/* * File : macb.c * This file is part of RT-Thread RTOS * COPYRIGHT (C) 2006, RT-Thread Develop Team * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Change Logs: * Date Author Notes * 2011-03-18 weety first version */ #include #include #include "lwipopts.h" #include #include "macb.h" #define MMU_NOCACHE_ADDR(a) ((rt_uint32_t)a | (1UL<<31)) extern void mmu_clean_dcache(rt_uint32_t buffer, rt_uint32_t size); extern void mmu_invalidate_dcache(rt_uint32_t buffer, rt_uint32_t size); /* Cache macros - Packet buffers would be from pbuf pool which is cached */ #define EMAC_VIRT_NOCACHE(addr) (addr) #define EMAC_CACHE_INVALIDATE(addr, size) \ mmu_invalidate_dcache((rt_uint32_t)addr, size) #define EMAC_CACHE_WRITEBACK(addr, size) \ mmu_clean_dcache((rt_uint32_t)addr, size) #define EMAC_CACHE_WRITEBACK_INVALIDATE(addr, size) \ mmu_clean_invalidated_dcache((rt_uint32_t)addr, size) /* EMAC has BD's in cached memory - so need cache functions */ #define BD_CACHE_INVALIDATE(addr, size) #define BD_CACHE_WRITEBACK(addr, size) #define BD_CACHE_WRITEBACK_INVALIDATE(addr, size) /* EMAC internal utility function */ rt_inline unsigned long emac_virt_to_phys(unsigned long addr) { return addr; } #define AT91SAM9260_SRAM0_VIRT_BASE (0x90000000) #define MACB_TX_SRAM #if defined(MACB_TX_SRAM) #define MACB_TX_RING_SIZE 2 #define MACB_TX_BUFFER_SIZE (1536 * MACB_TX_RING_SIZE) #define TX_RING_BYTES (sizeof(struct macb_dma_desc) * MACB_TX_RING_SIZE) #else #define MACB_TX_RING_SIZE 16 #define MACB_TX_BUFFER_SIZE (1536 * MACB_TX_RING_SIZE) #endif #define MACB_RX_BUFFER_SIZE (4096*4) #define MACB_RX_RING_SIZE (MACB_RX_BUFFER_SIZE / 128) #define DEF_TX_RING_PENDING (MACB_TX_RING_SIZE) #define TX_RING_GAP(macb) \ (MACB_TX_RING_SIZE - (macb)->tx_pending) #define TX_BUFFS_AVAIL(macb) \ (((macb)->tx_tail <= (macb)->tx_head) ? \ (macb)->tx_tail + (macb)->tx_pending - (macb)->tx_head : \ (macb)->tx_tail - (macb)->tx_head - TX_RING_GAP(macb)) #define NEXT_TX(n) (((n) + 1) & (MACB_TX_RING_SIZE - 1)) #define NEXT_RX(n) (((n) + 1) & (MACB_RX_RING_SIZE - 1)) /* minimum number of free TX descriptors before waking up TX process */ #define MACB_TX_WAKEUP_THRESH (MACB_TX_RING_SIZE / 4) #define MACB_RX_INT_FLAGS (MACB_BIT(RCOMP) | MACB_BIT(RXUBR) \ | MACB_BIT(ISR_ROVR)) #define MACB_TX_TIMEOUT 1000 #define MACB_AUTONEG_TIMEOUT 5000000 #define MACB_LINK_TIMEOUT 500000 #define CONFIG_RMII struct macb_dma_desc { rt_uint32_t addr; rt_uint32_t ctrl; }; #define RXADDR_USED 0x00000001 #define RXADDR_WRAP 0x00000002 #define RXBUF_FRMLEN_MASK 0x00000fff #define RXBUF_FRAME_START 0x00004000 #define RXBUF_FRAME_END 0x00008000 #define RXBUF_TYPEID_MATCH 0x00400000 #define RXBUF_ADDR4_MATCH 0x00800000 #define RXBUF_ADDR3_MATCH 0x01000000 #define RXBUF_ADDR2_MATCH 0x02000000 #define RXBUF_ADDR1_MATCH 0x04000000 #define RXBUF_BROADCAST 0x80000000 #define TXBUF_FRMLEN_MASK 0x000007ff #define TXBUF_FRAME_END 0x00008000 #define TXBUF_NOCRC 0x00010000 #define TXBUF_EXHAUSTED 0x08000000 #define TXBUF_UNDERRUN 