/* * File : board.c * This file is part of RT-Thread RTOS * COPYRIGHT (C) 2006 - 2009 RT-Thread Develop Team * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * http://www.rt-thread.org/license/LICENSE * * Change Logs: * Date Author Notes * 2011-01-13 weety first version */ #include #include #include "board.h" /** * @addtogroup at91sam9260 */ /*@{*/ extern void rt_hw_clock_init(void); extern void rt_hw_mmu_init(void); extern void rt_hw_get_clock(void); extern void rt_hw_set_dividor(rt_uint8_t hdivn, rt_uint8_t pdivn); extern void rt_hw_set_clock(rt_uint8_t sdiv, rt_uint8_t pdiv, rt_uint8_t mdiv); /*set debug serial port*/ //#define USE_UART1 //#define USE_UART3 //#define USE_DBGU #define DBGU ((struct uartport *)0xfffff200) #define UART0 ((struct uartport *)AT91SAM9260_BASE_US0) #define UART1 ((struct uartport *)AT91SAM9260_BASE_US1) #define UART2 ((struct uartport *)AT91SAM9260_BASE_US2) #define UART3 ((struct uartport *)AT91SAM9260_BASE_US3) #define UART4 ((struct uartport *)AT91SAM9260_BASE_US4) #define UART5 ((struct uartport *)AT91SAM9260_BASE_US5) struct serial_int_rx uart0_int_rx; struct serial_device uart0 = { DBGU, &uart0_int_rx, RT_NULL }; struct rt_device uart0_device; struct serial_int_rx uart1_int_rx; struct serial_device uart1 = { UART0, &uart1_int_rx, RT_NULL }; struct rt_device uart1_device; struct serial_int_rx uart2_int_rx; struct serial_device uart2 = { UART1, &uart2_int_rx, RT_NULL }; struct rt_device uart2_device; struct serial_int_rx uart3_int_rx; struct serial_device uart3 = { UART2, &uart3_int_rx, RT_NULL }; struct rt_device uart3_device; struct serial_int_rx uart4_int_rx; struct serial_device uart4 = { UART3, &uart4_int_rx, RT_NULL }; struct rt_device uart4_device; /** * This function will handle serial */ void rt_serial_handler(int vector) { int status; switch (vector) { #ifdef RT_USING_UART0 case AT91SAM9260_ID_US0: status = readl(AT91SAM9260_BASE_US0+AT91_US_CSR); if (!(status & readl(AT91SAM9260_BASE_US0+AT91_US_IMR))) { return; } rt_hw_serial_isr(&uart1_device); break; #endif #ifdef RT_USING_UART1 case AT91SAM9260_ID_US1: status = readl(AT91SAM9260_BASE_US1+AT91_US_CSR); if (!(status & readl(AT91SAM9260_BASE_US1+AT91_US_IMR))) { return; } rt_hw_serial_isr(&uart2_device); break; #endif #ifdef RT_USING_UART2 case AT91SAM9260_ID_US2: status = readl(AT91SAM9260_BASE_US2+AT91_US_CSR); if (!(status & readl(AT91SAM9260_BASE_US2+AT91_US_IMR))) { return; } rt_hw_serial_isr(&uart3_device); break; #endif #ifdef RT_USING_UART3 case AT91SAM9260_ID_US3: status = readl(AT91SAM9260_BASE_US3+AT91_US_CSR); if (!(status & readl(AT91SAM9260_BASE_US3+AT91_US_IMR))) { return; } rt_hw_serial_isr(&uart4_device); break; #endif default: break; } } void uart_port_init(rt_uint32_t base) { #define BAUDRATE 115200 rt_uint32_t cd; writel(AT91_US_RSTTX | AT91_US_RSTRX | AT91_US_RXDIS | AT91_US_TXDIS, base + AT91_US_CR); writel( AT91_US_USMODE_NORMAL | AT91_US_USCLKS_MCK | AT91_US_CHRL_8 | AT91_US_PAR_NONE | AT91_US_NBSTOP_1 | AT91_US_CHMODE_NORMAL, base + AT91_US_MR); cd = (clk_get_rate(clk_get("mck")) / 16 + BAUDRATE/2) / BAUDRATE; writel(cd, base + AT91_US_BRGR); writel(AT91_US_RXEN | AT91_US_TXEN, base + AT91_US_CR); writel(0x1, base + AT91_US_IER); } /** * This function will handle init uart */ void rt_hw_uart_init(void) { #ifdef RT_USING_UART0 at91_sys_write(AT91_PMC_PCER, 1 << AT91SAM9260_ID_US0); at91_sys_write(AT91_PIOB + PIO_IDR, (1<<4)|(1<<5)); at91_sys_write(AT91_PIOB + PIO_PUER, (1<<4)); at91_sys_write(AT91_PIOB + PIO_PUDR, (1<<5)); at91_sys_write(AT91_PIOB + PIO_ASR, (1<<4)|(1<<5)); at91_sys_write(AT91_PIOB + PIO_PDR, (1<<4)|(1<<5)); uart_port_init(AT91SAM9260_BASE_US0); /* install interrupt handler */ rt_hw_interrupt_install(AT91SAM9260_ID_US0, rt_serial_handler, RT_NULL); rt_hw_interrupt_umask(AT91SAM9260_ID_US0); #endif #ifdef RT_USING_UART1 at91_sys_write(AT91_PMC_PCER, 1 << AT91SAM9260_ID_US1); at91_sys_write(AT91_PIOB + PIO_IDR, (1<<6)|(1<<7)); at91_sys_write(AT91_PIOB + PIO_PUER, (1<<6)); at91_sys_write(AT91_PIOB + PIO_PUDR, (1<<7)); at91_sys_write(AT91_PIOB + PIO_ASR, (1<<6)|(1<<7)); at91_sys_write(AT91_PIOB + PIO_PDR, (1<<6)|(1<<7)); uart_port_init(AT91SAM9260_BASE_US1); /* install interrupt handler */ rt_hw_interrupt_install(AT91SAM9260_ID_US1, rt_serial_handler, RT_NULL); rt_hw_interrupt_umask(AT91SAM9260_ID_US1); #endif #ifdef RT_USING_UART2 at91_sys_write(AT91_PMC_PCER, 1 << AT91SAM9260_ID_US2); at91_sys_write(AT91_PIOB + PIO_IDR, (1<<8)|(1<<9)); at91_sys_write(AT91_PIOB + PIO_PUER, (1<<8)); at91_sys_write(AT91_PIOB + PIO_PUDR, (1<<9)); at91_sys_write(AT91_PIOB + PIO_ASR, (1<<8)|(1<<9)); at91_sys_write(AT91_PIOB + PIO_PDR, (1<<8)|(1<<9)); uart_port_init(AT91SAM9260_BASE_US2); /* install interrupt handler */ rt_hw_interrupt_install(AT91SAM9260_ID_US2, rt_serial_handler, RT_NULL); rt_hw_interrupt_umask(AT91SAM9260_ID_US2); #endif #ifdef RT_USING_UART3 at91_sys_write(AT91_PMC_PCER, 1<> 20) static rt_uint32_t pit_cycle; /* write-once */ static rt_uint32_t pit_cnt; /* access only w/system irq blocked */ /** * This function will handle rtos timer */ void rt_timer_handler(int vector) { #ifdef RT_USING_DBGU if (at91_sys_read(AT91_DBGU + AT91_US_CSR) & 0x1) { //rt_kprintf("DBGU interrupt occur\n"); rt_hw_serial_isr(&uart0_device); } #endif if (at91_sys_read(AT91_PIT_SR) & AT91_PIT_PITS) { unsigned nr_ticks; /* Get number of ticks performed before irq, and ack it */ nr_ticks = PIT_PICNT(at91_sys_read(AT91_PIT_PIVR)); rt_tick_increase(); } } static void at91sam926x_pit_reset(void) { /* Disable timer and irqs */ at91_sys_write(AT91_PIT_MR, 0); /* Clear any pending interrupts, wait for PIT to stop counting */ while (PIT_CPIV(at91_sys_read(AT91_PIT_PIVR)) != 0) ; /* Start PIT but don't enable IRQ */ //at91_sys_write(AT91_PIT_MR, (pit_cycle - 1) | AT91_PIT_PITEN); pit_cnt += pit_cycle * PIT_PICNT(at91_sys_read(AT91_PIT_PIVR)); at91_sys_write(AT91_PIT_MR, (pit_cycle - 1) | AT91_PIT_PITEN | AT91_PIT_PITIEN); rt_kprintf("PIT_MR=0x%08x\n", at91_sys_read(AT91_PIT_MR)); } /* * Set up both clocksource and clockevent support. */ static void at91sam926x_pit_init(void) { rt_uint32_t pit_rate; rt_uint32_t bits; /* * Use our actual MCK to figure out how many MCK/16 ticks per * 1/HZ period (instead of a compile-time constant LATCH). */ pit_rate = clk_get_rate(clk_get("mck")) / 16; rt_kprintf("pit_rate=%dHZ\n", pit_rate); pit_cycle = (pit_rate + RT_TICK_PER_SECOND/2) / RT_TICK_PER_SECOND; /* Initialize and enable the timer */ at91sam926x_pit_reset(); } /** * This function will init pit for system ticks */ void rt_hw_timer_init() { at91sam926x_pit_init(); /* install interrupt handler */ rt_hw_interrupt_install(AT91_ID_SYS, rt_timer_handler, RT_NULL); rt_hw_interrupt_umask(AT91_ID_SYS); } void at91_tc1_init() { at91_sys_write(AT91_PMC_PCER, 1<