/* * Copyright (c) 2006-2022, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2022-10-24 GuEe-GUI first version */ #include #include #define DBG_TAG "rtdm.pci" #define DBG_LVL DBG_INFO #include #include #include #include rt_inline void spin_lock(struct rt_spinlock *spinlock) { rt_hw_spin_lock(&spinlock->lock); } rt_inline void spin_unlock(struct rt_spinlock *spinlock) { rt_hw_spin_unlock(&spinlock->lock); } rt_uint32_t rt_pci_domain(struct rt_pci_device *pdev) { struct rt_pci_host_bridge *host_bridge; if (!pdev) { return RT_UINT32_MAX; } if ((host_bridge = rt_pci_find_host_bridge(pdev->bus))) { return host_bridge->domain; } return RT_UINT32_MAX; } static rt_uint8_t pci_find_next_cap_ttl(struct rt_pci_bus *bus, rt_uint32_t devfn, rt_uint8_t pos, int cap, int *ttl) { rt_uint8_t ret = 0, id; rt_uint16_t ent; rt_pci_bus_read_config_u8(bus, devfn, pos, &pos); while ((*ttl)--) { if (pos < 0x40) { break; } pos &= ~3; rt_pci_bus_read_config_u16(bus, devfn, pos, &ent); id = ent & 0xff; if (id == 0xff) { break; } if (id == cap) { ret = pos; break; } pos = (ent >> 8); } return ret; } static rt_uint8_t pci_find_next_cap(struct rt_pci_bus *bus, rt_uint32_t devfn, rt_uint8_t pos, int cap) { int ttl = RT_PCI_FIND_CAP_TTL; return pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); } static rt_uint8_t pci_bus_find_cap_start(struct rt_pci_bus *bus, rt_uint32_t devfn, rt_uint8_t hdr_type) { rt_uint8_t res = 0; rt_uint16_t status; rt_pci_bus_read_config_u16(bus, devfn, PCIR_STATUS, &status); if (status & PCIM_STATUS_CAPPRESENT) { switch (hdr_type) { case PCIM_HDRTYPE_NORMAL: case PCIM_HDRTYPE_BRIDGE: res = PCIR_CAP_PTR; break; case PCIM_HDRTYPE_CARDBUS: res = PCIR_CAP_PTR_2; break; } } return res; } rt_uint8_t rt_pci_bus_find_capability(struct rt_pci_bus *bus, rt_uint32_t devfn, int cap) { rt_uint8_t hdr_type, ret = RT_UINT8_MAX; if (bus) { rt_pci_bus_read_config_u8(bus, devfn, PCIR_HDRTYPE, &hdr_type); ret = pci_bus_find_cap_start(bus, devfn, hdr_type & PCIM_HDRTYPE); if (ret) { ret = pci_find_next_cap(bus, devfn, ret, cap); } } return ret; } rt_uint8_t rt_pci_find_capability(struct rt_pci_device *pdev, int cap) { rt_uint8_t res = RT_UINT8_MAX; if (pdev) { res = pci_bus_find_cap_start(pdev->bus, pdev->devfn, pdev->hdr_type); if (res) { res = pci_find_next_cap(pdev->bus, pdev->devfn, res, cap); } } return res; } rt_uint8_t rt_pci_find_next_capability(struct rt_pci_device *pdev, rt_uint8_t pos, int cap) { rt_uint8_t res = RT_UINT8_MAX; if (pdev) { res = pci_find_next_cap(pdev->bus, pdev->devfn, pos + PCICAP_NEXTPTR, cap); } return res; } rt_uint16_t rt_pci_find_ext_capability(struct rt_pci_device *pdev, int cap) { return rt_pci_find_ext_next_capability(pdev, 0, cap); } rt_uint16_t rt_pci_find_ext_next_capability(struct rt_pci_device *pdev, rt_uint16_t pos, int cap) { int ttl; rt_uint32_t header; rt_uint16_t start = pos; /* minimum 8 bytes per capability */ ttl = ((PCIE_REGMAX + 1) - (PCI_REGMAX + 1)) / 8; if (pdev->cfg_size <= PCI_REGMAX + 1) { return 0; } if (!pos) { pos = PCI_REGMAX + 1; } if (rt_pci_read_config_u32(pdev, pos, &header)) { return 0; } /* * If we have no capabilities, this is indicated by cap ID, * cap version and next pointer all being 0. */ if (header == 0) { return 0; } while (ttl-- > 0) { if (PCI_EXTCAP_ID(header) == cap && pos != start) { return pos; } pos = PCI_EXTCAP_NEXTPTR(header); if (pos < PCI_REGMAX + 1) { break; } if (rt_pci_read_config_u32(pdev, pos, &header)) { break; } } return 0; } static void pci_set_master(struct rt_pci_device *pdev, rt_bool_t enable) { rt_uint16_t old_cmd, cmd; rt_pci_read_config_u16(pdev, PCIR_COMMAND, &old_cmd); if (enable) { cmd = old_cmd | PCIM_CMD_BUSMASTEREN; } else { cmd = old_cmd & ~PCIM_CMD_BUSMASTEREN; } if (cmd != old_cmd) { rt_pci_write_config_u16(pdev, PCIR_COMMAND, cmd); } pdev->busmaster = !!enable; } void rt_pci_set_master(struct rt_pci_device *pdev) { if (pdev) { pci_set_master(pdev, RT_TRUE); } } void rt_pci_clear_master(struct rt_pci_device *pdev) { if (pdev) { pci_set_master(pdev, RT_FALSE); } } void rt_pci_intx(struct rt_pci_device *pdev, rt_bool_t enable) { rt_uint16_t pci_command, new; if (!pdev) { return; } rt_pci_read_config_u16(pdev, PCIR_COMMAND, &pci_command); if (enable) { new = pci_command & ~PCIM_CMD_INTxDIS; } else { new = pci_command | PCIM_CMD_INTxDIS; } if (new != pci_command) { rt_pci_write_config_u16(pdev, PCIR_COMMAND, new); } } static rt_bool_t pci_check_and_set_intx_mask(struct rt_pci_device *pdev, rt_bool_t mask) { rt_ubase_t level; rt_bool_t irq_pending; rt_bool_t res = RT_TRUE; rt_uint16_t origcmd, newcmd; rt_uint32_t cmd_status_dword; struct rt_pci_bus *bus = pdev->bus; level = rt_spin_lock_irqsave(&rt_pci_lock); bus->ops->read(bus, pdev->devfn, PCIR_COMMAND, 4, &cmd_status_dword); irq_pending = (cmd_status_dword >> 16) & PCIM_STATUS_INTxSTATE; /* * Check interrupt status register to see whether our device * triggered the interrupt (when masking) or the next IRQ is * already pending (when unmasking). */ if (mask != irq_pending) { res = RT_FALSE; } else { origcmd = cmd_status_dword; newcmd = origcmd & ~PCIM_CMD_INTxDIS; if (mask) { newcmd |= PCIM_CMD_INTxDIS; } if (newcmd != origcmd) { bus->ops->write(bus, pdev->devfn, PCIR_COMMAND, 2, newcmd); } } rt_spin_unlock_irqrestore(&rt_pci_lock, level); return res; } rt_bool_t rt_pci_check_and_mask_intx(struct rt_pci_device *pdev) { rt_bool_t res = RT_FALSE; if (pdev) { res = pci_check_and_set_intx_mask(pdev, RT_TRUE); } return res; } rt_bool_t rt_pci_check_and_unmask_intx(struct rt_pci_device *pdev) { rt_bool_t res = RT_FALSE; if (pdev) { res = pci_check_and_set_intx_mask(pdev, RT_FALSE); } return res; } void rt_pci_irq_mask(struct rt_pci_device *pdev) { if (pdev) { rt_bool_t unused; struct rt_pic_irq *pirq; rt_pci_intx(pdev, RT_FALSE); pirq = rt_pic_find_pirq(pdev->intx_pic, pdev->irq); RT_ASSERT(pirq != RT_NULL); rt_hw_spin_lock(&pirq->rw_lock.lock); unused = rt_list_isempty(&pirq->isr.list); rt_hw_spin_unlock(&pirq->rw_lock.lock); if (unused) { rt_hw_interrupt_mask(pdev->irq); } } } void rt_pci_irq_unmask(struct rt_pci_device *pdev) { if (pdev) { rt_hw_interrupt_umask(pdev->irq); rt_pci_intx(pdev, RT_TRUE); } } struct rt_pci_bus *rt_pci_find_root_bus(struct rt_pci_bus *bus) { if (!bus) { return RT_NULL; } while (bus->parent) { bus = bus->parent; } return bus; } struct rt_pci_host_bridge *rt_pci_find_host_bridge(struct rt_pci_bus *bus) { if (!bus) { return RT_NULL; } if ((bus = rt_pci_find_root_bus(bus))) { return rt_container_of(bus->host_bridge, struct rt_pci_host_bridge, parent); } return RT_NULL; } rt_uint8_t rt_pci_irq_intx(struct rt_pci_device *pdev, rt_uint8_t pin) { int slot = 0; if (!pdev->ari_enabled) { slot = RT_PCI_SLOT(pdev->devfn); } return (((pin - 1) + slot) % 4) + 1; } rt_uint8_t rt_pci_irq_slot(struct rt_pci_device *pdev, rt_uint8_t *pinp) { rt_uint8_t pin = *pinp; while (!rt_pci_is_root_bus(pdev->bus)) { pin = rt_pci_irq_intx(pdev, pin); pdev = pdev->bus->self; } *pinp = pin; return RT_PCI_SLOT(pdev->devfn); } rt_err_t rt_pci_region_setup(struct rt_pci_host_bridge *host_bridge) { rt_err_t err = host_bridge->bus_regions_nr == 0 ? -RT_EEMPTY : RT_EOK; for (int i = 0; i < host_bridge->bus_regions_nr; ++i) { struct rt_pci_bus_region *region = &host_bridge->bus_regions[i]; /* * Avoid allocating PCI resources from address 0 -- this is illegal * according to PCI 2.1 and moreover. Use a reasonable starting value of * 0x1000 instead if the bus start address is below 0x1000. */ region->bus_start = rt_max_t(rt_size_t, 0x1000, region->phy_addr); LOG_I("Bus %s region(%d):", region->flags == PCI_BUS_REGION_F_MEM ? "Memory" : (region->flags == PCI_BUS_REGION_F_PREFETCH ? "Prefetchable Mem" : (region->flags == PCI_BUS_REGION_F_IO ? "I/O" : "Unknown")), i); LOG_I(" cpu: [%p, %p]", region->cpu_addr, (region->cpu_addr + region->size - 1)); LOG_I(" physical: [%p, %p]", region->phy_addr, (region->phy_addr + region->size - 1)); } return err; } struct rt_pci_bus_region *rt_pci_region_alloc(struct rt_pci_host_bridge *host_bridge, void **out_addr, rt_size_t size, rt_ubase_t flags, rt_bool_t mem64) { struct rt_pci_bus_region *bus_region, *region = RT_NULL; bus_region = &host_bridge->bus_regions[0]; for (int i = 0; i < host_bridge->bus_regions_nr; ++i, ++bus_region) { if (bus_region->flags == flags && bus_region->size > 0) { void *addr; region = bus_region; addr = (void *)(((region->bus_start - 1) | (size - 1)) + 1); if ((rt_uint64_t)addr - region->phy_addr + size <= region->size) { rt_bool_t addr64 = !!rt_upper_32_bits((rt_ubase_t)addr); if (mem64) { if (!addr64) { region = RT_NULL; /* Try again */ continue; } } else if (addr64) { region = RT_NULL; /* Try again */ continue; } region->bus_start = ((rt_uint64_t)addr + size); *out_addr = addr; } break; } } if (!region && mem64) { /* Retry */ region = rt_pci_region_alloc(host_bridge, out_addr, size, flags, RT_FALSE); } return region; } rt_err_t