/* * Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright 2016-2017 NXP * All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #ifndef _FSL_SAI_H_ #define _FSL_SAI_H_ #include "fsl_common.h" /*! * @addtogroup sai * @{ */ /******************************************************************************* * Definitions ******************************************************************************/ /*! @name Driver version */ /*@{*/ #define FSL_SAI_DRIVER_VERSION (MAKE_VERSION(2, 1, 7)) /*!< Version 2.1.7 */ /*@}*/ /*! @brief SAI return status*/ enum _sai_status_t { kStatus_SAI_TxBusy = MAKE_STATUS(kStatusGroup_SAI, 0), /*!< SAI Tx is busy. */ kStatus_SAI_RxBusy = MAKE_STATUS(kStatusGroup_SAI, 1), /*!< SAI Rx is busy. */ kStatus_SAI_TxError = MAKE_STATUS(kStatusGroup_SAI, 2), /*!< SAI Tx FIFO error. */ kStatus_SAI_RxError = MAKE_STATUS(kStatusGroup_SAI, 3), /*!< SAI Rx FIFO error. */ kStatus_SAI_QueueFull = MAKE_STATUS(kStatusGroup_SAI, 4), /*!< SAI transfer queue is full. */ kStatus_SAI_TxIdle = MAKE_STATUS(kStatusGroup_SAI, 5), /*!< SAI Tx is idle */ kStatus_SAI_RxIdle = MAKE_STATUS(kStatusGroup_SAI, 6) /*!< SAI Rx is idle */ }; /*< sai channel mask value, actual channel numbers is depend soc specific */ enum _sai_channel_mask { kSAI_Channel0Mask = 1 << 0U, /*!< channel 0 mask value */ kSAI_Channel1Mask = 1 << 1U, /*!< channel 1 mask value */ kSAI_Channel2Mask = 1 << 2U, /*!< channel 2 mask value */ kSAI_Channel3Mask = 1 << 3U, /*!< channel 3 mask value */ kSAI_Channel4Mask = 1 << 4U, /*!< channel 4 mask value */ kSAI_Channel5Mask = 1 << 5U, /*!< channel 5 mask value */ kSAI_Channel6Mask = 1 << 6U, /*!< channel 6 mask value */ kSAI_Channel7Mask = 1 << 7U, /*!< channel 7 mask value */ }; /*! @brief Define the SAI bus type */ typedef enum _sai_protocol { kSAI_BusLeftJustified = 0x0U, /*!< Uses left justified format.*/ kSAI_BusRightJustified, /*!< Uses right justified format. */ kSAI_BusI2S, /*!< Uses I2S format. */ kSAI_BusPCMA, /*!< Uses I2S PCM A format.*/ kSAI_BusPCMB /*!< Uses I2S PCM B format. */ } sai_protocol_t; /*! @brief Master or slave mode */ typedef enum _sai_master_slave { kSAI_Master = 0x0U, /*!< Master mode */ kSAI_Slave = 0x1U /*!< Slave mode */ } sai_master_slave_t; /*! @brief Mono or stereo audio format */ typedef enum _sai_mono_stereo { kSAI_Stereo = 0x0U, /*!< Stereo sound. */ kSAI_MonoRight, /*!< Only Right channel have sound. */ kSAI_MonoLeft /*!< Only left channel have sound. */ } sai_mono_stereo_t; /*! @brief SAI data order, MSB or LSB */ typedef enum _sai_data_order { kSAI_DataLSB = 0x0U, /*!< LSB bit transferred first */ kSAI_DataMSB /*!< MSB bit transferred first */ } sai_data_order_t; /*! @brief SAI clock polarity, active high or low */ typedef enum _sai_clock_polarity { kSAI_PolarityActiveHigh = 0x0U, /*!< Clock active high */ kSAI_PolarityActiveLow /*!< Clock active low */ } sai_clock_polarity_t; /*! @brief Synchronous or asynchronous mode */ typedef enum _sai_sync_mode { kSAI_ModeAsync = 0x0U, /*!< Asynchronous mode */ kSAI_ModeSync, /*!< Synchronous mode (with receiver or transmit) */ kSAI_ModeSyncWithOtherTx, /*!< Synchronous with another SAI transmit */ kSAI_ModeSyncWithOtherRx /*!< Synchronous with another SAI receiver */ } sai_sync_mode_t; #if !(defined(FSL_FEATURE_SAI_HAS_NO_MCR_MICS) && (FSL_FEATURE_SAI_HAS_NO_MCR_MICS)) /*! @brief Mater clock source */ typedef enum _sai_mclk_source { kSAI_MclkSourceSysclk = 0x0U, /*!< Master clock from the system clock */ kSAI_MclkSourceSelect1, /*!< Master clock from source 1 */ kSAI_MclkSourceSelect2, /*!< Master clock from source 2 */ kSAI_MclkSourceSelect3 /*!< Master clock from source 3 */ } sai_mclk_source_t; #endif /*! @brief Bit clock source */ typedef enum _sai_bclk_source { kSAI_BclkSourceBusclk = 0x0U, /*!< Bit clock using bus clock */ /* General device bit source definition */ kSAI_BclkSourceMclkOption1 = 0x1U, /*!< Bit clock MCLK option 1 */ kSAI_BclkSourceMclkOption2 = 0x2U, /*!< Bit clock MCLK option2 */ kSAI_BclkSourceMclkOption3 = 0x3U, /*!< Bit clock MCLK option3 */ /* Kinetis device bit clock source definition */ kSAI_BclkSourceMclkDiv = 0x1U, /*!< Bit clock using master clock divider */ kSAI_BclkSourceOtherSai0 = 0x2U, /*!< Bit clock from other SAI device */ kSAI_BclkSourceOtherSai1 = 0x3U /*!< Bit clock from other SAI device */ } sai_bclk_source_t; /*! @brief The SAI interrupt enable flag */ enum _sai_interrupt_enable_t { kSAI_WordStartInterruptEnable = I2S_TCSR_WSIE_MASK, /*!