/* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2012-10-01 Yi Qiu first version * 2012-11-25 Heyuanjie87 reduce the memory consumption * 2012-12-09 Heyuanjie87 change function and endpoint handler * 2013-07-25 Yi Qiu update for USB CV test */ #include #include #include "drivers/usb_device.h" #include "mstorage.h" #ifdef RT_USING_DFS_MNTTABLE #include "dfs_fs.h" #endif #ifdef RT_USB_DEVICE_MSTORAGE #define MSTRORAGE_INTF_STR_INDEX 11 #define DBG_TAG "usbdevice.mstorage" #define DBG_LVL DBG_INFO #include enum STAT { STAT_CBW, STAT_CMD, STAT_CSW, STAT_RECEIVE, STAT_SEND, }; typedef enum { FIXED, COUNT, BLOCK_COUNT, }CB_SIZE_TYPE; typedef enum { DIR_IN, DIR_OUT, DIR_NONE, }CB_DIR; typedef rt_ssize_t (*cbw_handler)(ufunction_t func, ustorage_cbw_t cbw); struct scsi_cmd { rt_uint16_t cmd; cbw_handler handler; rt_size_t cmd_len; CB_SIZE_TYPE type; rt_size_t data_size; CB_DIR dir; }; struct mstorage { struct ustorage_csw csw_response; uep_t ep_in; uep_t ep_out; int status; rt_uint32_t cb_data_size; rt_device_t disk; rt_uint32_t block; rt_int32_t count; rt_int32_t size; struct scsi_cmd* processing; struct rt_device_blk_geometry geometry; }; rt_align(4) static struct udevice_descriptor dev_desc = { USB_DESC_LENGTH_DEVICE, //bLength; USB_DESC_TYPE_DEVICE, //type; USB_BCD_VERSION, //bcdUSB; USB_CLASS_MASS_STORAGE, //bDeviceClass; 0x06, //bDeviceSubClass; 0x50, //bDeviceProtocol; 0x40, //bMaxPacketSize0; _VENDOR_ID, //idVendor; _PRODUCT_ID, //idProduct; USB_BCD_DEVICE, //bcdDevice; USB_STRING_MANU_INDEX, //iManufacturer; USB_STRING_PRODUCT_INDEX, //iProduct; USB_STRING_SERIAL_INDEX, //iSerialNumber; USB_DYNAMIC, //bNumConfigurations; }; //FS and HS needed rt_align(4) static struct usb_qualifier_descriptor dev_qualifier = { sizeof(dev_qualifier), //bLength USB_DESC_TYPE_DEVICEQUALIFIER, //bDescriptorType 0x0200, //bcdUSB USB_CLASS_MASS_STORAGE, //bDeviceClass 0x06, //bDeviceSubClass 0x50, //bDeviceProtocol 64, //bMaxPacketSize0 0x01, //bNumConfigurations 0, }; rt_align(4) const static struct umass_descriptor _mass_desc = { #ifdef RT_USB_DEVICE_COMPOSITE /* Interface Association Descriptor */ { USB_DESC_LENGTH_IAD, USB_DESC_TYPE_IAD, USB_DYNAMIC, 0x01, USB_CLASS_MASS_STORAGE, 0x06, 0x50, 0x00, }, #endif { USB_DESC_LENGTH_INTERFACE, //bLength; USB_DESC_TYPE_INTERFACE, //type; USB_DYNAMIC, //bInterfaceNumber; 0x00, //bAlternateSetting; 0x02, //bNumEndpoints USB_CLASS_MASS_STORAGE, //bInterfaceClass; 0x06, //bInterfaceSubClass; 0x50, //bInterfaceProtocol; #ifdef RT_USB_DEVICE_COMPOSITE MSTRORAGE_INTF_STR_INDEX, #else 0x00, //iInterface; #endif }, { USB_DESC_LENGTH_ENDPOINT, //bLength; USB_DESC_TYPE_ENDPOINT, //type; USB_DYNAMIC | USB_DIR_OUT, //bEndpointAddress; USB_EP_ATTR_BULK, //bmAttributes; USB_DYNAMIC, //wMaxPacketSize; 0x00, //bInterval; }, { USB_DESC_LENGTH_ENDPOINT, //bLength; USB_DESC_TYPE_ENDPOINT, //type; USB_DYNAMIC | USB_DIR_IN, //bEndpointAddress; USB_EP_ATTR_BULK, //bmAttributes; USB_DYNAMIC, //wMaxPacketSize; 0x00, //bInterval; }, }; rt_align(4) const static char* _ustring[] = { "Language", "RT-Thread Team.", "RTT Mass Storage", "320219198301", "Configuration", "Interface", }; static rt_ssize_t _test_unit_ready(ufunction_t func, ustorage_cbw_t cbw); static rt_ssize_t _request_sense(ufunction_t func, ustorage_cbw_t