0x10000000 #define TXBUF_MAXRETRY 0x20000000 #define TXBUF_WRAP 0x40000000 #define TXBUF_USED 0x80000000 /* Duplex, half or full. */ #define DUPLEX_HALF 0x00 #define DUPLEX_FULL 0x01 #define MAX_ADDR_LEN 6 struct rt_macb_eth { /* inherit from ethernet device */ struct eth_device parent; unsigned int regs; unsigned int rx_tail; unsigned int tx_head; unsigned int tx_tail; unsigned int rx_pending; unsigned int tx_pending; void *rx_buffer; void *tx_buffer; struct macb_dma_desc *rx_ring; struct macb_dma_desc *tx_ring; unsigned long rx_buffer_dma; unsigned long tx_buffer_dma; unsigned long rx_ring_dma; unsigned long tx_ring_dma; unsigned int tx_stop; /* interface address info. */ rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */ unsigned short phy_addr; struct rt_semaphore mdio_bus_lock; struct rt_semaphore tx_lock; struct rt_semaphore rx_lock; struct rt_semaphore tx_ack; rt_uint32_t speed; rt_uint32_t duplex; rt_uint32_t link; struct rt_timer timer; }; static struct rt_macb_eth macb_device; static void macb_tx(struct rt_macb_eth *macb); static void udelay(rt_uint32_t us) { rt_uint32_t len; for (;us > 0; us --) for (len = 0; len < 10; len++ ); } static void rt_macb_isr(int irq, void *param) { struct rt_macb_eth *macb = (struct rt_macb_eth *)param; rt_device_t dev = &(macb->parent.parent); rt_uint32_t status, rsr, tsr; status = macb_readl(macb, ISR); while (status) { if (status & MACB_RX_INT_FLAGS) { rsr = macb_readl(macb, RSR); macb_writel(macb, RSR, rsr); /* a frame has been received */ eth_device_ready(&(macb_device.parent)); } if (status & (MACB_BIT(TCOMP) | MACB_BIT(ISR_TUND) | MACB_BIT(ISR_RLE))) { macb_tx(macb); } /* * Link change detection isn't possible with RMII, so we'll * add that if/when we get our hands on a full-blown MII PHY. */ if (status & MACB_BIT(HRESP)) { /* * TODO: Reset the hardware, and maybe move the printk * to a lower-priority context as well (work queue?) */ rt_kprintf("%s: DMA bus error: HRESP not OK\n", dev->parent.name); } status = macb_readl(macb, ISR); } } static int macb_mdio_write(struct rt_macb_eth *macb, rt_uint8_t reg, rt_uint16_t value) { unsigned long netctl; unsigned long netstat; unsigned long frame; rt_sem_take(&macb->mdio_bus_lock, RT_WAITING_FOREVER); netctl = macb_readl(macb, NCR); netctl |= MACB_BIT(MPE); macb_writel(macb, NCR, netctl); frame = (MACB_BF(SOF, 1) | MACB_BF(RW, 1) | MACB_BF(PHYA, macb->phy_addr) | MACB_BF(REGA, reg) | MACB_BF(CODE, 2) | MACB_BF(DATA, value)); macb_writel(macb, MAN, frame); do { netstat = macb_readl(macb, NSR); } while (!(netstat & MACB_BIT(IDLE))); netctl = macb_readl(macb, NCR); netctl &= ~MACB_BIT(MPE); macb_writel(macb, NCR, netctl); rt_sem_release(&macb->mdio_bus_lock); } static int macb_mdio_read(struct rt_macb_eth *macb, rt_uint8_t reg) { unsigned long netctl; unsigned long netstat; unsigned long frame; rt_sem_take(&macb->mdio_bus_lock, RT_WAITING_FOREVER); netctl = macb_readl(macb, NCR); netctl |= MACB_BIT(MPE); macb_writel(macb, NCR, netctl); frame = (MACB_BF(SOF, 1) | MACB_BF(RW, 2) | MACB_BF(PHYA, macb->phy_addr) | MACB_BF(REGA, reg) | MACB_BF(CODE, 2)); macb_writel(macb, MAN, frame); do { netstat = macb_readl(macb, NSR); } while (!