/* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2022-11-26 zhaohaisheng copy from sch and do some change */ #include <rtthread.h> #include <rtdevice.h> #include "board.h" #ifdef BSP_USING_SPI #include "drv_spi.h" #include <string.h> #define DRV_DEBUG #define LOG_TAG "drv.spi" #include <drv_log.h> enum { #ifdef BSP_USING_SPI1 SPI1_INDEX, #endif #ifdef BSP_USING_SPI2 SPI2_INDEX, #endif #ifdef BSP_USING_SPI3 SPI3_INDEX, #endif }; static struct ch32_spi_config spi_config[] = { #ifdef BSP_USING_SPI1 { \ .Instance = SPI1, \ .bus_name = "spi1", \ .irq_type = SPI1_IRQn, \ }, #endif #ifdef BSP_USING_SPI2 { \ .Instance = SPI2, \ .bus_name = "spi2", \ .irq_type = SPI2_IRQn, \ }, #endif #ifdef BSP_USING_SPI3 { \ .Instance = SPI3, \ .bus_name = "spi3", \ .irq_type = SPI3_IRQn, \ } #endif }; static struct ch32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0}; static rt_uint32_t ch32_spi_clock_get(SPI_TypeDef *spix); static void ch32_spi_clock_and_io_init(SPI_TypeDef *spix); static rt_uint8_t spix_readwritebyte(SPI_TypeDef *Instance, rt_uint8_t TxData); static rt_err_t spi_transmitreceive(SPI_TypeDef *Instance, rt_uint8_t *send_buf, rt_uint8_t *recv_buf, rt_uint16_t send_length); static rt_err_t spi_transmit(SPI_TypeDef *Instance, rt_uint8_t *send_buf, rt_uint16_t send_length); static rt_err_t spi_receive(SPI_TypeDef *Instance, rt_uint8_t *recv_buf,rt_uint16_t send_length); static void ch32_spi_clock_and_io_init(SPI_TypeDef *spix) { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; if (spix == SPI1) { RCC_APB2PeriphClockCmd( RCC_APB2Periph_SPI1|RCC_APB2Periph_GPIOA, ENABLE ); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init( GPIOA, &GPIO_InitStructure ); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init( GPIOA, &GPIO_InitStructure ); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init( GPIOA, &GPIO_InitStructure ); } if (spix == SPI2) { RCC_APB1PeriphClockCmd( RCC_APB1Periph_SPI2, ENABLE ); RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB, ENABLE ); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init( GPIOB, &GPIO_InitStructure ); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_14; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init( GPIOB, &GPIO_InitStructure ); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_15; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init( GPIOB, &GPIO_InitStructure ); } if (spix == SPI3) { RCC_APB1PeriphClockCmd( RCC_APB1Periph_SPI3, ENABLE ); RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB, ENABLE ); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init( GPIOB, &GPIO_InitStructure ); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init( GPIOB, &GPIO_InitStructure ); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init( GPIOB, &GPIO_InitStructure ); } } static rt_uint32_t ch32_spi_clock_get(SPI_TypeDef *spix) { RCC_ClocksTypeDef RCC_Clocks; RCC_GetClocksFreq(&RCC_Clocks); if (spix == SPI1) { return RCC_Clocks.PCLK2_Frequency; } if (spix == SPI2) { return RCC_Clocks.PCLK1_Frequency; } if (spix == SPI3) { return RCC_Clocks.PCLK1_Frequency; } return RCC_Clocks.PCLK2_Frequency; } /* *spix read write byte * */ static rt_uint8_t spix_readwritebyte(SPI_TypeDef *Instance, rt_uint8_t TxData) { rt_uint8_t i=0; while (SPI_I2S_GetFlagStatus(Instance, SPI_I2S_FLAG_TXE) == RESET) { i++; if (i > 200) return 0; } SPI_I2S_SendData(Instance, TxData); i=0; while (SPI_I2S_GetFlagStatus(Instance, SPI_I2S_FLAG_RXNE) == RESET) { i++; if(i > 200) return 0; } return SPI_I2S_ReceiveData(Instance); } /* *spi transmit and receive * */ static rt_err_t spi_transmitreceive(SPI_TypeDef *Instance, rt_uint8_t *send_buf, rt_uint8_t *recv_buf, rt_uint16_t send_length) { rt_uint16_t i=0; for(i = 0; i < send_length; i++) { recv_buf[i] = spix_readwritebyte(Instance, send_buf[i]); } return RT_EOK; } /* *spi transmit * */ static rt_err_t spi_transmit(SPI_TypeDef *Instance, rt_uint8_t *send_buf, rt_uint16_t send_length) { rt_uint16_t i=0; for(i = 0; i < send_length; i++) { spix_readwritebyte(Instance, send_buf[i]); } return