cbw); static rt_ssize_t _inquiry_cmd(ufunction_t func, ustorage_cbw_t cbw); static rt_ssize_t _allow_removal(ufunction_t func, ustorage_cbw_t cbw); static rt_ssize_t _start_stop(ufunction_t func, ustorage_cbw_t cbw); static rt_ssize_t _mode_sense_6(ufunction_t func, ustorage_cbw_t cbw); static rt_ssize_t _read_capacities(ufunction_t func, ustorage_cbw_t cbw); static rt_ssize_t _read_capacity(ufunction_t func, ustorage_cbw_t cbw); static rt_ssize_t _read_10(ufunction_t func, ustorage_cbw_t cbw); static rt_ssize_t _write_10(ufunction_t func, ustorage_cbw_t cbw); static rt_ssize_t _verify_10(ufunction_t func, ustorage_cbw_t cbw); rt_align(4) static struct scsi_cmd cmd_data[] = { {SCSI_TEST_UNIT_READY, _test_unit_ready, 6, FIXED, 0, DIR_NONE}, {SCSI_REQUEST_SENSE, _request_sense, 6, COUNT, 0, DIR_IN}, {SCSI_INQUIRY_CMD, _inquiry_cmd, 6, COUNT, 0, DIR_IN}, {SCSI_ALLOW_REMOVAL, _allow_removal, 6, FIXED, 0, DIR_NONE}, {SCSI_MODE_SENSE_6, _mode_sense_6, 6, COUNT, 0, DIR_IN}, {SCSI_START_STOP, _start_stop, 6, FIXED, 0, DIR_NONE}, {SCSI_READ_CAPACITIES, _read_capacities, 10, COUNT, 0, DIR_NONE}, {SCSI_READ_CAPACITY, _read_capacity, 10, FIXED, 8, DIR_IN}, {SCSI_READ_10, _read_10, 10, BLOCK_COUNT, 0, DIR_IN}, {SCSI_WRITE_10, _write_10, 10, BLOCK_COUNT, 0, DIR_OUT}, {SCSI_VERIFY_10, _verify_10, 10, FIXED, 0, DIR_NONE}, }; static void _send_status(ufunction_t func) { struct mstorage *data; RT_ASSERT(func != RT_NULL); LOG_D("_send_status"); data = (struct mstorage*)func->user_data; data->ep_in->request.buffer = (rt_uint8_t*)&data->csw_response; data->ep_in->request.size = SIZEOF_CSW; data->ep_in->request.req_type = UIO_REQUEST_WRITE; rt_usbd_io_request(func->device, data->ep_in, &data->ep_in->request); data->status = STAT_CSW; } static rt_ssize_t _test_unit_ready(ufunction_t func, ustorage_cbw_t cbw) { struct mstorage *data; RT_ASSERT(func != RT_NULL); RT_ASSERT(func->device != RT_NULL); LOG_D("_test_unit_ready"); data = (struct mstorage*)func->user_data; data->csw_response.status = 0; return 0; } static rt_ssize_t _allow_removal(ufunction_t func, ustorage_cbw_t cbw) { struct mstorage *data; RT_ASSERT(func != RT_NULL); RT_ASSERT(func->device != RT_NULL); LOG_D("_allow_removal"); data = (struct mstorage*)func->user_data; data->csw_response.status = 0; return 0; } /** * This function will handle inquiry command request. * * @param func the usb function object. * @param cbw the command block wrapper. * * @return RT_EOK on successful. */ static rt_ssize_t _inquiry_cmd(ufunction_t func, ustorage_cbw_t cbw) { struct mstorage *data; rt_uint8_t *buf; RT_ASSERT(func != RT_NULL); RT_ASSERT(func->device != RT_NULL); RT_ASSERT(cbw != RT_NULL); LOG_D("_inquiry_cmd"); data = (struct mstorage*)func->user_data; buf = data->ep_in->buffer; *(rt_uint32_t*)&buf[0] = 0x0 | (0x80 << 8); *(rt_uint32_t*)&buf[4] = 31; rt_memset(&buf[8], 0x20, 28); rt_memcpy(&buf[8], "RTT", 3); rt_memcpy(&buf[16], "USB Disk", 8); data->cb_data_size = MIN(data->cb_data_size, SIZEOF_INQUIRY_CMD); data->ep_in->request.buffer = buf; data->ep_in->request.size = data->cb_data_size; data->ep_in->request.req_type = UIO_REQUEST_WRITE; rt_usbd_io_request(func->device, data->ep_in, &data->ep_in->request); data->status = STAT_CMD; return data->cb_data_size; } /** * This