////////////////////////////////////////////////////////////////////////////////
/// @file hal_spi.c
/// @author AE TEAM
/// @brief THIS FILE PROVIDES ALL THE SPI FIRMWARE FUNCTIONS.
////////////////////////////////////////////////////////////////////////////////
/// @attention
///
/// THE EXISTING FIRMWARE IS ONLY FOR REFERENCE, WHICH IS DESIGNED TO PROVIDE
/// CUSTOMERS WITH CODING INFORMATION ABOUT THEIR PRODUCTS SO THEY CAN SAVE
/// TIME. THEREFORE, MINDMOTION SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT OR
/// CONSEQUENTIAL DAMAGES ABOUT ANY CLAIMS ARISING OUT OF THE CONTENT OF SUCH
/// HARDWARE AND/OR THE USE OF THE CODING INFORMATION CONTAINED HEREIN IN
/// CONNECTION WITH PRODUCTS MADE BY CUSTOMERS.
///
///
© COPYRIGHT MINDMOTION
////////////////////////////////////////////////////////////////////////////////
// Define to prevent recursive inclusion
#define _HAL_SPI_C_
#include
// Files includes
#include "hal_spi.h"
#include "hal_rcc.h"
////////////////////////////////////////////////////////////////////////////////
/// @addtogroup MM32_Hardware_Abstract_Layer
/// @{
////////////////////////////////////////////////////////////////////////////////
/// @addtogroup SPI_HAL
/// @{
////////////////////////////////////////////////////////////////////////////////
///@addtogroup SPI_Exported_Functions
///@{
////////////////////////////////////////////////////////////////////////////////
/// @brief Deinitializes the spi peripheral registers to their
/// default reset values.
/// @param spi: Select the SPI peripheral.
/// This parameter can be one of the following values:
/// SPI1, SPI2.
/// @retval None.
////////////////////////////////////////////////////////////////////////////////
void SPI_DeInit(SPI_TypeDef* spi)
{
switch (*(vu32*)&spi) {
case (u32)SPI2: // SPI2_BASE:
RCC_APB1PeriphResetCmd(RCC_APB1ENR_SPI2, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1ENR_SPI2, DISABLE);
break;
case (u32)SPI3: // SPI3_BASE:
RCC_APB1PeriphResetCmd(RCC_APB1ENR_SPI3, ENABLE);
RCC_APB1PeriphResetCmd(RCC_APB1ENR_SPI3, DISABLE);
break;
case (u32)SPI1: // SPI1_BASE:
RCC_APB2PeriphResetCmd(RCC_APB2ENR_SPI1, ENABLE);
RCC_APB2PeriphResetCmd(RCC_APB2ENR_SPI1, DISABLE);
break;
default:
break;
}
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Initializes the spi peripheral according to the specified
/// parameters in the init_struct .
/// @param spi: Select the SPI peripheral.
/// This parameter can be one of the following values:
/// SPI1, SPI2.
/// @param init_struct: pointer to a SPI_InitTypeDef structure
/// that contains the configuration information for the
/// specified SPI peripheral.
/// @retval None.
////////////////////////////////////////////////////////////////////////////////
void SPI_Init(SPI_TypeDef* spi, SPI_InitTypeDef* init_struct)
{
if (init_struct->SPI_DataSize == SPI_DataSize_32b) {
SET_BIT(spi->GCR, SPI_GCR_DWSEL);
}
else {
CLEAR_BIT(spi->GCR, SPI_GCR_DWSEL);
}
MODIFY_REG(spi->GCR, SPI_GCR_NSS, init_struct->SPI_NSS);
MODIFY_REG(spi->GCR, SPI_GCR_MODE, init_struct->SPI_Mode);
MODIFY_REG(spi->CCR, SPI_CCR_LSBFE, init_struct->SPI_FirstBit);
MODIFY_REG(spi->CCR, SPI_CCR_CPOL, init_struct->SPI_CPOL);
MODIFY_REG(spi->CCR, SPI_CCR_CPHA, init_struct->SPI_CPHA);
SET_BIT(spi->CCR, SPI_CCR_SPILEN);
MODIFY_REG(spi->BRR, BRR_Mask, init_struct->SPI_BaudRatePrescaler);
if (init_struct->SPI_DataWidth >= 32) {
MODIFY_REG(spi->ECR, ECR_Mask, 0);
}
else {
MODIFY_REG(spi->ECR, ECR_Mask, init_struct->SPI_DataWidth);
}
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Fills each init_struct member with its default value.