< Word start flag, means the first word in a frame detected */ kSAI_SyncErrorInterruptEnable = I2S_TCSR_SEIE_MASK, /*!< Sync error flag, means the sync error is detected */ kSAI_FIFOWarningInterruptEnable = I2S_TCSR_FWIE_MASK, /*!< FIFO warning flag, means the FIFO is empty */ kSAI_FIFOErrorInterruptEnable = I2S_TCSR_FEIE_MASK, /*!< FIFO error flag */ #if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1) kSAI_FIFORequestInterruptEnable = I2S_TCSR_FRIE_MASK, /*!< FIFO request, means reached watermark */ #endif /* FSL_FEATURE_SAI_FIFO_COUNT */ }; /*! @brief The DMA request sources */ enum _sai_dma_enable_t { kSAI_FIFOWarningDMAEnable = I2S_TCSR_FWDE_MASK, /*!< FIFO warning caused by the DMA request */ #if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1) kSAI_FIFORequestDMAEnable = I2S_TCSR_FRDE_MASK, /*!< FIFO request caused by the DMA request */ #endif /* FSL_FEATURE_SAI_FIFO_COUNT */ }; /*! @brief The SAI status flag */ enum _sai_flags { kSAI_WordStartFlag = I2S_TCSR_WSF_MASK, /*!< Word start flag, means the first word in a frame detected */ kSAI_SyncErrorFlag = I2S_TCSR_SEF_MASK, /*!< Sync error flag, means the sync error is detected */ kSAI_FIFOErrorFlag = I2S_TCSR_FEF_MASK, /*!< FIFO error flag */ #if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1) kSAI_FIFORequestFlag = I2S_TCSR_FRF_MASK, /*!< FIFO request flag. */ #endif /* FSL_FEATURE_SAI_FIFO_COUNT */ kSAI_FIFOWarningFlag = I2S_TCSR_FWF_MASK, /*!< FIFO warning flag */ }; /*! @brief The reset type */ typedef enum _sai_reset_type { kSAI_ResetTypeSoftware = I2S_TCSR_SR_MASK, /*!< Software reset, reset the logic state */ kSAI_ResetTypeFIFO = I2S_TCSR_FR_MASK, /*!< FIFO reset, reset the FIFO read and write pointer */ kSAI_ResetAll = I2S_TCSR_SR_MASK | I2S_TCSR_FR_MASK /*!< All reset. */ } sai_reset_type_t; #if defined(FSL_FEATURE_SAI_HAS_FIFO_PACKING) && FSL_FEATURE_SAI_HAS_FIFO_PACKING /*! * @brief The SAI packing mode * The mode includes 8 bit and 16 bit packing. */ typedef enum _sai_fifo_packing { kSAI_FifoPackingDisabled = 0x0U, /*!< Packing disabled */ kSAI_FifoPacking8bit = 0x2U, /*!< 8 bit packing enabled */ kSAI_FifoPacking16bit = 0x3U /*!< 16bit packing enabled */ } sai_fifo_packing_t; #endif /* FSL_FEATURE_SAI_HAS_FIFO_PACKING */ /*! @brief SAI user configuration structure */ typedef struct _sai_config { sai_protocol_t protocol; /*!< Audio bus protocol in SAI */ sai_sync_mode_t syncMode; /*!< SAI sync mode, control Tx/Rx clock sync */ #if defined(FSL_FEATURE_SAI_HAS_MCR) && (FSL_FEATURE_SAI_HAS_MCR) bool mclkOutputEnable; /*!< Master clock output enable, true means master clock divider enabled */ #if !(defined(FSL_FEATURE_SAI_HAS_NO_MCR_MICS) && (FSL_FEATURE_SAI_HAS_NO_MCR_MICS)) sai_mclk_source_t mclkSource; /*!< Master Clock source */ #endif /* FSL_FEATURE_SAI_HAS_MCR */ #endif sai_bclk_source_t bclkSource; /*!< Bit Clock source */ sai_master_slave_t masterSlave; /*!< Master or slave */ } sai_config_t; /*!@brief SAI transfer queue size, user can refine it according to use case. */ #define SAI_XFER_QUEUE_SIZE (4) /*! @brief Audio sample rate */ typedef enum _sai_sample_rate { kSAI_SampleRate8KHz = 8000U, /*!< Sample rate 8000 Hz */ kSAI_SampleRate11025Hz = 11025U, /*!< Sample rate 11025 Hz */ kSAI_SampleRate12KHz = 12000U, /*!< Sample rate 12000 Hz */ kSAI_SampleRate16KHz = 16000U, /*!< Sample rate 16000 Hz */ kSAI_SampleRate22050Hz = 22050U, /*!< Sample rate 22050 Hz */ kSAI_SampleRate24KHz = 24000U, /*!< Sample rate 24000 Hz */ kSAI_SampleRate32KHz = 32000U, /*!< Sample rate 32000 Hz */ kSAI_SampleRate44100Hz = 44100U, /*!< Sample rate 44100 Hz */ kSAI_SampleRate48KHz = 48000U, /*!< Sample rate 48000 Hz */ kSAI_SampleRate96KHz = 96000U, /*!< Sample rate 96000 Hz */ kSAI_SampleRate192KHz = 192000U, /*!< Sample rate 192000 Hz */ kSAI_SampleRate384KHz = 384000U, /*!< Sample rate 384000 Hz */ } sai_sample_rate_t; /*! @brief Audio word width */ typedef enum _sai_word_width { kSAI_WordWidth8bits = 8U, /*!< Audio data width 8 bits */ kSAI_WordWidth16bits = 16U, /*!< Audio data width 16 bits */ kSAI_WordWidth24bits = 24U, /*!< Audio data width 24 bits */ kSAI_WordWidth32bits = 32U /*!< Audio data width 32 bits */ } sai_word_width_t; /*! @brief sai transfer format */ typedef struct _sai_transfer_format { uint32_t sampleRate_Hz; /*!< Sample rate of audio data */ uint32_t bitWidth; /*!< Data length of audio data, usually 8/16/24/32 bits */ sai_mono_stereo_t stereo; /*!< Mono or stereo */ uint32_t masterClockHz; /*!< Master clock frequency in Hz */ #if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1) uint8_t watermark; /*!