function will handle sense request. * * @param func the usb function object. * @param cbw the command block wrapper. * * @return RT_EOK on successful. */ static rt_ssize_t _request_sense(ufunction_t func, ustorage_cbw_t cbw) { struct mstorage *data; struct request_sense_data *buf; RT_ASSERT(func != RT_NULL); RT_ASSERT(func->device != RT_NULL); RT_ASSERT(cbw != RT_NULL); LOG_D("_request_sense"); data = (struct mstorage*)func->user_data; buf = (struct request_sense_data *)data->ep_in->buffer; buf->ErrorCode = 0x70; buf->Valid = 0; buf->SenseKey = 2; buf->Information[0] = 0; buf->Information[1] = 0; buf->Information[2] = 0; buf->Information[3] = 0; buf->AdditionalSenseLength = 0x0a; buf->AdditionalSenseCode = 0x3a; buf->AdditionalSenseCodeQualifier = 0; data->cb_data_size = MIN(data->cb_data_size, SIZEOF_REQUEST_SENSE); data->ep_in->request.buffer = (rt_uint8_t*)data->ep_in->buffer; data->ep_in->request.size = data->cb_data_size; data->ep_in->request.req_type = UIO_REQUEST_WRITE; rt_usbd_io_request(func->device, data->ep_in, &data->ep_in->request); data->status = STAT_CMD; return data->cb_data_size; } /** * This function will handle mode_sense_6 request. * * @param func the usb function object. * @param cbw the command block wrapper. * * @return RT_EOK on successful. */ static rt_ssize_t _mode_sense_6(ufunction_t func, ustorage_cbw_t cbw) { struct mstorage *data; rt_uint8_t *buf; RT_ASSERT(func != RT_NULL); RT_ASSERT(func->device != RT_NULL); RT_ASSERT(cbw != RT_NULL); LOG_D("_mode_sense_6"); data = (struct mstorage*)func->user_data; buf = data->ep_in->buffer; buf[0] = 3; buf[1] = 0; buf[2] = 0; buf[3] = 0; data->cb_data_size = MIN(data->cb_data_size, SIZEOF_MODE_SENSE_6); data->ep_in->request.buffer = buf; data->ep_in->request.size = data->cb_data_size; data->ep_in->request.req_type = UIO_REQUEST_WRITE; rt_usbd_io_request(func->device, data->ep_in, &data->ep_in->request); data->status = STAT_CMD; return data->cb_data_size; } /** * This function will handle read_capacities request. * * @param func the usb function object. * @param cbw the command block wrapper. * * @return RT_EOK on successful. */ static rt_ssize_t _read_capacities(ufunction_t func, ustorage_cbw_t cbw) { struct mstorage *data; rt_uint8_t *buf; rt_uint32_t sector_count, sector_size; RT_ASSERT(func != RT_NULL); RT_ASSERT(func->device != RT_NULL); RT_ASSERT(cbw != RT_NULL); LOG_D("_read_capacities"); data = (struct mstorage*)func->user_data; buf = data->ep_in->buffer; sector_count = data->geometry.sector_count; sector_size = data->geometry.bytes_per_sector; *(rt_uint32_t*)&buf[0] = 0x08000000; buf[4] = sector_count >> 24; buf[5] = 0xff & (sector_count >> 16); buf[6] = 0xff & (sector_count >> 8); buf[7] = 0xff & (sector_count); buf[8] = 0x02; buf[9] = 0xff & (sector_size >> 16); buf[10] = 0xff & (sector_size >> 8); buf[11] = 0xff & sector_size; data->cb_data_size = MIN(data->cb_data_size, SIZEOF_READ_CAPACITIES); data->ep_in->request.buffer = buf; data->ep_in->request.size = data->cb_data_size; data->ep_in->request.req_type = UIO_REQUEST_WRITE; rt_usbd_io_request(func->device, data->ep_in, &data->ep_in->request); data->status = STAT_CMD; return data->cb_data_size; } /** * This function will handle read_capacity request. * * @param func the usb function