(netstat & MACB_BIT(IDLE))); frame = macb_readl(macb, MAN); netctl = macb_readl(macb, NCR); netctl &= ~MACB_BIT(MPE); macb_writel(macb, NCR, netctl); rt_sem_release(&macb->mdio_bus_lock); return MACB_BFEXT(DATA, frame); } static void macb_phy_reset(rt_device_t dev) { int i; rt_uint16_t status, adv; struct rt_macb_eth *macb = dev->user_data;; adv = ADVERTISE_CSMA | ADVERTISE_ALL; macb_mdio_write(macb, MII_ADVERTISE, adv); rt_kprintf("%s: Starting autonegotiation...\n", dev->parent.name); macb_mdio_write(macb, MII_BMCR, (BMCR_ANENABLE | BMCR_ANRESTART)); for (i = 0; i < MACB_AUTONEG_TIMEOUT / 100; i++) { status = macb_mdio_read(macb, MII_BMSR); if (status & BMSR_ANEGCOMPLETE) break; udelay(100); } if (status & BMSR_ANEGCOMPLETE) rt_kprintf("%s: Autonegotiation complete\n", dev->parent.name); else rt_kprintf("%s: Autonegotiation timed out (status=0x%04x)\n", dev->parent.name, status); } static int macb_phy_init(rt_device_t dev) { struct rt_macb_eth *macb = dev->user_data; rt_uint32_t ncfgr; rt_uint16_t phy_id, status, adv, lpa; int media, speed, duplex; int i; /* Check if the PHY is up to snuff... */ phy_id = macb_mdio_read(macb, MII_PHYSID1); if (phy_id == 0xffff) { rt_kprintf("%s: No PHY present\n", dev->parent.name); return 0; } status = macb_mdio_read(macb, MII_BMSR); if (!(status & BMSR_LSTATUS)) { /* Try to re-negotiate if we don't have link already. */ macb_phy_reset(dev); for (i = 0; i < MACB_LINK_TIMEOUT / 100; i++) { status = macb_mdio_read(macb, MII_BMSR); if (status & BMSR_LSTATUS) break; udelay(100); } } if (!(status & BMSR_LSTATUS)) { rt_kprintf("%s: link down (status: 0x%04x)\n", dev->parent.name, status); return 0; } else { adv = macb_mdio_read(macb, MII_ADVERTISE); lpa = macb_mdio_read(macb, MII_LPA); media = mii_nway_result(lpa & adv); speed = (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 1 : 0); duplex = (media & ADVERTISE_FULL) ? 1 : 0; rt_kprintf("%s: link up, %sMbps %s-duplex (lpa: 0x%04x)\n", dev->parent.name, speed ? "100" : "10", duplex ? "full" : "half", lpa); ncfgr = macb_readl(macb, NCFGR); ncfgr &= ~(MACB_BIT(SPD) | MACB_BIT(FD)); if (speed) ncfgr |= MACB_BIT(SPD); if (duplex) ncfgr |= MACB_BIT(FD); macb_writel(macb, NCFGR, ncfgr); return 1; } } void macb_update_link(void *param) { struct rt_macb_eth *macb = (struct rt_macb_eth *)param; rt_device_t dev = &macb->parent.parent; int status, status_change = 0; rt_uint32_t link; rt_uint32_t media; rt_uint16_t adv, lpa; /* Do a fake read */ status = macb_mdio_read(macb, MII_BMSR); if (status < 0) return; /* Read link and autonegotiation status */ status = macb_mdio_read(macb, MII_BMSR); if (status < 0) return; if ((status & BMSR_LSTATUS) == 0) link = 0; else link = 1; if (link != macb->link) { macb->link = link; status_change = 1; } if (status_change) { if (macb->link) { adv = macb_mdio_read(macb, MII_ADVERTISE); lpa = macb_mdio_read(macb, MII_LPA); media = mii_nway_result(lpa & adv); macb->speed = (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10); macb->duplex = (media & ADVERTISE_FULL) ? 