< Watermark value */ #endif /* FSL_FEATURE_SAI_FIFO_COUNT */ /* for the multi channel usage, user can provide channelMask Oonly, then sai driver will handle * other parameter carefully, such as * channelMask = kSAI_Channel0Mask | kSAI_Channel1Mask | kSAI_Channel4Mask * then in SAI_RxSetFormat/SAI_TxSetFormat function, channel/endChannel/channelNums will be calculated. * for the single channel usage, user can provide channel or channel mask only, such as, * channel = 0 or channelMask = kSAI_Channel0Mask. */ uint8_t channel; /*!< Transfer start channel */ uint8_t channelMask; /*!< enabled channel mask value, reference _sai_channel_mask */ uint8_t endChannel; /*!< end channel number */ uint8_t channelNums; /*!< Total enabled channel numbers */ sai_protocol_t protocol; /*!< Which audio protocol used */ bool isFrameSyncCompact; /*!< True means Frame sync length is configurable according to bitWidth, false means frame sync length is 64 times of bit clock. */ } sai_transfer_format_t; /*! @brief SAI transfer structure */ typedef struct _sai_transfer { uint8_t *data; /*!< Data start address to transfer. */ size_t dataSize; /*!< Transfer size. */ } sai_transfer_t; typedef struct _sai_handle sai_handle_t; /*! @brief SAI transfer callback prototype */ typedef void (*sai_transfer_callback_t)(I2S_Type *base, sai_handle_t *handle, status_t status, void *userData); /*! @brief SAI handle structure */ struct _sai_handle { I2S_Type *base; /*!< base address */ uint32_t state; /*!< Transfer status */ sai_transfer_callback_t callback; /*!< Callback function called at transfer event*/ void *userData; /*!< Callback parameter passed to callback function*/ uint8_t bitWidth; /*!< Bit width for transfer, 8/16/24/32 bits */ /* for the multi channel usage, user can provide channelMask Oonly, then sai driver will handle * other parameter carefully, such as * channelMask = kSAI_Channel0Mask | kSAI_Channel1Mask | kSAI_Channel4Mask * then in SAI_RxSetFormat/SAI_TxSetFormat function, channel/endChannel/channelNums will be calculated. * for the single channel usage, user can provide channel or channel mask only, such as, * channel = 0 or channelMask = kSAI_Channel0Mask. */ uint8_t channel; /*!< Transfer start channel */ uint8_t channelMask; /*!< enabled channel mask value, refernece _sai_channel_mask */ uint8_t endChannel; /*!< end channel number */ uint8_t channelNums; /*!< Total enabled channel numbers */ sai_transfer_t saiQueue[SAI_XFER_QUEUE_SIZE]; /*!< Transfer queue storing queued transfer */ size_t transferSize[SAI_XFER_QUEUE_SIZE]; /*!< Data bytes need to transfer */ volatile uint8_t queueUser; /*!< Index for user to queue transfer */ volatile uint8_t queueDriver; /*!< Index for driver to get the transfer data and size */ #if defined(FSL_FEATURE_SAI_FIFO_COUNT) && (FSL_FEATURE_SAI_FIFO_COUNT > 1) uint8_t watermark; /*!< Watermark value */ #endif }; /******************************************************************************* * API ******************************************************************************/ #if defined(__cplusplus) extern "C" { #endif /*_cplusplus*/ /*! * @name Initialization and deinitialization * @{ */ /*! * @brief Initializes the SAI Tx peripheral. * * Ungates the SAI clock, resets the module, and configures SAI Tx with a configuration structure. * The configuration structure can be custom filled or set with default values by * SAI_TxGetDefaultConfig(). * * @note This API should be called at the beginning of the application to use * the SAI driver. Otherwise, accessing the SAIM module can cause a hard fault * because the clock is not enabled. * * @param base SAI base pointer * @param config SAI configuration structure. */ void SAI_TxInit(I2S_Type *base, const sai_config_t *config); /*! * @brief Initializes the SAI Rx peripheral. * * Ungates the SAI clock, resets the module, and configures the SAI Rx with a configuration structure. * The configuration structure can be custom filled or set with default values by * SAI_RxGetDefaultConfig(). * * @note This API should be called at the beginning of the application to use * the SAI driver. Otherwise, accessing the SAI module can cause a hard fault * because the clock is not enabled. * * @param base SAI base pointer * @param config SAI configuration structure. */ void SAI_RxInit(I2S_Type *base, const sai_config_t *config); /*! * @brief Sets the SAI Tx configuration structure to default values. * * This API initializes the configuration