/// @param init_struct: pointer to a SPI_InitTypeDef structure
/// which will be initialized.
/// @retval None.
////////////////////////////////////////////////////////////////////////////////
void SPI_StructInit(SPI_InitTypeDef* init_struct)
{
init_struct->SPI_Mode = SPI_Mode_Slave;
init_struct->SPI_DataSize = SPI_DataSize_8b;
init_struct->SPI_DataWidth = 8;
init_struct->SPI_CPOL = SPI_CPOL_Low;
init_struct->SPI_CPHA = SPI_CPHA_1Edge;
init_struct->SPI_NSS = SPI_NSS_Soft;
init_struct->SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_2;
init_struct->SPI_FirstBit = SPI_FirstBit_MSB;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Enables or disables the specified SPI peripheral.
/// @param spi: Select the SPI peripheral.
/// This parameter can be one of the following values:
/// SPI1, SPI2.
/// @param state: new state of the spi peripheral.
/// This parameter can be: ENABLE or DISABLE.
/// @retval None.
////////////////////////////////////////////////////////////////////////////////
void SPI_Cmd(SPI_TypeDef* spi, FunctionalState state)
{
(state) ? SET_BIT(spi->GCR, SPI_GCR_SPIEN) : CLEAR_BIT(spi->GCR, SPI_GCR_SPIEN);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Enables or disables the specified SPI interrupts.
/// @param spi: Select the SPI peripheral.
/// This parameter can be one of the following values:SPI1, SPI2.
/// @param interrupt: specifies the SPI interrupt sources to be
/// enabled or disabled.
/// This parameter can be one of the following values:
/// @arg SPI_IT_TXEPT: Transmitter empty interrupt
/// @arg SPI_IT_RXFULL: RX FIFO full interrupt
/// @arg SPI_IT_RXMATCH: Receive data match the RXDNR number interrupt
/// @arg SPI_IT_RXOERR: Receive overrun error interrupt
/// @arg SPI_IT_UNDERRUN: underrun interrupt
/// @arg SPI_IT_RX: Receive data available interrupt
/// @arg SPI_IT_TX: Transmit FIFO available interrupt
/// @param state: new state of the specified spi interrupts.
/// This parameter can be: ENABLE or DISABLE.
/// @retval None.
////////////////////////////////////////////////////////////////////////////////
void SPI_ITConfig(SPI_TypeDef* spi, u8 interrupt, FunctionalState state)
{
if (state) {
SET_BIT(spi->GCR, (u32)SPI_GCR_IEN);
SET_BIT(spi->IER, (u32)interrupt);
}
else {
CLEAR_BIT(spi->IER, interrupt);
CLEAR_BIT(spi->GCR, SPI_GCR_IEN);
}
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Enables or disables the SPI DMA interface.
/// @param spi: Select the SPI peripheral.
/// This parameter can be one of the following values:
/// SPI1, SPI2.
/// @param state: new state of the DMA Request sources.
/// This parameter can be: ENABLE or DISABLE.
/// @retval None.
////////////////////////////////////////////////////////////////////////////////
void SPI_DMACmd(SPI_TypeDef* spi, FunctionalState state)
{
(state) ? SET_BIT(spi->GCR, SPI_GCR_DMAEN) : CLEAR_BIT(spi->GCR, SPI_GCR_DMAEN);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief configure tn Fifo trigger level bit.
/// @param spi: Select the SPI peripheral.
/// This parameter can be one of the following values:
/// SPI1, SPI2.