RT_EOK; } /* *spi receive * */ static rt_err_t spi_receive(SPI_TypeDef *Instance, rt_uint8_t *recv_buf,rt_uint16_t send_length) { rt_uint16_t i=0; for(i = 0; i < send_length; i++) { recv_buf[i] = spix_readwritebyte(Instance, 0xFF); /*发送数据为0xff 此时显示为不发送*/ } return RT_EOK; } static rt_err_t ch32_spi_init(struct ch32_spi *spi_drv, struct rt_spi_configuration *cfg) { RT_ASSERT(spi_drv != RT_NULL); RT_ASSERT(cfg != RT_NULL); SPI_HandleTypeDef *spi_handle = &spi_drv->handle; if (cfg->mode & RT_SPI_SLAVE) { spi_handle->Init.SPI_Mode = SPI_Mode_Slave; } else { spi_handle->Init.SPI_Mode = SPI_Mode_Master; } if (cfg->mode & RT_SPI_3WIRE) { spi_handle->Init.SPI_Direction = SPI_Direction_1Line_Rx; } else { spi_handle->Init.SPI_Direction = SPI_Direction_2Lines_FullDuplex; } if (cfg->data_width <= 8) { spi_handle->Init.SPI_DataSize = SPI_DataSize_8b; spi_handle->TxXferSize = 8; spi_handle->RxXferSize = 8; } else if (cfg->data_width <= 16) { spi_handle->Init.SPI_DataSize = SPI_DataSize_16b; } else { return -RT_EIO; } if (cfg->mode & RT_SPI_CPHA) { spi_handle->Init.SPI_CPHA = SPI_CPHA_2Edge; } else { spi_handle->Init.SPI_CPHA = SPI_CPHA_1Edge; } if (cfg->mode & RT_SPI_CPOL) { spi_handle->Init.SPI_CPOL = SPI_CPOL_High; } else { spi_handle->Init.SPI_CPOL = SPI_CPOL_Low; } spi_handle->Init.SPI_NSS = SPI_NSS_Soft; //device is not RT_NULL, so spi_bus not need check rt_uint32_t SPI_APB_CLOCK; ch32_spi_clock_and_io_init(spi_handle->Instance); SPI_APB_CLOCK = ch32_spi_clock_get(spi_handle->Instance); if (cfg->max_hz >= SPI_APB_CLOCK / 2) { spi_handle->Init.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_2; } else if (cfg->max_hz >= SPI_APB_CLOCK / 4) { spi_handle->Init.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4; } else if (cfg->max_hz >= SPI_APB_CLOCK / 8) { spi_handle->Init.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_8; } else if (cfg->max_hz >= SPI_APB_CLOCK / 16) { spi_handle->Init.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_16; } else if (cfg->max_hz >= SPI_APB_CLOCK / 32) { spi_handle->Init.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_32; } else if (cfg->max_hz >= SPI_APB_CLOCK / 64) { spi_handle->Init.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_64; } else if (cfg->max_hz >= SPI_APB_CLOCK / 128) { spi_handle->Init.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_128; } else { /* min prescaler 256 */ spi_handle->Init.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_256; } LOG_D("sys freq: %d, pclk2 freq: %d, SPI limiting freq: %d, BaudRatePrescaler: %d", HAL_RCC_GetSysClockFreq(), SPI_APB_CLOCK, cfg->max_hz, spi_handle->Init.SPI_BaudRatePrescaler); if (cfg->mode & RT_SPI_MSB) { spi_handle->Init.SPI_FirstBit = SPI_FirstBit_MSB; } else { spi_handle->Init.SPI_FirstBit = SPI_FirstBit_LSB; } SPI_Init(spi_handle->Instance, &spi_handle->Init); /* Enable SPI_MASTER */ SPI_Cmd(spi_handle->Instance, ENABLE); LOG_D("%s init done", spi_drv->config->bus_name); return RT_EOK; } static rt_err_t spi_configure(struct rt_spi_device *device, struct rt_spi_configuration *configuration) { RT_ASSERT(device != RT_NULL); RT_ASSERT(configuration != RT_NULL); struct ch32_spi *spi_drv = rt_container_of(device->bus, struct ch32_spi, spi_bus); spi_drv->cfg = configuration; return ch32_spi_init(spi_drv, configuration); } static rt_ssize_t spi_xfer(struct rt_spi_device *device, struct rt_spi_message *message) { rt_err_t state = RT_EOK; rt_size_t message_length, already_send_length; rt_uint16_t send_length; rt_uint8_t *recv_buf; const rt_uint8_t *send_buf; RT_ASSERT(device != NULL); RT_ASSERT(device->bus != RT_NULL); RT_ASSERT(device->bus->parent.user_data != RT_NULL); RT_ASSERT(message != NULL); struct ch32_spi *spi_drv = rt_container_of(device->bus, struct ch32_spi, spi_bus); SPI_HandleTypeDef *spi_handle = &spi_drv->handle; struct ch32_hw_spi_cs *cs = device->parent.user_data; /* take CS */ if (message->cs_take && !