object. * @param cbw the command block wapper. * * @return RT_EOK on successful. */ static rt_ssize_t _read_capacity(ufunction_t func, ustorage_cbw_t cbw) { struct mstorage *data; rt_uint8_t *buf; rt_uint32_t sector_count, sector_size; RT_ASSERT(func != RT_NULL); RT_ASSERT(func->device != RT_NULL); RT_ASSERT(cbw != RT_NULL); LOG_D("_read_capacity"); data = (struct mstorage*)func->user_data; buf = data->ep_in->buffer; sector_count = data->geometry.sector_count - 1; /* Last Logical Block Address */ sector_size = data->geometry.bytes_per_sector; buf[0] = sector_count >> 24; buf[1] = 0xff & (sector_count >> 16); buf[2] = 0xff & (sector_count >> 8); buf[3] = 0xff & (sector_count); buf[4] = 0x0; buf[5] = 0xff & (sector_size >> 16); buf[6] = 0xff & (sector_size >> 8); buf[7] = 0xff & sector_size; data->cb_data_size = MIN(data->cb_data_size, SIZEOF_READ_CAPACITY); data->ep_in->request.buffer = buf; data->ep_in->request.size = data->cb_data_size; data->ep_in->request.req_type = UIO_REQUEST_WRITE; rt_usbd_io_request(func->device, data->ep_in, &data->ep_in->request); data->status = STAT_CMD; return data->cb_data_size; } /** * This function will handle read_10 request. * * @param func the usb function object. * @param cbw the command block wrapper. * * @return RT_EOK on successful. */ static rt_ssize_t _read_10(ufunction_t func, ustorage_cbw_t cbw) { struct mstorage *data; rt_size_t size; RT_ASSERT(func != RT_NULL); RT_ASSERT(func->device != RT_NULL); RT_ASSERT(cbw != RT_NULL); data = (struct mstorage*)func->user_data; data->block = cbw->cb[2]<<24 | cbw->cb[3]<<16 | cbw->cb[4]<<8 | cbw->cb[5]<<0; data->count = cbw->cb[7]<<8 | cbw->cb[8]<<0; RT_ASSERT(data->count < data->geometry.sector_count); data->csw_response.data_reside = data->cb_data_size; size = rt_device_read(data->disk, data->block, data->ep_in->buffer, 1); if(size == 0) { rt_kprintf("read data error\n"); } data->ep_in->request.buffer = data->ep_in->buffer; data->ep_in->request.size = data->geometry.bytes_per_sector; data->ep_in->request.req_type = UIO_REQUEST_WRITE; rt_usbd_io_request(func->device, data->ep_in, &data->ep_in->request); data->status = STAT_SEND; return data->geometry.bytes_per_sector; } /** * This function will handle write_10 request. * * @param func the usb function object. * @param cbw the command block wrapper. * * @return RT_EOK on successful. */ static rt_ssize_t _write_10(ufunction_t func, ustorage_cbw_t cbw) { struct mstorage *data; RT_ASSERT(func != RT_NULL); RT_ASSERT(func->device != RT_NULL); RT_ASSERT(cbw != RT_NULL); data = (struct mstorage*)func->user_data; data->block = cbw->cb[2]<<24 | cbw->cb[3]<<16 | cbw->cb[4]<<8 | cbw->cb[5]<<0; data->count = cbw->cb[7]<<8 | cbw->cb[8]; data->csw_response.data_reside = cbw->xfer_len; data->size = data->count * data->geometry.bytes_per_sector; LOG_D("_write_10 count 0x%x block 0x%x 0x%x", data->count, data->block, data->geometry.sector_count); data->csw_response.data_reside = data->cb_data_size; data->ep_out->request.buffer = data->ep_out->buffer; data->ep_out->request.size = data->geometry.bytes_per_sector; data->ep_out->request.req_type = UIO_REQUEST_READ_FULL; rt_usbd_io_request(func->device, data->ep_out, &data->ep_out->request); data->status = STAT_RECEIVE; return data->geometry.bytes_per_sector; } /** * This