/// @param fifo_trigger_value: specifies the Fifo trigger level
/// This parameter can be any combination of the following values:
/// SPI_TXTLF : SPI TX FIFO Trigger value set
/// SPI_RXTLF : SPI RX FIFO Trigger value set
/// @param state: new state of the selected SPI transfer request.
/// This parameter can be: ENABLE or DISABLE.
/// @retval None.
////////////////////////////////////////////////////////////////////////////////
void SPI_FifoTrigger(SPI_TypeDef* spi, SPI_TLF_TypeDef fifo_trigger_value, FunctionalState state)
{
(state) ? SET_BIT(spi->GCR, (u32)fifo_trigger_value) : CLEAR_BIT(spi->GCR, (u32)fifo_trigger_value);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Transmits a Data through the spi peripheral.
/// @param spi: Select the SPI peripheral.
/// This parameter can be one of the following values:
/// SPI1, SPI2.
/// @param data : Data to be transmitted.
/// @retval None.
////////////////////////////////////////////////////////////////////////////////
void SPI_SendData(SPI_TypeDef* spi, u32 data)
{
u16 templen;
__asm volatile("cpsid i");
WRITE_REG(spi->TDR, data);
templen = READ_REG(spi->ECR);
if(templen == 0)
templen = 32;
if (templen > 8)
WRITE_REG(spi->TDR, data >> 8);
if (templen > 16)
WRITE_REG(spi->TDR, data >> 16);
if (templen > 24)
WRITE_REG(spi->TDR, data >> 24);
__asm volatile("cpsie i");
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Returns the most recent received data by the spi peripheral.
/// @param spi: Select the SPI peripheral.
/// This parameter can be one of the following values:
/// SPI1, SPI2.
/// @retval The value of the received data.
////////////////////////////////////////////////////////////////////////////////
u32 SPI_ReceiveData(SPI_TypeDef* spi)
{
u32 temp;
u8 templen;
__asm volatile("cpsid i");
temp = READ_REG(spi->RDR);
templen = READ_REG(spi->ECR);
if(templen == 0)
templen = 32;
if (templen > 8)
temp |= (u32)(READ_REG(spi->RDR) << 8);
if (templen > 16)
temp |= (u32)(READ_REG(spi->RDR) << 16);
if (templen > 24)
temp |= (u32)(READ_REG(spi->RDR) << 24);
__asm volatile("cpsie i");
return temp;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Slave chip csn single by selected
/// @param spi: Select the SPI peripheral.
/// This parameter can be one of the following values:
/// SPI1, SPI2.
/// @param state: new state of the selected SPI CS pin
/// request.
/// This parameter can be: ENABLE or DISABLE.
/// @retval None.
////////////////////////////////////////////////////////////////////////////////
void SPI_CSInternalSelected(SPI_TypeDef* spi, FunctionalState state)
{
(state) ? CLEAR_BIT(spi->NSSR, SPI_NSSR_NSS) : SET_BIT(spi->NSSR, SPI_NSSR_NSS); // illogical
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Configures the NSS pin control mode for the selected SPI.
/// @param spi: Select the SPI peripheral.
/// This parameter can be one of the following values:
/// SPI1, SPI2.
/// @param nss: specifies the SPI NSS internal state.
/// This parameter can be one of the following values:
/// @arg SPI_NSS_Soft: NSS pin control by software
/// @arg SPI_NSS_Hard: NSS pin control by hardware
/// @retval None.
////////////////////////////////////////////////////////////////////////////////
void SPI_NSSInternalSoftwareConfig(SPI_TypeDef* spi, SPI_NSS_TypeDef nss)
{
(nss != SPI_NSS_Soft) ? SET_BIT(spi->GCR, SPI_NSS_Hard) : CLEAR_BIT(spi->GCR, SPI_NSS_Hard);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Configures the data size for the selected SPI.
/// @param spi: Select the SPI peripheral.
/// This parameter can be one of the following values:
/// SPI1, SPI2.
/// @param data_size: specifies the SPI data size.