rt_pci_device_alloc_resource(struct rt_pci_host_bridge *host_bridge, struct rt_pci_device *pdev) { rt_err_t err = RT_EOK; rt_size_t size; rt_ubase_t addr = 0; rt_uint32_t cfg; rt_size_t bars_nr; rt_uint8_t hdr_type; rt_bool_t prefetch = RT_FALSE; rt_uint16_t class, command = 0; for (int i = 0; i < host_bridge->bus_regions_nr; ++i) { if (host_bridge->bus_regions[i].flags == PCI_BUS_REGION_F_PREFETCH) { prefetch = RT_TRUE; break; } } rt_pci_read_config_u16(pdev, PCIR_COMMAND, &command); command = (command & ~(PCIM_CMD_PORTEN | PCIM_CMD_MEMEN)) | PCIM_CMD_BUSMASTEREN; rt_pci_read_config_u8(pdev, PCIR_HDRTYPE, &hdr_type); if (pdev->hdr_type != hdr_type) { LOG_W("%s may not initialized", rt_dm_dev_get_name(&pdev->parent)); } switch (hdr_type) { case PCIM_HDRTYPE_NORMAL: bars_nr = PCI_STD_NUM_BARS; break; case PCIM_HDRTYPE_BRIDGE: bars_nr = 2; break; case PCIM_HDRTYPE_CARDBUS: bars_nr = 0; break; default: bars_nr = 0; break; } for (int i = 0; i < bars_nr; ++i) { rt_ubase_t flags; rt_ubase_t bar_base; rt_bool_t mem64 = RT_FALSE; struct rt_pci_bus_region *region; cfg = 0; bar_base = PCIR_BAR(i); rt_pci_write_config_u32(pdev, bar_base, RT_UINT32_MAX); rt_pci_read_config_u32(pdev, bar_base, &cfg); if (!cfg) { continue; } else if (cfg == RT_UINT32_MAX) { rt_pci_write_config_u32(pdev, bar_base, 0UL); continue; } if (cfg & PCIM_BAR_SPACE) { mem64 = RT_FALSE; flags = PCI_BUS_REGION_F_IO; size = cfg & PCIM_BAR_IO_MASK; size &= ~(size - 1); } else { /* memory */ if ((cfg & PCIM_BAR_MEM_TYPE_MASK) == PCIM_BAR_MEM_TYPE_64) { /* 64bits */ rt_uint32_t cfg64; rt_uint64_t bar64; mem64 = RT_TRUE; rt_pci_write_config_u32(pdev, bar_base + sizeof(rt_uint32_t), RT_UINT32_MAX); rt_pci_read_config_u32(pdev, bar_base + sizeof(rt_uint32_t), &cfg64); bar64 = ((rt_uint64_t)cfg64 << 32) | cfg; size = ~(bar64 & PCIM_BAR_MEM_MASK) + 1; } else { /* 32bits */ mem64 = RT_FALSE; size = (rt_uint32_t)(~(cfg & PCIM_BAR_MEM_MASK) + 1); } if (prefetch && (cfg & PCIM_BAR_MEM_PREFETCH)) { flags = PCI_BUS_REGION_F_PREFETCH; } else { flags = PCI_BUS_REGION_F_MEM; } } region = rt_pci_region_alloc(host_bridge, (void **)&addr, size, flags, mem64); if (region) { rt_pci_write_config_u32(pdev, bar_base, addr); if (mem64) { bar_base += sizeof(rt_uint32_t); #ifdef RT_PCI_SYS_64BIT rt_pci_write_config_u32(pdev, bar_base, (rt_uint32_t)(addr >> 32)); #else /* * If we are a 64-bit decoder then increment to the upper 32 bits * of the bar and force it to locate in the lower 4GB of memory. */ rt_pci_write_config_u32(pdev, bar_base, 0UL); #endif } pdev->resource[i].size = size; pdev->resource[i].base = region->cpu_addr + (addr - region->phy_addr); pdev->resource[i].flags = flags; if (mem64) { ++i; pdev->resource[i].flags = PCI_BUS_REGION_F_NONE; } } else { err = -RT_ERROR; LOG_W("%s alloc bar(%d) address fail", rt_dm_dev_get_name(&pdev->parent), i); } command |= (cfg & PCIM_BAR_SPACE) ? PCIM_CMD_PORTEN : PCIM_CMD_MEMEN; } if (hdr_type == PCIM_HDRTYPE_NORMAL || hdr_type == PCIM_HDRTYPE_BRIDGE) { int rom_addr = (hdr_type == PCIM_HDRTYPE_NORMAL) ? PCIR_BIOS : PCIR_BIOS_1; rt_pci_write_config_u32(pdev, rom_addr, 0xfffffffe); rt_pci_read_config_u32(pdev, rom_addr, &cfg); if (cfg) { size = -(cfg & ~1); if (rt_pci_region_alloc(host_bridge, (void **)&addr, size, PCI_BUS_REGION_F_MEM, RT_FALSE)) { rt_pci_write_config_u32(pdev, rom_addr, addr); } command |= PCIM_CMD_MEMEN; } } rt_pci_read_config_u16(pdev, PCIR_SUBCLASS, &class); if (class == PCIS_DISPLAY_VGA) { command |= PCIM_CMD_PORTEN; } rt_pci_write_config_u16(pdev, PCIR_COMMAND, command); rt_pci_write_config_u8(pdev, PCIR_CACHELNSZ, RT_PCI_CACHE_LINE_SIZE); rt_pci_write_config_u8(pdev, PCIR_LATTIMER, 0x80); return err; } void rt_pci_enum_device(struct rt_pci_bus *bus, rt_bool_t (callback(struct rt_pci_device *, void *)), void *data) { rt_bool_t is_end = RT_FALSE; struct rt_spinlock *lock; struct rt_pci_bus *parent; struct rt_pci_device *pdev, *last_pdev = RT_NULL; /* Walk tree */ while (bus && !is_end) { /* Goto bottom */ for (;;) { lock = &bus->lock; spin_lock(lock); if (rt_list_isempty(&bus->children_nodes)) { parent = bus->parent; break; } bus = rt_list_entry(&bus->children_nodes, struct rt_pci_bus, list); spin_unlock(lock); } rt_list_for_each_entry(pdev, &bus->devices_nodes, list) { if (last_pdev) { spin_unlock(lock); if (callback(last_pdev, data)) { spin_lock(lock); --last_pdev->parent.ref_count; is_end = RT_TRUE; break; } spin_lock(lock); --last_pdev->parent.ref_count; } ++pdev->parent.ref_count; last_pdev = pdev; } if (!is_end && last_pdev) { spin_unlock(lock); if (callback(last_pdev, data)) { is_end = RT_TRUE; } spin_lock(lock); --last_pdev->parent.ref_count; } last_pdev = RT_NULL; spin_unlock(lock); /* Up a level or goto next */ while (!is_end) { lock = &bus->lock; if (!parent) { /* Root bus, is end */ bus = RT_NULL; break; } spin_lock(lock); if (bus->list.next != &parent->children_nodes) { /* Has next sibling */ bus = rt_list_entry(bus->list.next, struct rt_pci_bus, list); spin_unlock(lock); break; } /* All device on this buss' parent */ rt_list_for_each_entry(pdev, &parent->devices_nodes, list) { if (last_pdev) { spin_unlock(lock); if (callback(last_pdev, data)) { spin_lock(lock); --last_pdev->parent.ref_count; is_end = RT_TRUE; break; } spin_lock(lock); --last_pdev->parent.ref_count; } ++pdev->parent.ref_count; last_pdev = pdev; } if (!is_end && last_pdev) { spin_unlock(lock); if (callback(last_pdev, data)) { is_end = RT_TRUE; } spin_lock(lock); --last_pdev->parent.ref_count; } last_pdev = RT_NULL; bus = parent; parent = parent->parent; spin_unlock(lock); } } } const struct rt_pci_device_id *rt_pci_match_id(struct rt_pci_device *pdev, const struct rt_pci_device_id *id) { if ((id->vendor == PCI_ANY_ID || id->vendor == pdev->vendor) && (id->device == PCI_ANY_ID || id->device == pdev->device) && (id->subsystem_vendor == PCI_ANY_ID || id->subsystem_vendor == pdev->subsystem_vendor) && (id->subsystem_device == PCI_ANY_ID || id->subsystem_device == pdev->subsystem_device) && !