function will handle verify_10 request. * * @param func the usb function object. * * @return RT_EOK on successful. */ static rt_ssize_t _verify_10(ufunction_t func, ustorage_cbw_t cbw) { struct mstorage *data; RT_ASSERT(func != RT_NULL); RT_ASSERT(func->device != RT_NULL); LOG_D("_verify_10"); data = (struct mstorage*)func->user_data; data->csw_response.status = 0; return 0; } static rt_ssize_t _start_stop(ufunction_t func, ustorage_cbw_t cbw) { struct mstorage *data; RT_ASSERT(func != RT_NULL); RT_ASSERT(func->device != RT_NULL); LOG_D("_start_stop"); data = (struct mstorage*)func->user_data; data->csw_response.status = 0; return 0; } static rt_err_t _ep_in_handler(ufunction_t func, rt_size_t size) { struct mstorage *data; RT_ASSERT(func != RT_NULL); RT_ASSERT(func->device != RT_NULL); LOG_D("_ep_in_handler"); data = (struct mstorage*)func->user_data; switch(data->status) { case STAT_CSW: if(data->ep_in->request.size != SIZEOF_CSW) { rt_kprintf("Size of csw command error\n"); rt_usbd_ep_set_stall(func->device, data->ep_in); } else { LOG_D("return to cbw status"); data->ep_out->request.buffer = data->ep_out->buffer; data->ep_out->request.size = SIZEOF_CBW; data->ep_out->request.req_type = UIO_REQUEST_READ_FULL; rt_usbd_io_request(func->device, data->ep_out, &data->ep_out->request); data->status = STAT_CBW; } break; case STAT_CMD: if(data->csw_response.data_reside == 0xFF) { data->csw_response.data_reside = 0; } else { data->csw_response.data_reside -= data->ep_in->request.size; if(data->csw_response.data_reside != 0) { LOG_D("data_reside %d, request %d", data->csw_response.data_reside, data->ep_in->request.size); if(data->processing->dir == DIR_OUT) { rt_usbd_ep_set_stall(func->device, data->ep_out); } else { //rt_kprintf("warning:in stall path but not stall\n"); /* FIXME: Disable the operation or the disk cannot work. */ //rt_usbd_ep_set_stall(func->device, data->ep_in); } data->csw_response.data_reside = 0; } } _send_status(func); break; case STAT_SEND: data->csw_response.data_reside -= data->ep_in->request.size; data->count--; data->block++; if(data->count > 0 && data->csw_response.data_reside > 0) { if(rt_device_read(data->disk, data->block, data->ep_in->buffer, 1) == 0) { rt_kprintf("disk read error\n"); rt_usbd_ep_set_stall(func->device, data->ep_in); return -RT_ERROR; } data->ep_in->request.buffer = data->ep_in->buffer; data->ep_in->request.size = data->geometry.bytes_per_sector; data->ep_in->request.req_type = UIO_REQUEST_WRITE; rt_usbd_io_request(func->device, data->ep_in, &data->ep_in->request); } else { _send_status(func); } break; } return RT_EOK; } #ifdef MASS_CBW_DUMP static void cbw_dump(struct ustorage_cbw* cbw) { RT_ASSERT(cbw != RT_NULL); LOG_D("signature 0x%x", cbw->signature); LOG_D("tag 0x%x", cbw->tag); LOG_D("xfer_len 0x%x", cbw->xfer_len); LOG_D("dflags 0x%x", cbw->dflags); LOG_D("lun 0x%x", cbw->lun); LOG_D("cb_len 0x%x", cbw->cb_len); LOG_D("cb[0] 0x%x", cbw->cb[0]); } #endif static struct scsi_cmd* _find_cbw_command(rt_uint16_t cmd) { int i; for(i=0; iuser_data; if(cmd->cmd_len == 6) { switch(cmd->type) { case COUNT: data->cb_data_size = cbw->cb[4]; break; case BLOCK_COUNT: data->cb_data_size = cbw->cb[4] * data->geometry.bytes_per_sector; break; case FIXED: data->cb_data_size = cmd->data_size; break; default: break; } } else if(cmd->cmd_len == 10) { switch(cmd->type) { case COUNT: data->cb_data_size = cbw->cb[7]<<8 | cbw->cb[8]; break; case BLOCK_COUNT: data->cb_data_size = (cbw->cb[7]<<8 | cbw->cb[8]) * data->geometry.bytes_per_sector; break; case FIXED: data->cb_data_size = cmd->data_size; break; default: break; } } //workaround: for stability in full-speed mode else if(cmd->cmd_len == 12) { switch(cmd->type) { case COUNT: data->cb_data_size = cbw->cb[4]; break; default: break; } } else { rt_kprintf("cmd_len error %d\n", cmd->cmd_len); } } static rt_bool_t _cbw_verify(ufunction_t func, struct scsi_cmd* cmd, ustorage_cbw_t cbw) { struct mstorage *data; RT_ASSERT(cmd != RT_NULL); RT_ASSERT(cbw != RT_NULL); RT_ASSERT(func != RT_NULL); data = (struct mstorage*)func->user_data; if(cmd->cmd_len != cbw->cb_len) { rt_kprintf("cb_len error\n"); cmd->cmd_len = cbw->cb_len; } if(cbw->xfer_len > 0 && data->cb_data_size == 0) { rt_kprintf("xfer_len > 0 && data_size == 0\n"); return RT_FALSE; } if(cbw->xfer_len == 0 && data->cb_data_size > 0) { rt_kprintf("xfer_len == 0 && data_size > 0"); return RT_FALSE; } if(((cbw->dflags & USB_DIR_IN) && (cmd->dir == DIR_OUT)) || (!(cbw->dflags & USB_DIR_IN) && (cmd->dir == DIR_IN))) { rt_kprintf("dir error\n"); return RT_FALSE; } if(cbw->xfer_len > data->cb_data_size) { rt_kprintf("xfer_len > data_size\n"); return RT_FALSE; } if(cbw->xfer_len < data->cb_data_size) { rt_kprintf("xfer_len < data_size\n"); data->cb_data_size = cbw->xfer_len; data->csw_response.status = 1; } return RT_TRUE; } static rt_ssize_t _cbw_handler(ufunction_t func, struct scsi_cmd* cmd, ustorage_cbw_t cbw) { struct mstorage *data; RT_ASSERT(func != RT_NULL); RT_ASSERT(cbw != RT_NULL); RT_ASSERT(cmd->handler != RT_NULL); data = (struct mstorage*)func->user_data; data->processing = cmd; return cmd->handler(func, cbw); } /** * This function will handle mass storage bulk out endpoint request. * * @param func the usb function object. * @param size request size. * * @return RT_EOK. */ static rt_err_t _ep_out_handler(ufunction_t func, rt_size_t size) { struct mstorage *data; struct scsi_cmd* cmd; rt_size_t len; struct ustorage_cbw* cbw; RT_ASSERT(func != RT_NULL); RT_ASSERT(func->device != RT_NULL); LOG_D("_ep_out_handler %d", size); data = (struct mstorage*)func->user_data; cbw = (struct ustorage_cbw*)data->ep_out->buffer; if(data->status == STAT_CBW) { /* dump cbw information */ if(cbw->signature != CBW_SIGNATURE || size != SIZEOF_CBW) { goto exit; } data->csw_response.signature = CSW_SIGNATURE; data->csw_response.tag = cbw->tag; data->csw_response.data_reside = cbw->xfer_len; data->csw_response.status = 0; LOG_D("ep_out reside %d", data->csw_response.data_reside); cmd = _find_cbw_command(cbw->cb[0]); if(cmd == RT_NULL) { rt_kprintf("can't find cbw command\n"); goto exit; } _cb_len_calc(func, cmd, cbw); if(!