/* * Copyright (c) 2006-2020, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2019-07-31 Zero-Free first implementation * 2020-07-02 thread-liu Porting for STM32MP1 */ #include "board.h" #include "drv_cs42l51.h" #ifdef BSP_USING_AUDIO //#define DRV_DEBUG #define LOG_TAG "drv.audio" #include #define SOUND_BUS_NAME "i2c4" /* SYSRAM */ #define TX_FIFO_SIZE (4096) #if defined(__CC_ARM) || defined(__CLANG_ARM) rt_uint8_t AUDIO_TX_FIFO[TX_FIFO_SIZE] __attribute__((at(0x2FFC3000))); #elif defined(__ICCARM__) #pragma location = 0x2FFC3000 rt_uint8_t AUDIO_TX_FIFO[TX_FIFO_SIZE]; #elif defined ( __GNUC__ ) rt_uint8_t AUDIO_TX_FIFO[TX_FIFO_SIZE] __attribute__((at(0x2FFC3000))); #endif struct sound_device { struct rt_audio_device audio; struct rt_audio_configure replay_config; rt_uint8_t *tx_fifo; rt_uint8_t volume; }; static struct sound_device snd_dev = {0}; SAI_HandleTypeDef hsai_BlockA2 = {0}; DMA_HandleTypeDef hdma_sai2_a = {0}; SAI_HandleTypeDef hsai_BlockB2 = {0}; DMA_HandleTypeDef hdma_sai2_b = {0}; void HAL_SAI_MspInit(SAI_HandleTypeDef* hsai) { GPIO_InitTypeDef GPIO_InitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = {0}; /* SAI2 */ if(hsai->Instance==SAI2_Block_A) { /* Peripheral clock enable */ if(IS_ENGINEERING_BOOT_MODE()) { /** Initializes the peripherals clock */ PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_SAI2; PeriphClkInit.Sai2ClockSelection = RCC_SAI2CLKSOURCE_PLL3_Q; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } } __HAL_RCC_GPIOE_CLK_ENABLE(); __HAL_RCC_GPIOI_CLK_ENABLE(); __HAL_RCC_GPIOF_CLK_ENABLE(); __HAL_RCC_SAI2_CLK_ENABLE(); /**SAI2_A_Block_A GPIO Configuration PE0 ------> SAI2_MCLK_A PI7 ------> SAI2_FS_A PI5 ------> SAI2_SCK_A PI6 ------> SAI2_SD_A */ GPIO_InitStruct.Pin = GPIO_PIN_0; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = GPIO_AF10_SAI2; HAL_GPIO_Init(GPIOE, &GPIO_InitStruct); GPIO_InitStruct.Pin = GPIO_PIN_7|GPIO_PIN_5|GPIO_PIN_6; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = GPIO_AF10_SAI2; HAL_GPIO_Init(GPIOI, &GPIO_InitStruct); /* Configure DMA used for SAI2 */ __HAL_RCC_DMAMUX_CLK_ENABLE(); __HAL_RCC_DMA2_CLK_ENABLE(); hdma_sai2_a.Instance = DMA2_Stream5; hdma_sai2_a.Init.Request = DMA_REQUEST_SAI2_A; hdma_sai2_a.Init.Direction = DMA_MEMORY_TO_PERIPH; hdma_sai2_a.Init.PeriphInc = DMA_PINC_DISABLE; hdma_sai2_a.Init.MemInc = DMA_MINC_ENABLE; hdma_sai2_a.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD; hdma_sai2_a.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD; hdma_sai2_a.Init.Mode = DMA_CIRCULAR; hdma_sai2_a.Init.Priority = DMA_PRIORITY_HIGH; hdma_sai2_a.Init.FIFOMode = DMA_FIFOMODE_DISABLE; HAL_DMA_DeInit(&hdma_sai2_a); if (HAL_DMA_Init(&hdma_sai2_a) != HAL_OK) { Error_Handler(); } __HAL_LINKDMA(hsai,hdmatx,hdma_sai2_a); __HAL_DMA_ENABLE(&hdma_sai2_a); HAL_NVIC_SetPriority(DMA2_Stream5_IRQn, 2, 0); HAL_NVIC_EnableIRQ(DMA2_Stream5_IRQn); } if(hsai->Instance==SAI2_Block_B) { /* Peripheral clock enable */ if(IS_ENGINEERING_BOOT_MODE()) { /** Initializes the peripherals clock */ PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_SAI2; PeriphClkInit.Sai2ClockSelection = RCC_SAI2CLKSOURCE_PLL3_Q; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } } __HAL_RCC_GPIOF_CLK_ENABLE(); __HAL_RCC_SAI2_CLK_ENABLE(); /**SAI2_B_Block_B GPIO Configuration PF11 ------> SAI2_SD_B */ GPIO_InitStruct.Pin = GPIO_PIN_11; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStruct.Alternate = GPIO_AF10_SAI2; HAL_GPIO_Init(GPIOF, &GPIO_InitStruct); __HAL_RCC_DMAMUX_CLK_ENABLE(); __HAL_RCC_DMA2_CLK_ENABLE(); /* Peripheral DMA init*/ hdma_sai2_b.Instance = DMA2_Stream4; hdma_sai2_b.Init.Request = DMA_REQUEST_SAI2_B; hdma_sai2_b.