/// This parameter can be one of the following values:
/// 0 to 31, 0 = 32b, 1 = 1b, 2 = 2b
/// @arg DataSize : 0 to 31
/// @retval None.
/// @retval None.
bool SPI_DataSizeConfig(SPI_TypeDef* spi, u8 data_size)
{
if (data_size > 32)
return false;
data_size &= 0x1F;
WRITE_REG(spi->ECR, data_size);
return true;
}
//////////////////////////////////////////////////////////////////////////////////
void SPI_DataSizeTypeConfig(SPI_TypeDef* spi, SPI_DataSize_TypeDef SPI_DataSize)
{
CLEAR_BIT(spi->GCR, (u32)SPI_DataSize_32b);
SET_BIT(spi->GCR, (u32)SPI_DataSize);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Selects the data transfer direction in bi-directional mode
/// for the specified SPI.
/// @param spi: Select the SPI peripheral.
/// This parameter can be one of the following values:
/// SPI1, SPI2.
/// @param direction: specifies the data transfer direction in
/// bi-directional mode.
/// This parameter can be one of the following values:
/// @arg SPI_Direction_Tx: Selects Tx transmission direction
/// @arg SPI_Direction_Rx: Selects Rx receive direction
/// @arg SPI_Disable_Tx: Selects Rx receive direction
/// @arg SPI_Disable_Rx: Selects Rx receive direction
/// @retval None.
////////////////////////////////////////////////////////////////////////////////
void SPI_BiDirectionalLineConfig(SPI_TypeDef* spi, SPI_Direction_TypeDef direction)
{
switch (direction) {
case SPI_Direction_Rx:
SET_BIT(spi->GCR, SPI_GCR_RXEN);
break;
case SPI_Direction_Tx:
SET_BIT(spi->GCR, SPI_GCR_TXEN);
break;
case SPI_Disable_Rx:
CLEAR_BIT(spi->GCR, SPI_GCR_RXEN);
break;
case SPI_Disable_Tx:
CLEAR_BIT(spi->GCR, SPI_GCR_TXEN);
break;
default:
break;
}
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Checks whether the specified SPI flag is set or not.
/// @param spi: Select the SPI peripheral.
/// This parameter can be one of the following values:
/// SPI1, SPI2.
/// @param flag: specifies the SPI flag to check.
/// This parameter can be one of the following values:
/// @arg SPI_FLAG_RXAVL: Rx buffer has bytes flag
/// @arg SPI_FLAG_TXEPT: Tx buffer and tx shifter empty flag
/// @arg SPI_FLAG_TXFULL: Tx buffer full flag
/// @arg SPI_FLAG_RXAVL_4BYTE: Receive available 4 byte data message flag.
/// @retval The new state of SPI_FLAG (SET or RESET).
////////////////////////////////////////////////////////////////////////////////
FlagStatus SPI_GetFlagStatus(SPI_TypeDef* spi, SPI_FLAG_TypeDef flag)
{
// u8 number;
return (spi->SR & flag) ? SET : RESET;
// if (spi->ECR == 8 || spi->ECR == 0)
// return (spi->SR & SPI_FLAG) ? SET : RESET;
// else {
// if ((spi->ECR > 0) && (spi->ECR <= 8))
// number = 1;
// else if ((spi->ECR) <= 16)
// number = 2;
// else if ((spi->ECR) <= 24)
// number = 3;
// else if (((spi->ECR) <= 31) || (spi->ECR == 0))
// number = 4;
// return (((spi->SR & 0xf00) >> 8) >= number) ? SET : RESET;
// }
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Checks whether the specified SPI interrupt has occurred or not.
/// @param spi: Select the SPI peripheral.
/// This parameter can be one of the following values:
/// SPI1, SPI2.
/// @param interrupt: specifies the SPI interrupt source to check.