_cbw_verify(func, cmd, cbw)) { goto exit; } len = _cbw_handler(func, cmd, cbw); if(len == 0) { _send_status(func); } return RT_EOK; } else if(data->status == STAT_RECEIVE) { LOG_D("write size %d block 0x%x oount 0x%x", size, data->block, data->size); data->size -= size; data->csw_response.data_reside -= size; rt_device_write(data->disk, data->block, data->ep_out->buffer, 1); if(data->csw_response.data_reside != 0) { data->ep_out->request.buffer = data->ep_out->buffer; data->ep_out->request.size = data->geometry.bytes_per_sector; data->ep_out->request.req_type = UIO_REQUEST_READ_FULL; rt_usbd_io_request(func->device, data->ep_out, &data->ep_out->request); data->block ++; } else { _send_status(func); } return RT_EOK; } exit: if(data->csw_response.data_reside) { if(cbw->dflags & USB_DIR_IN) { rt_usbd_ep_set_stall(func->device, data->ep_in); } else { rt_usbd_ep_set_stall(func->device, data->ep_in); rt_usbd_ep_set_stall(func->device, data->ep_out); } } data->csw_response.status = 1; _send_status(func); return -RT_ERROR; } /** * This function will handle mass storage interface request. * * @param func the usb function object. * @param setup the setup request. * * @return RT_EOK on successful. */ static rt_err_t _interface_handler(ufunction_t func, ureq_t setup) { rt_uint8_t lun = 0; RT_ASSERT(func != RT_NULL); RT_ASSERT(func->device != RT_NULL); RT_ASSERT(setup != RT_NULL); LOG_D("mstorage_interface_handler"); switch(setup->bRequest) { case USBREQ_GET_MAX_LUN: LOG_D("USBREQ_GET_MAX_LUN"); if(setup->wValue || setup->wLength != 1) { rt_usbd_ep0_set_stall(func->device); } else { rt_usbd_ep0_write(func->device, &lun, setup->wLength); } break; case USBREQ_MASS_STORAGE_RESET: LOG_D("USBREQ_MASS_STORAGE_RESET"); if(setup->wValue || setup->wLength != 0) { rt_usbd_ep0_set_stall(func->device); } else { dcd_ep0_send_status(func->device->dcd); } break; default: rt_kprintf("unknown interface request\n"); break; } return RT_EOK; } /** * This function will run mass storage function, it will be called on handle set configuration request. * * @param func the usb function object. * * @return RT_EOK on successful. */ static rt_err_t _function_enable(ufunction_t func) { struct mstorage *data; RT_ASSERT(func != RT_NULL); LOG_D("Mass storage function enabled"); data = (struct mstorage*)func->user_data; data->disk = rt_device_find(RT_USB_MSTORAGE_DISK_NAME); if(data->disk == RT_NULL) { rt_kprintf("no data->disk named %s\n", RT_USB_MSTORAGE_DISK_NAME); return -RT_ERROR; } #ifdef RT_USING_DFS_MNTTABLE dfs_unmount_device(data->disk); #endif if(rt_device_open(data->disk, RT_DEVICE_OFLAG_RDWR) != RT_EOK) { rt_kprintf("disk open error\n"); return -RT_ERROR; } if(rt_device_control(data->disk, RT_DEVICE_CTRL_BLK_GETGEOME, (void*)&data->geometry) != RT_EOK) { rt_kprintf("get disk info error\n"); return -RT_ERROR; } data->ep_in->buffer = (rt_uint8_t*)rt_malloc(data->geometry.bytes_per_sector); if(data->ep_in->buffer == RT_NULL) { rt_kprintf("no memory\n"); return -RT_ENOMEM; } data->ep_out->buffer = (rt_uint8_t*)rt_malloc(data->geometry.bytes_per_sector); if(data->ep_out->buffer == RT_NULL) { rt_free(data->ep_in->buffer); rt_kprintf("no memory\n"); return -RT_ENOMEM; } /* prepare to read CBW request */ data->ep_out->request.buffer = data->ep_out->buffer; data->ep_out->request.size = SIZEOF_CBW; data->ep_out->request.req_type = UIO_REQUEST_READ_FULL; rt_usbd_io_request(func->device, data->ep_out, &data->ep_out->request); return RT_EOK; } /** * This function will stop mass storage function, it will be called on handle set configuration request. * * @param device the usb device object. * * @return RT_EOK on successful. */ static rt_err_t _function_disable(ufunction_t func) { struct mstorage *data; RT_ASSERT(func != RT_NULL); LOG_D("Mass storage function disabled"); data = (struct mstorage*)func->user_data; if(data->ep_in->buffer != RT_NULL) { rt_free(data->ep_in->buffer); data->ep_in->buffer = RT_NULL; } if(data->ep_out->buffer != RT_NULL) { rt_free(data->ep_out->buffer); data->ep_out->buffer = RT_NULL; } if(data->disk != RT_NULL) { rt_device_close(data->disk); #ifdef RT_USING_DFS_MNTTABLE dfs_mount_device(data->disk); #endif data->disk = RT_NULL; } data->status = STAT_CBW; return RT_EOK; } static struct ufunction_ops ops = { _function_enable, _function_disable, RT_NULL, }; static rt_err_t _mstorage_descriptor_config(umass_desc_t desc, rt_uint8_t cintf_nr, rt_uint8_t device_is_hs) { #ifdef RT_USB_DEVICE_COMPOSITE desc->iad_desc.bFirstInterface = cintf_nr; #endif desc->ep_out_desc.wMaxPacketSize = device_is_hs ? 512 : 64; desc->ep_in_desc.wMaxPacketSize = device_is_hs ? 512 : 64; return RT_EOK; } /** * This function will create a mass storage function instance. * * @param device the usb device object. * * @return RT_EOK on successful. */ ufunction_t rt_usbd_function_mstorage_create(udevice_t device) { uintf_t intf; struct mstorage *data; ufunction_t func; ualtsetting_t setting; umass_desc_t mass_desc; /* parameter check */ RT_ASSERT(device != RT_NULL); /* set usb device string description */ #ifdef RT_USB_DEVICE_COMPOSITE rt_usbd_device_set_interface_string(device, MSTRORAGE_INTF_STR_INDEX, _ustring[2]); #else rt_usbd_device_set_string(device, _ustring); #endif /* create a mass storage function */ func = rt_usbd_function_new(device, &dev_desc, &ops); device->dev_qualifier = &dev_qualifier; /* allocate memory for mass storage function data */ data = (struct mstorage*)rt_malloc(sizeof(struct mstorage)); rt_memset(data, 0, sizeof(struct mstorage)); func->user_data = (void*)data; /* create an interface object */ intf = rt_usbd_interface_new(device, _interface_handler); /* create an alternate setting object */ setting = rt_usbd_altsetting_new(sizeof(struct umass_descriptor)); /* config desc in alternate setting */ rt_usbd_altsetting_config_descriptor(setting, &_mass_desc, (rt_off_t)&((umass_desc_t)0)->intf_desc); /* configure the msc interface descriptor */ _mstorage_descriptor_config(setting->desc, intf->intf_num, device->dcd->device_is_hs); /* create a bulk out and a bulk in endpoint */ mass_desc = (umass_desc_t)setting->desc; data->ep_in = rt_usbd_endpoint_new(&mass_desc->ep_in_desc, _ep_in_handler); data->ep_out = rt_usbd_endpoint_new(&mass_desc->ep_out_desc, _ep_out_handler); /* add the bulk out and bulk in endpoint to the alternate setting */ rt_usbd_altsetting_add_endpoint(setting, data->ep_out); rt_usbd_altsetting_add_endpoint(setting, data->ep_in); /* add the alternate setting to the interface, then set default setting */ rt_usbd_interface_add_altsetting(intf, setting); rt_usbd_set_altsetting(intf, 0); /* add the interface to the mass storage function */ rt_usbd_function_add_interface(func, intf); return func; } struct udclass msc_class = { .rt_usbd_function_create = rt_usbd_function_mstorage_create }; int rt_usbd_msc_class_register(void) { rt_usbd_class_register(&msc_class); return 0; } INIT_PREV_EXPORT(rt_usbd_msc_class_register); #endif