structure for use in SAI_TxConfig(). * The initialized structure can remain unchanged in SAI_TxConfig(), or it can be modified * before calling SAI_TxConfig(). * This is an example. @code sai_config_t config; SAI_TxGetDefaultConfig(&config); @endcode * * @param config pointer to master configuration structure */ void SAI_TxGetDefaultConfig(sai_config_t *config); /*! * @brief Sets the SAI Rx configuration structure to default values. * * This API initializes the configuration structure for use in SAI_RxConfig(). * The initialized structure can remain unchanged in SAI_RxConfig() or it can be modified * before calling SAI_RxConfig(). * This is an example. @code sai_config_t config; SAI_RxGetDefaultConfig(&config); @endcode * * @param config pointer to master configuration structure */ void SAI_RxGetDefaultConfig(sai_config_t *config); /*! * @brief De-initializes the SAI peripheral. * * This API gates the SAI clock. The SAI module can't operate unless SAI_TxInit * or SAI_RxInit is called to enable the clock. * * @param base SAI base pointer */ void SAI_Deinit(I2S_Type *base); /*! * @brief Resets the SAI Tx. * * This function enables the software reset and FIFO reset of SAI Tx. After reset, clear the reset bit. * * @param base SAI base pointer */ void SAI_TxReset(I2S_Type *base); /*! * @brief Resets the SAI Rx. * * This function enables the software reset and FIFO reset of SAI Rx. After reset, clear the reset bit. * * @param base SAI base pointer */ void SAI_RxReset(I2S_Type *base); /*! * @brief Enables/disables the SAI Tx. * * @param base SAI base pointer * @param enable True means enable SAI Tx, false means disable. */ void SAI_TxEnable(I2S_Type *base, bool enable); /*! * @brief Enables/disables the SAI Rx. * * @param base SAI base pointer * @param enable True means enable SAI Rx, false means disable. */ void SAI_RxEnable(I2S_Type *base, bool enable); /*! @} */ /*! * @name Status * @{ */ /*! * @brief Gets the SAI Tx status flag state. * * @param base SAI base pointer * @return SAI Tx status flag value. Use the Status Mask to get the status value needed. */ static inline uint32_t SAI_TxGetStatusFlag(I2S_Type *base) { return base->TCSR; } /*! * @brief Clears the SAI Tx status flag state. * * @param base SAI base pointer * @param mask State mask. It can be a combination of the following source if defined: * @arg kSAI_WordStartFlag * @arg kSAI_SyncErrorFlag * @arg kSAI_FIFOErrorFlag */ static inline void SAI_TxClearStatusFlags(I2S_Type *base, uint32_t mask) { base->TCSR = ((base->TCSR & 0xFFE3FFFFU) | mask); } /*! * @brief Gets the SAI Tx status flag state. * * @param base SAI base pointer * @return SAI Rx status flag value. Use the Status Mask to get the status value needed. */ static inline uint32_t SAI_RxGetStatusFlag(I2S_Type *base) { return base->RCSR; } /*! * @brief Clears the SAI Rx status flag state. * * @param base SAI base pointer * @param mask State mask. It can be a combination of the following sources if defined. * @arg kSAI_WordStartFlag * @arg kSAI_SyncErrorFlag * @arg kSAI_FIFOErrorFlag */ static inline void SAI_RxClearStatusFlags(I2S_Type *base, uint32_t mask) { base->RCSR = ((base->RCSR & 0xFFE3FFFFU) | mask); } /*! * @brief Do software reset or FIFO reset . * * FIFO reset means clear all the data in the FIFO, and make the FIFO pointer both to 0. * Software reset means claer the Tx internal logic, including the bit clock, frame count etc. But software * reset will not clear any configuration registers like TCR1~TCR5. * This function will also clear all the error flags such as FIFO error, sync error etc. * * @param base SAI base pointer * @param type Reset type, FIFO reset or software reset */ void SAI_TxSoftwareReset(I2S_Type *base, sai_reset_type_t type); /*! * @brief Do software reset or FIFO reset . * * FIFO reset means clear all the data in the FIFO, and make the FIFO pointer both to 0. * Software reset means claer the Rx internal logic, including the bit clock, frame count etc. But software * reset will not clear any configuration registers like RCR1~RCR5. * This function will also clear all the error flags such as FIFO error, sync error etc. * * @param base SAI base pointer * @param type Reset type, FIFO reset or software reset */ void SAI_RxSoftwareReset(I2S_Type *base, sai_reset_type_t type); /*! * @brief Set the Tx channel FIFO enable mask. * * @param base SAI base pointer * @param mask Channel enable mask, 0 means all channel FIFO disabled, 1 means channel 0 enabled, * 3 means both channel 