/// This parameter can be one of the following values:
/// @arg SPI_IT_TX: Tx buffer empty interrupt
/// @arg SPI_IT_RX: Rx buffer interrupt
/// @arg SPI_IT_UNDERRUN: under Error interrupt in slave mode
/// @arg SPI_IT_RXOVER: RX OVER Error interrupt
/// @arg SPI_IT_RXMATCH: spectials rx data numbers interrupt
/// @arg SPI_IT_RXFULL: Rx buffer full interrupt
/// @arg SPI_IT_TXEPT: Tx buffer and tx shifter empty interrupt
/// @retval The new state of SPI_IT (SET or RESET).
////////////////////////////////////////////////////////////////////////////////
ITStatus SPI_GetITStatus(SPI_TypeDef* spi, SPI_IT_TypeDef interrupt)
{
return (spi->ISR & interrupt) ? SET : RESET;
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Clears the spi interrupt pending bit.
/// @param spi: Select the SPI peripheral.
/// This parameter can be one of the following values:
/// SPI1, SPI2.
/// @param interrupt: specifies the SPI interrupt pending bit to clear.
/// @arg SPI_IT_TX: Tx buffer empty interrupt
/// @arg SPI_IT_RX: Rx buffer interrupt
/// @arg SPI_IT_UNDERRUN: under Error interrupt in slave mode
/// @arg SPI_IT_RXOVER: RX OVER Error interrupt
/// @arg SPI_IT_RXMATCH: spectials rx data numbers interrupt
/// @arg SPI_IT_RXFULL: Rx buffer full interrupt
/// @arg SPI_IT_TXEPT: Tx buffer and tx shifter empty interrupt
/// This function clears only ERR intetrrupt pending bit.
/// @retval None.
////////////////////////////////////////////////////////////////////////////////
void SPI_ClearITPendingBit(SPI_TypeDef* spi, SPI_IT_TypeDef interrupt)
{
SET_BIT(spi->ICR, interrupt);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief SPI Hole a count Received bytes in next receive process.
/// @param spi: Select the SPI peripheral.
/// This parameter can be one of the following values:
/// SPI1, SPI2.
/// @param number: specifies the SPI receive Number.
/// This parament can be 1-65535.
/// This function can use only in SPI master single receive mode.
/// @retval None.
////////////////////////////////////////////////////////////////////////////////
void SPI_RxBytes(SPI_TypeDef* spi, u16 number)
{
WRITE_REG(spi->RDNR, number);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief slave mode tx data transmit phase adjust set.
/// @param spi: Select the SPI peripheral.
/// This parameter can be one of the following values:
/// SPI1, SPI2.
/// @param adjust_value: slave mode tx data transmit phase adjust enum.
/// This parament can be :
/// SPI_SlaveAdjust_FAST: fast speed use
/// SPI_SlaveAdjust_LOW: low speed use
/// This function can use only in SPI master single receive mode.
/// @retval None.
////////////////////////////////////////////////////////////////////////////////
void SPI_SlaveAdjust(SPI_TypeDef* spi, SPI_SlaveAdjust_TypeDef adjust_value)
{
(adjust_value) ? SET_BIT(spi->CCR, SPI_CCR_RXEDGE) : CLEAR_BIT(spi->CCR, SPI_CCR_RXEDGE);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Enables or disables all SPI interrupts.
/// @param spi: Select the SPI peripheral.
/// This parameter can be one of the following values:
/// SPI1, SPI2.
/// @param state: new state of all spi interrupts.
/// This parameter can be: ENABLE or DISABLE.
/// @retval None.
////////////////////////////////////////////////////////////////////////////////
void exSPI_ITCmd(SPI_TypeDef* spi, FunctionalState state)
{
(state) ? SET_BIT(spi->IER, (u32)SPI_GCR_IEN) : CLEAR_BIT(spi->IER, (u32)SPI_GCR_IEN);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Enables or disables the specified SPI interrupts.
/// @param spi: Select the SPI peripheral.
/// This parameter can be one of the following values:
/// SPI1, SPI2.
/// @param interrupt: specifies the SPI interrupt sources to be enabled or disabled.
