_bus_obj[i].config = &spi_config[i]; spi_bus_obj[i].spi_bus.parent.user_data = &spi_config[i]; result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].bus_name, &n32_spi_ops); RT_ASSERT(result == RT_EOK); LOG_D("%s bus init done", spi_config[i].bus_name); } return result; } int rt_hw_spi_init(void) { /* TODO: n32_get_dma_info(); */ return rt_hw_spi_bus_init(); } INIT_BOARD_EXPORT(rt_hw_spi_init); /** * Attach the spi device to SPI bus, this function must be used after initialization. */ rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, GPIO_Module *cs_gpiox, uint32_t cs_gpio_pin) { rt_err_t result; struct rt_spi_device *spi_device; struct n32_hw_spi_cs *cs_pin; GPIO_InitType GPIO_InitStructure; RT_ASSERT(bus_name != RT_NULL); RT_ASSERT(device_name != RT_NULL); /* Enable the GPIO Clock */ if (cs_gpiox == GPIOA) { RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOA, ENABLE); } else if (cs_gpiox == GPIOB) { RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOB, ENABLE); } else if (cs_gpiox == GPIOC) { RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOC, ENABLE); } else if (cs_gpiox == GPIOD) { RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOD, ENABLE); } else if (cs_gpiox == GPIOE) { RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOE, ENABLE); } else if (cs_gpiox == GPIOF) { RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOF, ENABLE); } else if (cs_gpiox == GPIOG) { RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOG, ENABLE); } /* Configure the GPIO pin */ if (cs_gpio_pin <= GPIO_PIN_ALL) { GPIO_InitStructure.Pin = cs_gpio_pin; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitPeripheral(cs_gpiox, &GPIO_InitStructure); } /* attach the device to spi bus*/ spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device)); RT_ASSERT(spi_device != RT_NULL); cs_pin = (struct n32_hw_spi_cs *)rt_malloc(sizeof(struct n32_hw_spi_cs)); RT_ASSERT(cs_pin != RT_NULL); cs_pin->module = cs_gpiox; cs_pin->pin = cs_gpio_pin; result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin); if (result != RT_EOK) { LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result); } RT_ASSERT(result == RT_EOK); LOG_D("%s attach to %s done", device_name, bus_name); return result; } #endif /* BSP_USING_SPIx */ #endif /* BSP_USING_SPI */ #endif /* RT_USING_SPI */