(device->config.mode & RT_SPI_NO_CS)) { if (device->config.mode & RT_SPI_CS_HIGH) GPIO_WriteBit(cs->GPIOx, cs->GPIO_Pin, Bit_SET); else GPIO_WriteBit(cs->GPIOx, cs->GPIO_Pin, Bit_RESET); } LOG_D("%s transfer prepare and start", spi_drv->config->bus_name); LOG_D("%s sendbuf: %X, recvbuf: %X, length: %d", spi_drv->config->bus_name, (rt_uint32_t)message->send_buf, (rt_uint32_t)message->recv_buf, message->length); message_length = message->length; recv_buf = message->recv_buf; send_buf = message->send_buf; while (message_length) { /* the HAL library use uint16 to save the data length */ if (message_length > 65535) { send_length = 65535; message_length = message_length - 65535; } else { send_length = message_length; message_length = 0; } /* calculate the start address */ already_send_length = message->length - send_length - message_length; /* avoid null pointer problems */ if (message->send_buf) { send_buf = (rt_uint8_t *)message->send_buf + already_send_length; } if (message->recv_buf) { recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length; } /* start once data exchange */ if (message->send_buf && message->recv_buf) { state = spi_transmitreceive(spi_handle->Instance, (rt_uint8_t *)send_buf, (rt_uint8_t *)recv_buf, send_length); } else if (message->send_buf) { state = spi_transmit(spi_handle->Instance, (rt_uint8_t *)send_buf, send_length); if (message->cs_release && (device->config.mode & RT_SPI_3WIRE)) { /* release the CS by disable SPI when using 3 wires SPI */ SPI_Cmd(spi_handle->Instance, DISABLE); } } else { rt_memset((rt_uint8_t *)recv_buf, 0xff, send_length); /* clear the old error flag */ SPI_I2S_ClearFlag(spi_handle->Instance, SPI_I2S_FLAG_OVR); state = spi_receive(spi_handle->Instance, (rt_uint8_t *)recv_buf, send_length); } if (state != RT_EOK) { LOG_I("spi transfer error : %d", state); message->length = 0; } else { LOG_D("%s transfer done", spi_drv->config->bus_name); } } /* release CS */ if (message->cs_release && !(device->config.mode & RT_SPI_NO_CS)) { if (device->config.mode & RT_SPI_CS_HIGH) GPIO_WriteBit(cs->GPIOx, cs->GPIO_Pin, Bit_RESET); else GPIO_WriteBit(cs->GPIOx, cs->GPIO_Pin, Bit_SET); } if(state != RT_EOK) { return -RT_ERROR; } return message->length; } static const struct rt_spi_ops ch32_spi_ops = { .configure = spi_configure, .xfer = spi_xfer, }; static int rt_hw_spi_bus_init(void) { rt_err_t result; for (rt_size_t i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++) { spi_bus_obj[i].config = &spi_config[i]; spi_bus_obj[i].spi_bus.parent.user_data = &spi_config[i]; spi_bus_obj[i].handle.Instance = spi_config[i].Instance; result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].bus_name, &ch32_spi_ops); RT_ASSERT(result == RT_EOK); LOG_D("%s bus init done", spi_config[i].bus_name); } return result; } /** * Attach the spi device to SPI bus, this function must be used after initialization. */ rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, GPIO_TypeDef *cs_gpiox, rt_uint16_t cs_gpio_pin) { RT_ASSERT(bus_name != RT_NULL); RT_ASSERT(device_name != RT_NULL); rt_err_t result; struct rt_spi_device *spi_device; struct ch32_hw_spi_cs *cs_pin; /* initialize the cs pin && select the slave*/ GPIO_InitTypeDef GPIO_Initure; GPIO_Initure.GPIO_Pin = cs_gpio_pin; GPIO_Initure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Initure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(cs_gpiox, &GPIO_Initure); GPIO_WriteBit(cs_gpiox, cs_gpio_pin, Bit_SET); /* attach the device to spi bus*/ spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device)); RT_ASSERT(spi_device != RT_NULL); cs_pin = (struct ch32_hw_spi_cs *)rt_malloc(sizeof(struct ch32_hw_spi_cs)); RT_ASSERT(cs_pin != RT_NULL); cs_pin->GPIOx = cs_gpiox; cs_pin->GPIO_Pin = cs_gpio_pin; result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin); if (result != RT_EOK) { LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result); } RT_ASSERT(result == RT_EOK); LOG_D("%s attach to %s done", device_name, bus_name); return result; } int rt_hw_spi_init(void) { return rt_hw_spi_bus_init(); } INIT_BOARD_EXPORT(rt_hw_spi_init); #endif /* BSP_USING_SPI */