((id->class ^ pdev->class) & id->class_mask)) { return id; } return RT_NULL; } const struct rt_pci_device_id *rt_pci_match_ids(struct rt_pci_device *pdev, const struct rt_pci_device_id *ids) { while (ids->vendor || ids->subsystem_vendor || ids->class_mask) { if (rt_pci_match_id(pdev, ids)) { return ids; } ++ids; } return RT_NULL; } static struct rt_bus pci_bus; rt_err_t rt_pci_driver_register(struct rt_pci_driver *pdrv) { RT_ASSERT(pdrv != RT_NULL); pdrv->parent.bus = &pci_bus; #if RT_NAME_MAX > 0 rt_strcpy(pdrv->parent.parent.name, pdrv->name); #else pdrv->parent.parent.name = pdrv->name; #endif return rt_driver_register(&pdrv->parent); } rt_err_t rt_pci_device_register(struct rt_pci_device *pdev) { rt_err_t err; RT_ASSERT(pdev != RT_NULL); if ((err = rt_bus_add_device(&pci_bus, &pdev->parent))) { return err; } return RT_EOK; } static rt_bool_t pci_match(rt_driver_t drv, rt_device_t dev) { rt_bool_t match = RT_FALSE; struct rt_pci_driver *pdrv = rt_container_of(drv, struct rt_pci_driver, parent); struct rt_pci_device *pdev = rt_container_of(dev, struct rt_pci_device, parent); if (pdrv->name && pdev->name) { match = rt_strcmp(pdrv->name, pdev->name) ? RT_FALSE : RT_TRUE; } if (!match) { pdev->id = rt_pci_match_ids(pdev, pdrv->ids); match = pdev->id ? RT_TRUE : RT_FALSE; } return match; } static rt_err_t pci_probe(rt_device_t dev) { rt_err_t err = RT_EOK; struct rt_pci_driver *pdrv = rt_container_of(dev->drv, struct rt_pci_driver, parent); struct rt_pci_device *pdev = rt_container_of(dev, struct rt_pci_device, parent); rt_pci_assign_irq(pdev); rt_pci_enable_wake(pdev, RT_PCI_D0, RT_TRUE); err = pdrv->probe(pdev); if (err) { rt_pci_enable_wake(pdev, RT_PCI_D0, RT_FALSE); } return err; } static rt_err_t pci_remove(rt_device_t dev) { rt_err_t err = RT_EOK; struct rt_pci_bus *bus; struct rt_pci_driver *pdrv = rt_container_of(dev->drv, struct rt_pci_driver, parent); struct rt_pci_device *pdev = rt_container_of(dev, struct rt_pci_device, parent); if (pdrv && pdrv->remove) { if ((err = pdrv->remove(pdev))) { return err; } } rt_pci_enable_wake(pdev, RT_PCI_D0, RT_FALSE); bus = pdev->bus; rt_pci_device_remove(pdev); /* Just try to remove */ rt_pci_bus_remove(bus); return err; } static rt_err_t pci_shutdown(rt_device_t dev) { struct rt_pci_bus *bus; struct rt_pci_driver *pdrv = rt_container_of(dev->drv, struct rt_pci_driver, parent); struct rt_pci_device *pdev = rt_container_of(dev, struct rt_pci_device, parent); if (pdrv && pdrv->shutdown) { pdrv->shutdown(pdev); } rt_pci_enable_wake(pdev, RT_PCI_D0, RT_FALSE); bus = pdev->bus; rt_pci_device_remove(pdev); /* Just try to remove */ rt_pci_bus_remove(bus); return RT_EOK; } static struct rt_bus pci_bus = { .name = "pci", .match = pci_match, .probe = pci_probe, .remove = pci_remove, .shutdown = pci_shutdown, }; static int pci_bus_init(void) { rt_bus_register(&pci_bus); return 0; } INIT_CORE_EXPORT(pci_bus_init);