0 and channel 1 enabled. */ void SAI_TxSetChannelFIFOMask(I2S_Type *base, uint8_t mask); /*! * @brief Set the Rx channel FIFO enable mask. * * @param base SAI base pointer * @param mask Channel enable mask, 0 means all channel FIFO disabled, 1 means channel 0 enabled, * 3 means both channel 0 and channel 1 enabled. */ void SAI_RxSetChannelFIFOMask(I2S_Type *base, uint8_t mask); /*! * @brief Set the Tx data order. * * @param base SAI base pointer * @param order Data order MSB or LSB */ void SAI_TxSetDataOrder(I2S_Type *base, sai_data_order_t order); /*! * @brief Set the Rx data order. * * @param base SAI base pointer * @param order Data order MSB or LSB */ void SAI_RxSetDataOrder(I2S_Type *base, sai_data_order_t order); /*! * @brief Set the Tx data order. * * @param base SAI base pointer * @param order Data order MSB or LSB */ void SAI_TxSetBitClockPolarity(I2S_Type *base, sai_clock_polarity_t polarity); /*! * @brief Set the Rx data order. * * @param base SAI base pointer * @param order Data order MSB or LSB */ void SAI_RxSetBitClockPolarity(I2S_Type *base, sai_clock_polarity_t polarity); /*! * @brief Set the Tx data order. * * @param base SAI base pointer * @param order Data order MSB or LSB */ void SAI_TxSetFrameSyncPolarity(I2S_Type *base, sai_clock_polarity_t polarity); /*! * @brief Set the Rx data order. * * @param base SAI base pointer * @param order Data order MSB or LSB */ void SAI_RxSetFrameSyncPolarity(I2S_Type *base, sai_clock_polarity_t polarity); #if defined(FSL_FEATURE_SAI_HAS_FIFO_PACKING) && FSL_FEATURE_SAI_HAS_FIFO_PACKING /*! * @brief Set Tx FIFO packing feature. * * @param base SAI base pointer. * @param pack FIFO pack type. It is element of sai_fifo_packing_t. */ void SAI_TxSetFIFOPacking(I2S_Type *base, sai_fifo_packing_t pack); /*! * @brief Set Rx FIFO packing feature. * * @param base SAI base pointer. * @param pack FIFO pack type. It is element of sai_fifo_packing_t. */ void SAI_RxSetFIFOPacking(I2S_Type *base, sai_fifo_packing_t pack); #endif /* FSL_FEATURE_SAI_HAS_FIFO_PACKING */ #if defined(FSL_FEATURE_SAI_HAS_FIFO_FUNCTION_AFTER_ERROR) && FSL_FEATURE_SAI_HAS_FIFO_FUNCTION_AFTER_ERROR /*! * @brief Set Tx FIFO error continue. * * FIFO error continue mode means SAI will keep running while FIFO error occured. If this feature * not enabled, SAI will hang and users need to clear FEF flag in TCSR register. * * @param base SAI base pointer. * @param isEnabled Is FIFO error continue enabled, true means enable, false means disable. */ static inline void SAI_TxSetFIFOErrorContinue(I2S_Type *base, bool isEnabled) { if (isEnabled) { base->TCR4 |= I2S_TCR4_FCONT_MASK; } else { base->TCR4 &= ~I2S_TCR4_FCONT_MASK; } } /*! * @brief Set Rx FIFO error continue. * * FIFO error continue mode means SAI will keep running while FIFO error occured. If this feature * not enabled, SAI will hang and users need to clear FEF flag in RCSR register. * * @param base SAI base pointer. * @param isEnabled Is FIFO error continue enabled, true means enable, false means disable. */ static inline void SAI_RxSetFIFOErrorContinue(I2S_Type *base, bool isEnabled) { if (isEnabled) { base->RCR4 |= I2S_RCR4_FCONT_MASK; } else { base->RCR4 &= ~I2S_RCR4_FCONT_MASK; } } #endif /*! @} */ /*! * @name Interrupts * @{ */ /*! * @brief Enables the SAI Tx interrupt requests. * * @param base SAI base pointer * @param mask interrupt source * The parameter can be a combination of the following sources if defined. * @arg kSAI_WordStartInterruptEnable * @arg kSAI_SyncErrorInterruptEnable * @arg kSAI_FIFOWarningInterruptEnable * @arg kSAI_FIFORequestInterruptEnable * @arg kSAI_FIFOErrorInterruptEnable */ static inline void SAI_TxEnableInterrupts(I2S_Type *base, uint32_t mask) { base->TCSR = ((base->TCSR & 0xFFE3FFFFU) | mask); } /*! * @brief Enables the SAI Rx interrupt requests. * * @param base SAI base pointer * @param mask interrupt source * The parameter can be a combination of the following sources if defined. * @arg kSAI_WordStartInterruptEnable * @arg kSAI_SyncErrorInterruptEnable * @arg kSAI_FIFOWarningInterruptEnable * @arg kSAI_FIFORequestInterruptEnable * @arg kSAI_FIFOErrorInterruptEnable */ static inline void SAI_RxEnableInterrupts(I2S_Type *base, uint32_t mask) { base->RCSR = ((base->RCSR & 0xFFE3FFFFU) | mask); } /*! * @brief Disables the SAI Tx interrupt requests. * * @param base SAI base pointer * @param mask interrupt source * The parameter can be a combination of the following sources if defined. * @arg kSAI_WordStartInterruptEnable * @arg kSAI_SyncErrorInterruptEnable * @arg kSAI_FIFOWarningInterruptEnable * @arg kSAI_FIFORequestInterruptEnable * @arg kSAI_FIFOErrorInterruptEnable */ static inline void SAI_TxDisableInterrupts(I2S_Type *base, uint32_t mask) { base->TCSR = ((base->TCSR & 0xFFE3FFFFU) & (~mask)); } /*! * @brief Disables the SAI Rx interrupt requests. * * @param base SAI base pointer * @param mask interrupt source * The parameter can be a combination of the following sources if defined. * @arg kSAI_WordStartInterruptEnable * @arg kSAI_SyncErrorInterruptEnable * @arg kSAI_FIFOWarningInterruptEnable * @arg kSAI_FIFORequestInterruptEnable * @arg kSAI_FIFOErrorInterruptEnable */ static inline void SAI_RxDisableInterrupts(I2S_Type *base, uint32_t mask) { base->RCSR = ((base->RCSR & 0xFFE3FFFFU) & (~mask)); } /*! @} */ /*! * @name DMA Control * @{ */ /*! * @brief Enables/disables the SAI Tx DMA requests. * @param base SAI base pointer * @param mask DMA source * The parameter can be combination of the following sources if defined. * @arg kSAI_FIFOWarningDMAEnable * @arg kSAI_FIFORequestDMAEnable * @param enable True means enable DMA, false means disable DMA. */ static inline void SAI_TxEnableDMA(I2S_Type *base, uint32_t mask, bool enable) { if (enable) { base->TCSR = ((base->TCSR & 0xFFE3FFFFU) | mask); } else { base->TCSR = ((base->TCSR & 0xFFE3FFFFU) & (~mask)); } } /*! * @brief Enables/disables the SAI Rx DMA requests. * @param base SAI base pointer * @param mask DMA source * The parameter can be a combination of the following sources if defined. * @arg kSAI_FIFOWarningDMAEnable * @arg kSAI_FIFORequestDMAEnable * @param enable True means enable DMA, false means disable DMA. */ static inline void SAI_RxEnableDMA(I2S_Type *base, uint32_t mask, bool enable) { if (enable) { base->RCSR = ((base->RCSR & 0xFFE3FFFFU) | mask); } else { base->RCSR = ((base->RCSR & 0xFFE3FFFFU) & (~mask)); } } /*! * @brief Gets the SAI Tx data register address. * * This API is used to provide a transfer address for the SAI DMA transfer configuration. * * @param base SAI base pointer. * @param channel Which data channel used. * @return data register address. */ static inline uint32_t SAI_TxGetDataRegisterAddress(I2S_Type *base, uint32_t channel) { return (uint32_t)(&(base->TDR)[channel]); } /*! * @brief Gets the SAI Rx data register address. * * This API is used to provide a transfer address for the SAI DMA transfer configuration. * * @param base SAI base pointer. * @param channel Which data channel used. * @return data register address. */ static inline uint32_t SAI_RxGetDataRegisterAddress(I2S_Type *base, uint32_t channel) { return (uint32_t)(&(base->RDR)[channel]); } /*! @} */ /*! * @name Bus Operations * @{ */ /*! * @brief Configures the SAI Tx audio format. * * The audio format can be changed at run-time. This function configures the sample rate and audio data * format to be transferred. * * @param base SAI base pointer. * @param format Pointer to the SAI audio data format structure. * @param mclkSourceClockHz SAI master clock source frequency in Hz. * @param bclkSourceClockHz SAI bit clock source frequency in Hz. If the bit clock source is a master * clock, this value should equal the masterClockHz. */ void SAI_TxSetFormat(I2S_Type *base, sai_transfer_format_t *format, uint32_t mclkSourceClockHz, uint32_t bclkSourceClockHz); /*! * @brief Configures the SAI Rx audio format. * * The audio format can be changed at run-time. This function configures the sample rate and audio data * format to be transferred. * * @param base SAI base pointer. * @param format Pointer to the SAI audio data format structure. * @param mclkSourceClockHz SAI master clock source frequency in Hz. * @param bclkSourceClockHz SAI bit clock source frequency in Hz. If the bit clock source is a master * clock, this value should equal the masterClockHz. */ void SAI_RxSetFormat(I2S_Type *base, sai_transfer_format_t *format, uint32_t mclkSourceClockHz, uint32_t bclkSourceClockHz); /*! * @brief Sends data using a blocking method. * * @note This function blocks by polling until data is ready to be sent. * * @param base SAI base pointer. * @param channel Data channel used. * @param bitWidth How many bits in an audio word; usually 8/16/24/32 bits. * @param buffer Pointer to the data to be written. * @param size Bytes to be written. */ void SAI_WriteBlocking(I2S_Type *base, uint32_t channel, uint32_t bitWidth, uint8_t *buffer, uint32_t size); /*! * @brief Sends data to multi channel using a blocking