1 : 0; rt_kprintf("%s: link up (%dMbps/%s-duplex)\n", dev->parent.name, macb->speed, DUPLEX_FULL == macb->duplex ? "Full":"Half"); eth_device_linkchange(&macb->parent, RT_TRUE); } else { rt_kprintf("%s: link down\n", dev->parent.name); eth_device_linkchange(&macb->parent, RT_FALSE); } } } /* RT-Thread Device Interface */ /* initialize the interface */ static rt_err_t rt_macb_init(rt_device_t dev) { struct rt_macb_eth *macb = dev->user_data; unsigned long paddr; rt_uint32_t hwaddr_bottom; rt_uint16_t hwaddr_top; int i; /* * macb_halt should have been called at some point before now, * so we'll assume the controller is idle. */ /* initialize DMA descriptors */ paddr = macb->rx_buffer_dma; for (i = 0; i < MACB_RX_RING_SIZE; i++) { if (i == (MACB_RX_RING_SIZE - 1)) paddr |= RXADDR_WRAP; macb->rx_ring[i].addr = paddr; macb->rx_ring[i].ctrl = 0; paddr += 128; } paddr = macb->tx_buffer_dma; for (i = 0; i < MACB_TX_RING_SIZE; i++) { macb->tx_ring[i].addr = paddr; if (i == (MACB_TX_RING_SIZE - 1)) macb->tx_ring[i].ctrl = TXBUF_USED | TXBUF_WRAP; else macb->tx_ring[i].ctrl = TXBUF_USED; paddr += 1536; } macb->rx_tail = macb->tx_head = macb->tx_tail = 0; BD_CACHE_WRITEBACK_INVALIDATE(macb->rx_ring, MACB_RX_RING_SIZE * sizeof(struct macb_dma_desc)); BD_CACHE_WRITEBACK_INVALIDATE(macb->tx_ring, MACB_TX_RING_SIZE * sizeof(struct macb_dma_desc)); macb_writel(macb, RBQP, macb->rx_ring_dma); macb_writel(macb, TBQP, macb->tx_ring_dma); /* set hardware address */ hwaddr_bottom = (*((rt_uint32_t *)macb->dev_addr)); macb_writel(macb, SA1B, hwaddr_bottom); hwaddr_top = (*((rt_uint16_t *)(macb->dev_addr + 4))); macb_writel(macb, SA1T, hwaddr_top); /* choose RMII or MII mode. This depends on the board */ #ifdef CONFIG_RMII macb_writel(macb, USRIO, MACB_BIT(RMII) | MACB_BIT(CLKEN)); #else macb_writel(macb, USRIO, MACB_BIT(CLKEN)); #endif /* CONFIG_RMII */ if (!macb_phy_init(dev)) return -RT_ERROR; /* Enable TX and RX */ macb_writel(macb, NCR, MACB_BIT(TE) | MACB_BIT(RE) | MACB_BIT(MPE)); /* Enable interrupts */ macb_writel(macb, IER, (MACB_BIT(RCOMP) | MACB_BIT(RXUBR) | MACB_BIT(ISR_TUND) | MACB_BIT(ISR_RLE) | MACB_BIT(TXERR) | MACB_BIT(TCOMP) | MACB_BIT(ISR_ROVR) | MACB_BIT(HRESP))); /* instal interrupt */ rt_hw_interrupt_install(AT91SAM9260_ID_EMAC, rt_macb_isr, (void *)macb, "emac"); rt_hw_interrupt_umask(AT91SAM9260_ID_EMAC); rt_timer_init(&macb->timer, "link_timer", macb_update_link, (void *)macb, RT_TICK_PER_SECOND, RT_TIMER_FLAG_PERIODIC); rt_timer_start(&macb->timer); return RT_EOK; } static rt_err_t rt_macb_open(rt_device_t dev, rt_uint16_t oflag) { return RT_EOK; } static rt_err_t rt_macb_close(rt_device_t dev) { return RT_EOK; } static rt_size_t rt_macb_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size) { rt_set_errno(-RT_ENOSYS); return 0; } static