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_sai2_b.Init.PeriphInc = DMA_PINC_DISABLE; hdma_sai2_b.Init.MemInc = DMA_MINC_ENABLE; hdma_sai2_b.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD; hdma_sai2_b.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD; hdma_sai2_b.Init.Mode = DMA_CIRCULAR; hdma_sai2_b.Init.Priority = DMA_PRIORITY_HIGH; hdma_sai2_b.Init.FIFOMode = DMA_FIFOMODE_DISABLE; hdma_sai2_b.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL; hdma_sai2_b.Init.MemBurst = DMA_MBURST_SINGLE; hdma_sai2_b.Init.PeriphBurst = DMA_PBURST_SINGLE; __HAL_LINKDMA(hsai,hdmarx,hdma_sai2_b); HAL_DMA_DeInit(&hdma_sai2_b); if (HAL_DMA_Init(&hdma_sai2_b) != HAL_OK) { Error_Handler(); } __HAL_LINKDMA(hsai,hdmarx,hdma_sai2_b); __HAL_DMA_ENABLE(&hdma_sai2_b); HAL_NVIC_SetPriority(DMA2_Stream4_IRQn, 2, 0); HAL_NVIC_EnableIRQ(DMA2_Stream4_IRQn); } } void HAL_SAI_MspDeInit(SAI_HandleTypeDef* hsai) { /* SAI2 */ if(hsai->Instance==SAI2_Block_A) { /* Peripheral clock disable */ __HAL_RCC_SAI2_CLK_DISABLE(); /**SAI2_A_Block_A GPIO Configuration PE0 ------> SAI2_MCLK_A PI7 ------> SAI2_FS_A PI5 ------> SAI2_SCK_A PI6 ------> SAI2_SD_A */ HAL_GPIO_DeInit(GPIOE, GPIO_PIN_0); HAL_GPIO_DeInit(GPIOI, GPIO_PIN_7|GPIO_PIN_5|GPIO_PIN_6); HAL_DMA_DeInit(hsai->hdmarx); HAL_DMA_DeInit(hsai->hdmatx); } if(hsai->Instance==SAI2_Block_B) { /* Peripheral clock disable */ __HAL_RCC_SAI2_CLK_DISABLE(); /**SAI2_B_Block_B GPIO Configuration PF11 ------> SAI2_SD_B */ HAL_GPIO_DeInit(GPIOF, GPIO_PIN_11); HAL_DMA_DeInit(hsai->hdmarx); HAL_DMA_DeInit(hsai->hdmatx); } } static void rt_hw_sai2a_init(void) { HAL_SAI_DeInit(&hsai_BlockA2); hsai_BlockA2.Instance = SAI2_Block_A; hsai_BlockA2.Init.Protocol = SAI_FREE_PROTOCOL; hsai_BlockA2.Init.AudioMode = SAI_MODEMASTER_TX; hsai_BlockA2.Init.DataSize = SAI_DATASIZE_16; hsai_BlockA2.Init.FirstBit = SAI_FIRSTBIT_MSB; hsai_BlockA2.Init.ClockStrobing = SAI_CLOCKSTROBING_RISINGEDGE; hsai_BlockA2.Init.Synchro = SAI_ASYNCHRONOUS; hsai_BlockA2.Init.OutputDrive = SAI_OUTPUTDRIVE_ENABLE; hsai_BlockA2.Init.NoDivider = SAI_MASTERDIVIDER_ENABLE; hsai_BlockA2.Init.FIFOThreshold = SAI_FIFOTHRESHOLD_EMPTY; hsai_BlockA2.Init.AudioFrequency = SAI_AUDIO_FREQUENCY_44K; hsai_BlockA2.Init.SynchroExt = SAI_SYNCEXT_DISABLE; hsai_BlockA2.Init.MonoStereoMode = SAI_STEREOMODE; hsai_BlockA2.Init.CompandingMode = SAI_NOCOMPANDING; hsai_BlockA2.Init.TriState = SAI_OUTPUT_NOTRELEASED; hsai_BlockA2.Init.PdmInit.Activation = DISABLE; hsai_BlockA2.Init.PdmInit.MicPairsNbr = 0; hsai_BlockA2.Init.PdmInit.ClockEnable = SAI_PDM_CLOCK1_ENABLE; hsai_BlockA2.FrameInit.FrameLength = 64; hsai_BlockA2.FrameInit.ActiveFrameLength = 32; hsai_BlockA2.FrameInit.FSDefinition = SAI_FS_CHANNEL_IDENTIFICATION; hsai_BlockA2.FrameInit.FSPolarity = SAI_FS_ACTIVE_LOW; hsai_BlockA2.FrameInit.FSOffset = SAI_FS_BEFOREFIRSTBIT; hsai_BlockA2.SlotInit.FirstBitOffset = 0; hsai_BlockA2.SlotInit.SlotSize = SAI_SLOTSIZE_32B; hsai_BlockA2.SlotInit.SlotNumber = 2; hsai_BlockA2.SlotInit.SlotActive = SAI_SLOTACTIVE_0 | SAI_SLOTACTIVE_1; if(HAL_OK != HAL_SAI_Init(&hsai_BlockA2)) { Error_Handler(); } /* Enable SAI to generate clock used by audio driver */ __HAL_SAI_ENABLE(&hsai_BlockA2); } void DMA2_Stream5_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_sai2_a); } void HAL_SAI_TxHalfCpltCallback(SAI_HandleTypeDef *hsai) { if (hsai == &hsai_BlockA2) { rt_audio_tx_complete(&snd_dev.audio); } } void HAL_SAI_TxCpltCallback(SAI_HandleTypeDef *hsai) { if (hsai == &hsai_BlockA2) { rt_audio_tx_complete(&snd_dev.audio); } } void SAIA_Frequency_Set(uint32_t frequency) { return; } void SAIA_Channels_Set(uint8_t channels) { if (channels == 1) { hsai_BlockA2.Init.MonoStereoMode = SAI_MONOMODE; } else { hsai_BlockA2.Init.MonoStereoMode = SAI_STEREOMODE; } __HAL_SAI_DISABLE(&hsai_BlockA2); HAL_SAI_Init(&hsai_BlockA2); __HAL_SAI_ENABLE(&hsai_BlockA2); } /** * RT-Thread Audio Device Driver Interface */ static rt_err_t sound_getcaps(struct rt_audio_device *audio, struct rt_audio_caps *caps) { rt_err_t result = RT_EOK; struct sound_device *snd_dev; RT_ASSERT(audio != RT_NULL); snd_dev = (struct sound_device *)audio->parent.user_data; switch (caps->main_type) { case AUDIO_TYPE_QUERY: /* qurey the types of hw_codec device */ { switch (caps->sub_type) { case AUDIO_TYPE_QUERY: caps->udata.mask = AUDIO_TYPE_OUTPUT | AUDIO_TYPE_MIXER; break; default: result = -RT_ERROR; break; } break; } case AUDIO_TYPE_OUTPUT: /* Provide capabilities of OUTPUT unit */ { switch (caps->sub_type) { case AUDIO_DSP_PARAM: caps->udata.config.samplerate = snd_dev->replay_config.samplerate; caps->udata.config.channels = snd_dev->replay_config.channels; caps->udata.config.samplebits = snd_dev->replay_config.samplebits; break; case AUDIO_DSP_SAMPLERATE: caps->udata.config.samplerate = snd_dev->replay_config.samplerate; break; case AUDIO_DSP_CHANNELS: caps->udata.config.channels = snd_dev->replay_config.channels; break; case AUDIO_DSP_SAMPLEBITS: caps->udata.config.samplebits = snd_dev->replay_config.samplebits; break; default: result = -RT_ERROR; break; } break; } case AUDIO_TYPE_MIXER: /* report the Mixer Units */ { switch (caps->sub_type) { case AUDIO_MIXER_QUERY: caps->udata.mask = AUDIO_MIXER_VOLUME; break; case AUDIO_MIXER_VOLUME: caps->udata.value = cs42l51_drv.get_volume(); break; default: result = -RT_ERROR; break; } break; } default: result = -RT_ERROR; break; } return result; } static rt_err_t sound_configure(struct rt_audio_device *audio, struct rt_audio_caps *caps) { rt_err_t result = RT_EOK; struct sound_device *snd_dev; RT_ASSERT(audio != RT_NULL); snd_dev = (struct sound_device *)audio->parent.user_data; switch (caps->main_type) { case AUDIO_TYPE_MIXER: { switch (caps->sub_type) { case AUDIO_MIXER_VOLUME: { rt_uint8_t volume = caps->udata.value; cs42l51_drv.set_volume(volume); snd_dev->volume = volume; LOG_D("set volume %d", volume); break; } default: result = -RT_ERROR; break; } break; } case AUDIO_TYPE_OUTPUT: { switch (caps->sub_type) { case AUDIO_DSP_PARAM: { /* set samplerate */ SAIA_Frequency_Set(caps->udata.config.samplerate); /* set channels */ SAIA_Channels_Set(caps->udata.config.channels); /* save configs */ snd_dev->replay_config.samplerate = caps->udata.config.samplerate; snd_dev->replay_config.channels = caps->udata.config.channels; snd_dev->replay_config.samplebits = caps->udata.config.samplebits; LOG_D("set