/// This parameter can be one of the following values:
/// @arg SPI_IT_TXEPT: Transmitter empty interrupt
/// @arg SPI_IT_RXFULL: RX FIFO full interrupt
/// @arg SPI_IT_RXMATCH: Receive data match the RXDNR number interrupt
/// @arg SPI_IT_RXOERR: Receive overrun error interrupt
/// @arg SPI_IT_UNDERRUN: underrun interrupt
/// @arg SPI_IT_RX: Receive data available interrupt
/// @arg SPI_IT_TX: Transmit FIFO available interrupt
/// @param state: new state of the specified spi interrupts.
/// This parameter can be: ENABLE or DISABLE.
/// @retval None.
////////////////////////////////////////////////////////////////////////////////
void exSPI_ITConfig(SPI_TypeDef* spi, SPI_IT_TypeDef interrupt, FunctionalState state)
{
(state) ? SET_BIT(spi->IER, (u32)interrupt) : CLEAR_BIT(spi->IER, (u32)interrupt);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Enables or disables the SPI DMA request.
/// @param spi: Select the SPI peripheral.
/// This parameter can be one of the following values:
/// SPI1, SPI2.
/// @param state: new state of the DMA Request.
/// This parameter can be: ENABLE or DISABLE.
/// @retval None.
////////////////////////////////////////////////////////////////////////////////
void exSPI_DMACmd(SPI_TypeDef* spi, FunctionalState state)
{
(state) ? SET_BIT(spi->GCR, SPI_GCR_DMAEN) : CLEAR_BIT(spi->GCR, SPI_GCR_DMAEN);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Set or reset Slave chip csn signal output
/// @param spi: Select the SPI peripheral.
/// This parameter can be one of the following values:
/// SPI1, SPI2.
/// @param state: new state of Slave chip csn signal output.
/// This parameter can be: ENABLE or DISABLE.
/// @retval None.
////////////////////////////////////////////////////////////////////////////////
void exSPI_CSInternalSelected(SPI_TypeDef* spi, FunctionalState state)
{
(state) ? CLEAR_BIT(spi->NSSR, SPI_NSSR_NSS) : SET_BIT(spi->NSSR, SPI_NSSR_NSS); // illogical
}
////////////////////////////////////////////////////////////////////////////////
/// @brief tx data and rx data phase adjust.
/// @param spi: Select the SPI peripheral.
/// This parameter can be one of the following values:
/// SPI1, SPI2.
/// @param adjust_value: choose adjust mode.
/// This parament can be :
/// SPI_DataEdgeAdjust_LOW,
/// SPI_DataEdgeAdjust_FAST
/// @retval None.
////////////////////////////////////////////////////////////////////////////////
void exSPI_DataEdgeAdjust(SPI_TypeDef* spi, SPI_DataEdgeAdjust_TypeDef adjust_value)
{
// master mode
if (spi->GCR & SPI_GCR_MODE) {
adjust_value ? SET_BIT(spi->CCR, SPI_CCR_RXEDGE) : CLEAR_BIT(spi->CCR, SPI_CCR_RXEDGE);
}
// slave mode
else {
adjust_value ? SET_BIT(spi->CCR, SPI_CCR_TXEDGE) : CLEAR_BIT(spi->CCR, SPI_CCR_TXEDGE);
}
}
////////////////////////////////////////////////////////////////////////////////
/// @brief Set or reset i2s
/// @param spi: Select the SPI peripheral.
/// This parameter can be one of the following values:
/// SPI1, SPI2, SPI3.
/// @param state: new state of Slave chip csn signal output.
/// This parameter can be: ENABLE or DISABLE.
/// @retval None.
////////////////////////////////////////////////////////////////////////////////
void I2S_Cmd(SPI_TypeDef* spi, FunctionalState state)
{
(state) ? SET_BIT(spi->CFGR, I2S_CFGR_SPI_I2S) : CLEAR_BIT(spi->CFGR, I2S_CFGR_SPI_I2S);
}
////////////////////////////////////////////////////////////////////////////////
/// @brief i2s Config
/// @param spi: Select the SPI peripheral.