rt_size_t rt_macb_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) { rt_set_errno(-RT_ENOSYS); return 0; } static rt_err_t rt_macb_control(rt_device_t dev, rt_uint8_t cmd, void *args) { switch(cmd) { case NIOCTL_GADDR: /* get mac address */ if(args) rt_memcpy(args, macb_device.dev_addr, 6); else return -RT_ERROR; break; default : break; } return RT_EOK; } static void macb_tx(struct rt_macb_eth *macb) { unsigned int tail; unsigned int head; rt_uint32_t status; status = macb_readl(macb, TSR); macb_writel(macb, TSR, status); /*rt_kprintf("macb_tx status = %02lx\n", (unsigned long)status);*/ if (status & (MACB_BIT(UND) | MACB_BIT(TSR_RLE))) { int i; rt_kprintf("%s: TX %s, resetting buffers\n", macb->parent.parent.parent.name, status & MACB_BIT(UND) ? "underrun" : "retry limit exceeded"); /* Transfer ongoing, disable transmitter, to avoid confusion */ if (status & MACB_BIT(TGO)) macb_writel(macb, NCR, macb_readl(macb, NCR) & ~MACB_BIT(TE)); head = macb->tx_head; /*Mark all the buffer as used to avoid sending a lost buffer*/ for (i = 0; i < MACB_TX_RING_SIZE; i++) macb->tx_ring[i].ctrl = MACB_BIT(TX_USED); /* free transmit buffer in upper layer*/ macb->tx_head = macb->tx_tail = 0; /* Enable the transmitter again */ if (status & MACB_BIT(TGO)) macb_writel(macb, NCR, macb_readl(macb, NCR) | MACB_BIT(TE)); } if (!(status & MACB_BIT(COMP))) /* * This may happen when a buffer becomes complete * between reading the ISR and scanning the * descriptors. Nothing to worry about. */ return; head = macb->tx_head; for (tail = macb->tx_tail; tail != head; tail = NEXT_TX(tail)) { rt_uint32_t bufstat; bufstat = macb->tx_ring[tail].ctrl; if (!(bufstat & MACB_BIT(TX_USED))) break; } macb->tx_tail = tail; if ((macb->tx_stop == 1) && TX_BUFFS_AVAIL(macb) > MACB_TX_WAKEUP_THRESH) rt_sem_release(&macb->tx_ack); } /* ethernet device interface */ /* transmit packet. */ rt_err_t rt_macb_tx( rt_device_t dev, struct pbuf* p) { unsigned long ctrl; struct pbuf* q; rt_uint8_t* bufptr; rt_uint32_t mapping; struct rt_macb_eth *macb = dev->user_data; unsigned int tx_head = macb->tx_head; rt_sem_take(&macb->tx_lock, RT_WAITING_FOREVER); if (TX_BUFFS_AVAIL(macb) < 1) { rt_sem_release(&macb->tx_lock); rt_kprintf("Tx Ring full!\n"); rt_kprintf("tx_head = %u, tx_tail = %u\n", macb->tx_head, macb->tx_tail); return -RT_ERROR; } macb->tx_stop = 0; ctrl = p->tot_len & TXBUF_FRMLEN_MASK; ctrl |= TXBUF_FRAME_END; if (tx_head == (MACB_TX_RING_SIZE - 1)) { ctrl |= TXBUF_WRAP; } #if defined(MACB_TX_SRAM) bufptr = macb->tx_buffer + tx_head * 1536; #else mapping = (unsigned long)macb->tx_buffer + tx_head * 1536; bufptr = (rt_uint8_t *)mapping; #endif for (q = p; q != NULL; q = q->next) { memcpy(bufptr, q->payload, q->len); bufptr += q->len; } #if !defined(MACB_TX_SRAM) EMAC_CACHE_WRITEBACK(mapping, p->tot_len); #endif macb->tx_ring[tx_head].ctrl = ctrl; BD_CACHE_WRITEBACK_INVALIDATE(&macb->tx_ring[tx_head], sizeof(struct macb_dma_desc)); tx_head = NEXT_TX(tx_head); macb->tx_head = tx_head; macb_writel(macb, NCR, macb_readl(macb, NCR) | MACB_BIT(TSTART)); macb_writel(macb, NCR, macb_readl(macb, NCR) | MACB_BIT(TSTART)); if (TX_BUFFS_AVAIL(macb) < 1) { macb->tx_stop = 1; rt_sem_take(&macb->tx_ack, RT_WAITING_FOREVER); } rt_sem_release(&macb->tx_lock); return RT_EOK; } static void reclaim_rx_buffers(struct rt_macb_eth *macb, unsigned int new_tail) { unsigned int i; i = macb->rx_tail; while (i > new_tail) { macb->rx_ring[i].addr &= ~RXADDR_USED; i++; if (i > MACB_RX_RING_SIZE) i = 0; } while (i < new_tail) { macb->rx_ring[i].addr &= ~RXADDR_USED; i++; } macb->rx_tail = new_tail; } /* reception packet. */ struct pbuf *rt_macb_rx(rt_device_t dev) { struct rt_macb_eth *macb = dev->user_data; struct pbuf* p = RT_NULL; rt_uint32_t len; unsigned int rx_tail = macb->rx_tail; void *buffer; int wrapped = 0; rt_uint32_t status; rt_sem_take(&macb->rx_lock, RT_WAITING_FOREVER); for (;;) { if (!(macb->rx_ring[rx_tail].addr & RXADDR_USED)) break; status = macb->rx_ring[rx_tail].ctrl; if (status & RXBUF_FRAME_START) { if (rx_tail != macb->rx_tail) reclaim_rx_buffers(macb, rx_tail); wrapped = 0; } if (status & RXBUF_FRAME_END) { buffer = (void *)((unsigned int)macb->rx_buffer + 128 * macb->rx_tail); len = status & RXBUF_FRMLEN_MASK; p = pbuf_alloc(PBUF_LINK, len, PBUF_RAM); if (!p) { rt_kprintf("alloc pbuf failed\n"); break; } if (wrapped) { unsigned int headlen, taillen; headlen = 128 * (MACB_RX_RING_SIZE - macb->rx_tail); taillen = len - headlen; EMAC_CACHE_INVALIDATE(buffer, headlen); EMAC_CACHE_INVALIDATE(macb->rx_buffer, taillen); memcpy((void *)p->payload, buffer, headlen); memcpy((void *)((unsigned int)p->payload + headlen), macb->rx_buffer, taillen); } else { EMAC_CACHE_INVALIDATE(buffer, len); memcpy((void *)p->payload, buffer, p->len); } if (++rx_tail >= MACB_RX_RING_SIZE) rx_tail = 0; reclaim_rx_buffers(macb, rx_tail); break; } else { if (++rx_tail >= MACB_RX_RING_SIZE) { wrapped = 1; rx_tail = 0; } } } rt_sem_release(&macb->rx_lock); return p; } void macb_gpio_init() { /* Pins used for MII and RMII */ at91_sys_write(AT91_PIOA + PIO_PDR, (1 << 19)|(1 << 17)|(1 << 14)|(1 << 15)|(1 << 18)|(1 << 16)|(1 << 12)|(1 << 13)|(1 << 21)|(1 << 20)); at91_sys_write(AT91_PIOA + PIO_ASR, (1 << 19)|(1 << 17)|(1 << 14)|(1 << 15)|(1 << 18)|(1 << 16)|(1 << 12)|(1 << 13)|(1 << 21)|(1 << 20)); #ifndef GONFIG_RMII at91_sys_write(AT91_PIOA + PIO_PDR, (1 << 22)|(1 << 23)|(1 << 24)|(1 << 25)|(1 << 26)|(1 << 27)|(1 << 28)|(1 << 29)); at91_sys_write(AT91_PIOA + PIO_ASR, (1 << 22)|(1 << 23)|(1 << 24)|(1 << 25)|(1 << 26)|(1 << 27)|(1 << 28)|(1 << 29)); #endif } rt_err_t macb_initialize() { struct rt_macb_eth *macb = &macb_device; unsigned long macb_hz; rt_uint32_t ncfgr; #if defined(MACB_TX_SRAM) macb->tx_ring_dma = AT91SAM9260_SRAM0_BASE; macb->tx_ring = (struct macb_dma_desc *)AT91SAM9260_SRAM0_VIRT_BASE; macb->tx_buffer = (char *) macb->tx_ring + TX_RING_BYTES; macb->tx_buffer_dma = macb->tx_ring_dma + TX_RING_BYTES; #else macb->tx_ring = rt_malloc(MACB_RX_RING_SIZE * sizeof(struct macb_dma_desc)); if (macb->tx_ring == RT_NULL) goto err1; EMAC_CACHE_INVALIDATE(macb->tx_ring, MACB_TX_RING_SIZE * sizeof(struct macb_dma_desc)); macb->tx_ring_dma = emac_virt_to_phys((unsigned long)macb->tx_ring); macb->tx_ring = (struct macb_dma_desc *)MMU_NOCACHE_ADDR((unsigned long)macb->tx_ring); macb->tx_buffer = rt_malloc(MACB_TX_BUFFER_SIZE); if (macb->tx_buffer == RT_NULL) goto err2; macb->tx_buffer_dma = emac_virt_to_phys((unsigned long)macb->tx_buffer); #endif macb->rx_ring = rt_malloc(MACB_RX_RING_SIZE * sizeof(struct macb_dma_desc)); if (macb->rx_ring == RT_NULL) goto err3; EMAC_CACHE_INVALIDATE(macb->rx_ring, MACB_RX_RING_SIZE * sizeof(struct macb_dma_desc)); macb->rx_ring_dma = emac_virt_to_phys((unsigned long)macb->rx_ring); macb->rx_ring = (struct macb_dma_desc *)MMU_NOCACHE_ADDR((unsigned long)macb->rx_ring); macb->rx_buffer = rt_malloc(MACB_RX_BUFFER_SIZE); if (macb->rx_buffer == RT_NULL) goto err4; macb->rx_buffer_dma = emac_virt_to_phys((unsigned long)macb->rx_buffer); macb->tx_pending = DEF_TX_RING_PENDING; macb->regs = AT91SAM9260_BASE_EMAC; macb->phy_addr = 0x00; /* * Do some basic initialization so that we at least can talk * to the PHY */ macb_hz = clk_get_rate(clk_get("mck")); if (macb_hz < 20000000) ncfgr = MACB_BF(CLK, MACB_CLK_DIV8); else if (macb_hz < 40000000) ncfgr = MACB_BF(CLK, MACB_CLK_DIV16); else if (macb_hz < 80000000) ncfgr = MACB_BF(CLK, MACB_CLK_DIV32); else ncfgr = MACB_BF(CLK, MACB_CLK_DIV64); macb_writel(macb, NCFGR, ncfgr); macb->link = 0; return RT_EOK; err4: rt_free(macb->rx_ring); macb->rx_ring = RT_NULL; err3: #if !defined(MACB_TX_SRAM) rt_free(macb->tx_buffer); macb->tx_buffer = RT_NULL; err2: rt_free(macb->tx_ring); macb->tx_ring = RT_NULL; err1: #endif return -RT_ENOMEM; } void rt_hw_macb_init() { rt_err_t ret; at91_sys_write(AT91_PMC + AT91_PMC_PCER, 1 << AT91SAM9260_ID_EMAC); //enable macb clock macb_gpio_init(); rt_memset(&macb_device, 0, sizeof(macb_device)); ret = macb_initialize(); if (ret != RT_EOK) { rt_kprintf("AT91 EMAC initialized failed\n"); return; } rt_sem_init(&macb_device.tx_ack, "tx_ack", 0, RT_IPC_FLAG_FIFO); rt_sem_init(&macb_device.tx_lock, "tx_lock", 1, RT_IPC_FLAG_FIFO); rt_sem_init(&macb_device.rx_lock, "rx_lock", 1, RT_IPC_FLAG_FIFO); macb_device.dev_addr[0] = 0x00; macb_device.dev_addr[1] = 0x60; macb_device.dev_addr[2] = 0x6E; macb_device.dev_addr[3] = 0x11; macb_device.dev_addr[4] = 0x22; macb_device.dev_addr[5] = 0x33; macb_device.parent.parent.init = rt_macb_init; macb_device.parent.parent.open = rt_macb_open; macb_device.parent.parent.close = rt_macb_close; macb_device.parent.parent.read = rt_macb_read; macb_device.parent.parent.write = rt_macb_write; macb_device.parent.parent.control = rt_macb_control; macb_device.parent.parent.user_data = &macb_device; macb_device.parent.eth_rx = rt_macb_rx; macb_device.parent.eth_tx = rt_macb_tx; rt_sem_init(&macb_device.mdio_bus_lock, "mdio_bus_lock", 1, RT_IPC_FLAG_FIFO); eth_device_init(&(macb_device.parent), "e0"); }