samplerate %d", snd_dev->replay_config.samplerate); break; } case AUDIO_DSP_SAMPLERATE: { SAIA_Frequency_Set(caps->udata.config.samplerate); snd_dev->replay_config.samplerate = caps->udata.config.samplerate; LOG_D("set samplerate %d", snd_dev->replay_config.samplerate); break; } case AUDIO_DSP_CHANNELS: { SAIA_Channels_Set(caps->udata.config.channels); snd_dev->replay_config.channels = caps->udata.config.channels; LOG_D("set channels %d", snd_dev->replay_config.channels); break; } case AUDIO_DSP_SAMPLEBITS: { /* not support */ snd_dev->replay_config.samplebits = caps->udata.config.samplebits; break; } default: result = -RT_ERROR; break; } break; } default: break; } return result; } static rt_err_t sound_init(struct rt_audio_device *audio) { rt_err_t result = RT_EOK; struct sound_device *snd_dev; RT_ASSERT(audio != RT_NULL); snd_dev = (struct sound_device *)audio->parent.user_data; cs42l51_drv.init(OUT_HEADPHONE, SOUND_BUS_NAME, 40); if (cs42l51_drv.read_id() != RT_EOK) { LOG_E("can't find low level audio device!"); return RT_ERROR; } rt_hw_sai2a_init(); /* set default params */ SAIA_Frequency_Set(snd_dev->replay_config.samplerate); SAIA_Channels_Set(snd_dev->replay_config.channels); return result; } static rt_err_t sound_start(struct rt_audio_device *audio, int stream) { struct sound_device *snd_dev; RT_ASSERT(audio != RT_NULL); snd_dev = (struct sound_device *)audio->parent.user_data; if (stream == AUDIO_STREAM_REPLAY) { LOG_D("open sound device"); cs42l51_drv.init(OUT_HEADPHONE, SOUND_BUS_NAME, 60); /* set work mode */ cs42l51_drv.play(); if (HAL_SAI_Transmit_DMA(&hsai_BlockA2, snd_dev->tx_fifo, TX_FIFO_SIZE / 2) != HAL_OK) { return RT_ERROR; } } return RT_EOK; } static rt_err_t sound_stop(struct rt_audio_device *audio, int stream) { RT_ASSERT(audio != RT_NULL); if (stream == AUDIO_STREAM_REPLAY) { HAL_SAI_DMAStop(&hsai_BlockA2); HAL_SAI_Abort(&hsai_BlockA2); cs42l51_drv.stop(); LOG_D("close sound device"); } return RT_EOK; } static void sound_buffer_info(struct rt_audio_device *audio, struct rt_audio_buf_info *info) { struct sound_device *snd_dev; RT_ASSERT(audio != RT_NULL); snd_dev = (struct sound_device *)audio->parent.user_data; /** * TX_FIFO * +----------------+----------------+ * | block1 | block2 | * +----------------+----------------+ * \ block_size / */ info->buffer = snd_dev->tx_fifo; info->total_size = TX_FIFO_SIZE; info->block_size = TX_FIFO_SIZE / 2; info->block_count = 2; } static struct rt_audio_ops snd_ops = { .getcaps = sound_getcaps, .configure = sound_configure, .init = sound_init, .start = sound_start, .stop = sound_stop, .transmit = RT_NULL, .buffer_info = sound_buffer_info, }; int rt_hw_sound_init(void) { rt_err_t result = RT_EOK; struct rt_device *device = RT_NULL; rt_memset(AUDIO_TX_FIFO, 0, TX_FIFO_SIZE); snd_dev.tx_fifo = AUDIO_TX_FIFO; /* init default configuration */ snd_dev.replay_config.samplerate = 44100; snd_dev.replay_config.channels = 2; snd_dev.replay_config.samplebits = 16; snd_dev.volume = 55; /* register sound device */ snd_dev.audio.ops = &snd_ops; result = rt_audio_register(&snd_dev.audio, "sound0", RT_DEVICE_FLAG_WRONLY, &snd_dev); if (result != RT_EOK) { device = &(snd_dev.audio.parent); rt_device_unregister(device); LOG_E("sound device init error!"); return RT_ERROR; } return RT_EOK; } INIT_APP_EXPORT(rt_hw_sound_init); #endif