/// This parameter can be one of the following values:
/// SPI1, SPI2, SPI3.
/// @param state: new state of Slave chip csn signal output.
/// This parameter can be: ENABLE or DISABLE.
/// @retval None.
////////////////////////////////////////////////////////////////////////////////
void I2S_Init(SPI_TypeDef* spi, I2S_InitTypeDef* I2S_InitStruct)
{
u32 i2sdiv = 2;
u32 tmpreg = 0;
u32 packetlength = 1;
u32 result = 0, yushu = 0;
u32 sourceclock = 0;
RCC_ClocksTypeDef RCC_Clocks;
if(I2S_InitStruct->I2S_AudioFreq == I2S_AudioFreq_Default) {
i2sdiv = 2;
}
else {
if(I2S_InitStruct->I2S_DataFormat == I2S_DataFormat_16b) {
packetlength = 1;
}
else {
packetlength = 2;
}
RCC_GetClocksFreq(&RCC_Clocks);
if((SPI2 == spi) || (SPI3 == spi)) {
sourceclock = RCC_Clocks.PCLK1_Frequency;
}
else {
sourceclock = RCC_Clocks.PCLK2_Frequency;
}
if(I2S_InitStruct->I2S_MCLKOutput == I2S_MCLKOutput_Enable) {
result = (sourceclock) / (256 * (I2S_InitStruct->I2S_AudioFreq));
yushu = (sourceclock) % (256 * (I2S_InitStruct->I2S_AudioFreq));
if(yushu > (128 * (I2S_InitStruct->I2S_AudioFreq))) {
result = result + 1;
}
i2sdiv = result;
if ((i2sdiv < 2) || (i2sdiv > 0x1FF)) {
i2sdiv = 2;
}
}
else {
result = (sourceclock) / (16 * 2 * packetlength * (I2S_InitStruct->I2S_AudioFreq));
yushu = (sourceclock) % (16 * 2 * packetlength * (I2S_InitStruct->I2S_AudioFreq));
if(yushu > ((16 * packetlength * (I2S_InitStruct->I2S_AudioFreq)))) {
result = result + 1;
}
if ((i2sdiv < 1) || (i2sdiv > 0x1FF)) {
i2sdiv = 1;
}
}
}
if(I2S_CPOL_High == I2S_InitStruct->I2S_CPOL) {
spi->CCTL |= SPI_CCR_CPOL;
}
else {
spi->CCTL &= ~SPI_CCR_CPOL;
}
spi->CFGR = 0x2 << I2S_CFGR_I2SDIV_Pos;
if((I2S_InitStruct->I2S_Mode == I2S_Mode_MasterTx) || (I2S_InitStruct->I2S_Mode == I2S_Mode_MasterRx)) {
spi->GCTL |= SPI_GCR_MODE;
}
else {
spi->GCTL &= ~SPI_GCR_MODE;
}
if((I2S_InitStruct->I2S_Mode == I2S_Mode_MasterTx) || (I2S_InitStruct->I2S_Mode == I2S_Mode_SlaveTx)) {
spi->GCTL |= SPI_GCR_TXEN;
spi->GCTL &= ~SPI_GCR_RXEN;
}
else {
spi->GCTL &= ~SPI_GCR_TXEN;
spi->GCTL |= SPI_GCR_RXEN;
}
// tmpreg = spi->GCTL;
// tmpreg &= ~(1 << 2);
// tmpreg |= (u16)(I2S_InitStruct->I2S_Mode);
// spi->GCTL = tmpreg;
//
tmpreg = 0;
tmpreg |= (i2sdiv << I2S_CFGR_I2SDIV_Pos) | \
(I2S_InitStruct->I2S_MCLKOutput) | \
(I2S_CFGR_SPI_I2S) | \
(I2S_InitStruct->I2S_Standard) | \
(I2S_InitStruct->I2S_DataFormat);
spi->CFGR &= ~I2S_CFGR_I2SDIV;
spi->CFGR |= tmpreg;
}
/// @}
/// @}
/// @}