method. * * @note This function blocks by polling until data is ready to be sent. * * @param base SAI base pointer. * @param channel Data channel used. * @param channelMask channel mask. * @param bitWidth How many bits in an audio word; usually 8/16/24/32 bits. * @param buffer Pointer to the data to be written. * @param size Bytes to be written. */ void SAI_WriteMultiChannelBlocking( I2S_Type *base, uint32_t channel, uint32_t channelMask, uint32_t bitWidth, uint8_t *buffer, uint32_t size); /*! * @brief Writes data into SAI FIFO. * * @param base SAI base pointer. * @param channel Data channel used. * @param data Data needs to be written. */ static inline void SAI_WriteData(I2S_Type *base, uint32_t channel, uint32_t data) { base->TDR[channel] = data; } /*! * @brief Receives data using a blocking method. * * @note This function blocks by polling until data is ready to be sent. * * @param base SAI base pointer. * @param channel Data channel used. * @param bitWidth How many bits in an audio word; usually 8/16/24/32 bits. * @param buffer Pointer to the data to be read. * @param size Bytes to be read. */ void SAI_ReadBlocking(I2S_Type *base, uint32_t channel, uint32_t bitWidth, uint8_t *buffer, uint32_t size); /*! * @brief Receives multi channel data using a blocking method. * * @note This function blocks by polling until data is ready to be sent. * * @param base SAI base pointer. * @param channel Data channel used. * @param channelMask channel mask. * @param bitWidth How many bits in an audio word; usually 8/16/24/32 bits. * @param buffer Pointer to the data to be read. * @param size Bytes to be read. */ void SAI_ReadMultiChannelBlocking( I2S_Type *base, uint32_t channel, uint32_t channelMask, uint32_t bitWidth, uint8_t *buffer, uint32_t size); /*! * @brief Reads data from the SAI FIFO. * * @param base SAI base pointer. * @param channel Data channel used. * @return Data in SAI FIFO. */ static inline uint32_t SAI_ReadData(I2S_Type *base, uint32_t channel) { return base->RDR[channel]; } /*! @} */ /*! * @name Transactional * @{ */ /*! * @brief Initializes the SAI Tx handle. * * This function initializes the Tx handle for the SAI Tx transactional APIs. Call * this function once to get the handle initialized. * * @param base SAI base pointer * @param handle SAI handle pointer. * @param callback Pointer to the user callback function. * @param userData User parameter passed to the callback function */ void SAI_TransferTxCreateHandle(I2S_Type *base, sai_handle_t *handle, sai_transfer_callback_t callback, void *userData); /*! * @brief Initializes the SAI Rx handle. * * This function initializes the Rx handle for the SAI Rx transactional APIs. Call * this function once to get the handle initialized. * * @param base SAI base pointer. * @param handle SAI handle pointer. * @param callback Pointer to the user callback function. * @param userData User parameter passed to the callback function. */ void SAI_TransferRxCreateHandle(I2S_Type *base, sai_handle_t *handle, sai_transfer_callback_t callback, void *userData); /*! * @brief Configures the SAI Tx audio format. * * The audio format can be changed at run-time. This function configures the sample rate and audio data * format to be transferred. * * @param base SAI base pointer. * @param handle SAI handle pointer. * @param format Pointer to the SAI audio data format structure. * @param mclkSourceClockHz SAI master clock source frequency in Hz. * @param bclkSourceClockHz SAI bit clock source frequency in Hz. If a bit clock source is a master * clock, this value should equal the masterClockHz in format. * @return Status of this function. Return value is the status_t. */ status_t SAI_TransferTxSetFormat(I2S_Type *base, sai_handle_t *handle, sai_transfer_format_t *format, uint32_t mclkSourceClockHz, uint32_t bclkSourceClockHz); /*! * @brief Configures the SAI Rx audio format. * * The audio format can be changed at run-time. This function configures the sample rate and audio data * format to be transferred. * * @param base SAI base pointer. * @param handle SAI handle pointer. * @param format Pointer to the SAI audio data format structure. * @param mclkSourceClockHz SAI master clock source frequency in Hz. * @param bclkSourceClockHz SAI bit clock source frequency in Hz. If a bit clock source is a master * clock, this value should equal the masterClockHz in format. * @return Status of this function. Return value is one of status_t. */ status_t SAI_TransferRxSetFormat(I2S_Type *base, sai_handle_t *handle, sai_transfer_format_t *format, uint32_t mclkSourceClockHz, uint32_t bclkSourceClockHz); /*! * @brief Performs an interrupt non-blocking send transfer on SAI. * * @note This API returns immediately after the transfer initiates. * Call the SAI_TxGetTransferStatusIRQ to poll the transfer status and check whether * the transfer is finished. If the return status is not kStatus_SAI_Busy, the transfer * is finished. * * @param base SAI base pointer. * @param handle Pointer to the sai_handle_t structure which stores the transfer state. * @param xfer Pointer to the sai_transfer_t structure. * @retval kStatus_Success Successfully started the data receive. * @retval kStatus_SAI_TxBusy Previous receive still not finished. * @retval kStatus_InvalidArgument The input parameter is invalid. */ status_t SAI_TransferSendNonBlocking(I2S_Type *base, sai_handle_t *handle, sai_transfer_t *xfer); /*! * @brief Performs an interrupt non-blocking receive transfer on SAI. * * @note This API returns immediately after the transfer initiates. * Call the SAI_RxGetTransferStatusIRQ to poll the transfer status and check whether * the transfer is finished. If the return status is not kStatus_SAI_Busy, the transfer * is finished. * * @param base SAI base pointer * @param handle Pointer to the sai_handle_t structure which stores the transfer state. * @param xfer Pointer to the sai_transfer_t structure. * @retval kStatus_Success Successfully started the data receive. * @retval kStatus_SAI_RxBusy Previous receive still not finished. * @retval kStatus_InvalidArgument The input parameter is invalid. */ status_t SAI_TransferReceiveNonBlocking(I2S_Type *base, sai_handle_t *handle, sai_transfer_t *xfer); /*! * @brief Gets a set byte count. * * @param base SAI base pointer. * @param handle Pointer to the sai_handle_t structure which stores the transfer state. * @param count Bytes count sent. * @retval kStatus_Success Succeed get the transfer count. * @retval kStatus_NoTransferInProgress There is not a non-blocking transaction currently in progress. */ status_t SAI_TransferGetSendCount(I2S_Type *base, sai_handle_t *handle, size_t *count); /*! * @brief Gets a received byte count. * * @param base SAI base pointer. * @param handle Pointer to the sai_handle_t structure which stores the transfer state. * @param count Bytes count received. * @retval kStatus_Success Succeed get the transfer count. * @retval kStatus_NoTransferInProgress There is not a non-blocking transaction currently in progress. */ status_t SAI_TransferGetReceiveCount(I2S_Type *base, sai_handle_t *handle, size_t *count); /*! * @brief Aborts the current send. * * @note This API can be called any time when an interrupt non-blocking transfer initiates * to abort the transfer early. * * @param base SAI base pointer. * @param handle Pointer to the sai_handle_t structure which stores the transfer state. */ void SAI_TransferAbortSend(I2S_Type *base, sai_handle_t *handle); /*! * @brief Aborts the current IRQ receive. * * @note This API can be called when an interrupt non-blocking transfer initiates * to abort the transfer early. * * @param base SAI base pointer * @param handle Pointer to the sai_handle_t structure which stores the transfer state. */ void SAI_TransferAbortReceive(I2S_Type *base, sai_handle_t *handle); /*! * @brief Terminate all SAI send. * * This function will clear all transfer slots buffered in the sai queue. If users only want to abort the * current transfer slot, please call SAI_TransferAbortSend. * * @param base SAI base pointer. * @param handle SAI eDMA handle pointer. */ void SAI_TransferTerminateSend(I2S_Type *base, sai_handle_t *handle); /*! * @brief Terminate all SAI receive. * * This function will clear all transfer slots buffered in the sai queue. If users only want to abort the * current transfer slot, please call SAI_TransferAbortReceive. * * @param base SAI base pointer. * @param handle SAI eDMA handle pointer. */ void SAI_TransferTerminateReceive(I2S_Type *base, sai_handle_t *handle); /*! * @brief Tx interrupt handler. * * @param base SAI base pointer. * @param handle Pointer to the sai_handle_t structure. */ void SAI_TransferTxHandleIRQ(I2S_Type *base, sai_handle_t *handle); /*! * @brief Tx interrupt handler. * * @param base SAI base pointer. * @param handle Pointer to the sai_handle_t structure. */ void SAI_TransferRxHandleIRQ(I2S_Type *base, sai_handle_t *handle); /*! @} */ #if defined(__cplusplus) } #endif /*_cplusplus*/ /*! @} */ #endif /* _FSL_SAI_H_ */