/* * Copyright (c) 2006-2021, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes */ /* @(#)xdr.c 2.1 88/07/29 4.0 RPCSRC */ /* * Sun RPC is a product of Sun Microsystems, Inc. and is provided for * unrestricted use provided that this legend is included on all tape * media and as a part of the software program in whole or part. Users * may copy or modify Sun RPC without charge, but are not authorized * to license or distribute it to anyone else except as part of a product or * program developed by the user. * * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. * * Sun RPC is provided with no support and without any obligation on the * part of Sun Microsystems, Inc. to assist in its use, correction, * modification or enhancement. * * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC * OR ANY PART THEREOF. * * In no event will Sun Microsystems, Inc. be liable for any lost revenue * or profits or other special, indirect and consequential damages, even if * Sun has been advised of the possibility of such damages. * * Sun Microsystems, Inc. * 2550 Garcia Avenue * Mountain View, California 94043 */ #if !defined(lint) && defined(SCCSIDS) static char sccsid[] = "@(#)xdr.c 1.35 87/08/12"; #endif /* * xdr.c, Generic XDR routines implementation. * * Copyright (C) 1986, Sun Microsystems, Inc. * * These are the "generic" xdr routines used to serialize and de-serialize * most common data items. See xdr.h for more info on the interface to * xdr. */ #include #include #include #include #include /* * constants specific to the xdr "protocol" */ #define XDR_FALSE ((long) 0) #define XDR_TRUE ((long) 1) #define LASTUNSIGNED ((unsigned int) 0-1) /* * for unit alignment */ static char xdr_zero[BYTES_PER_XDR_UNIT] = { 0, 0, 0, 0 }; /* * Free a data structure using XDR * Not a filter, but a convenient utility nonetheless */ void xdr_free(xdrproc_t proc, char* objp) { XDR x; x.x_op = XDR_FREE; (*proc) (&x, objp); } /* * XDR nothing */ bool_t xdr_void( /* xdrs, addr */ ) /* XDR *xdrs; */ /* char* addr; */ { return (TRUE); } /* * XDR integers */ bool_t xdr_int(XDR* xdrs, int* ip) { if (sizeof(int) == sizeof(long)) { return (xdr_long(xdrs, (long *) ip)); } else if (sizeof(int) < sizeof(long)) { long l; switch (xdrs->x_op) { case XDR_ENCODE: l = (long) *ip; return XDR_PUTLONG(xdrs, &l); case XDR_DECODE: if (!XDR_GETLONG(xdrs, &l)) return FALSE; *ip = (int) l; case XDR_FREE: return TRUE; } return FALSE; } else { return (xdr_short(xdrs, (short *) ip)); } } /* * XDR unsigned integers */ bool_t xdr_u_int(XDR* xdrs, unsigned int* up) { if (sizeof(unsigned int) == sizeof(unsigned long)) { return (xdr_u_long(xdrs, (unsigned long *) up)); } else if (sizeof(unsigned int) < sizeof(unsigned long)) { unsigned long l; switch (xdrs->x_op) { case XDR_ENCODE: l = (unsigned long) *up; return XDR_PUTLONG(xdrs, (long*)&l); case XDR_DECODE: if (!XDR_GETLONG(xdrs, (long*)&l)) return FALSE; *up = (unsigned int) l; case XDR_FREE: return TRUE; } return FALSE; } else { return (xdr_short(xdrs, (short *) up)); } } /* * XDR long integers * same as xdr_u_long - open coded to save a proc call! */ bool_t xdr_long(XDR* xdrs, long* lp) { if (xdrs->x_op == XDR_ENCODE && (sizeof(int32_t) == sizeof(long) || (int32_t) *lp == *lp)) return (XDR_PUTLONG(xdrs, lp)); if (xdrs->x_op == XDR_DECODE) return (XDR_GETLONG(xdrs, lp)); if (xdrs->x_op == XDR_FREE) return (TRUE); return (FALSE); } /* * XDR unsigned long integers * same as xdr_long - open coded to save a proc call! */ bool_t xdr_u_long(XDR* xdrs, unsigned long* ulp) { if (xdrs->x_op == XDR_DECODE) { long l; if (XDR_GETLONG(xdrs, &l) == FALSE) return FALSE; *ulp = (uint32_t) l; return TRUE; } if (xdrs->x_op == XDR_ENCODE) { if (sizeof(uint32_t) != sizeof(unsigned long) && (uint32_t) *ulp != *ulp) return FALSE; return (XDR_PUTLONG(xdrs, (long *) ulp)); } if (xdrs->x_op == XDR_FREE) return (TRUE); return (FALSE); } /* * XDR long long integers */ bool_t xdr_longlong_t (XDR * xdrs, int64_t* llp) { int32_t t1, t2; switch (xdrs->x_op) { case XDR_ENCODE: t1 = (int32_t) ((*llp) >> 32); t2 = (int32_t) (*llp); return (XDR_PUTLONG (xdrs, &t1) && XDR_PUTLONG (xdrs, &t2)); case XDR_DECODE: if (!XDR_GETLONG (xdrs, &t1) || !XDR_GETLONG (xdrs, &t2)) return FALSE; *llp = ((int64_t) t1) << 32; *llp |= (uint32_t) t2; return TRUE; case XDR_FREE: return TRUE; } return FALSE; } /* * XDR unsigned long long integers */ bool_t xdr_u_longlong_t (XDR * xdrs, uint64_t* ullp) { uint32_t t1, t2; switch (xdrs->x_op) { case XDR_ENCODE: t1 = (uint32_t) ((*ullp) >> 32); t2 = (uint32_t) (*ullp); return (XDR_PUTLONG (xdrs, (int32_t *)&t1) && XDR_PUTLONG (xdrs, (int32_t *)&t2)); case XDR_DECODE: if (!XDR_GETLONG (xdrs, (int32_t *)&t1) || !XDR_GETLONG (xdrs, (int32_t *)&t2)) return FALSE; *ullp = ((uint64_t) t1) << 32; *ullp |= t2; return TRUE; case XDR_FREE: return TRUE; } return FALSE; } /* * XDR short integers */ bool_t xdr_short(XDR* xdrs, short* sp) { long l; switch (xdrs->x_op) { case XDR_ENCODE: l = (long) *sp; return (XDR_PUTLONG(xdrs, &l)); case XDR_DECODE: if (!XDR_GETLONG(xdrs, &l)) { return (FALSE); } *sp = (short) l; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR unsigned short integers */ bool_t xdr_u_short(XDR* xdrs, unsigned short* usp) { unsigned long l; switch (xdrs->x_op) { case XDR_ENCODE: l = (unsigned long) * usp; return (XDR_PUTLONG(xdrs, (long*)&l)); case XDR_DECODE: if (!XDR_GETLONG(xdrs, (long*)&l)) { return (FALSE); } *usp = (unsigned short) l; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR a char */ bool_t xdr_char(XDR* xdrs, char* cp) { int i; i = (*cp); if (!xdr_int(xdrs, &i)) { return (FALSE); } *cp = i; return (TRUE); } /* * XDR an unsigned char */ bool_t xdr_u_char(XDR* xdrs, unsigned char* cp) { unsigned int u; u = (*cp); if (!xdr_u_int(xdrs, &u)) { return (FALSE); } *cp = u; return (TRUE); } /* * XDR booleans */ bool_t xdr_bool(XDR *xdrs, bool_t *bp) { long lb; switch (xdrs->x_op) { case XDR_ENCODE: lb = *bp ? XDR_TRUE : XDR_FALSE; return (XDR_PUTLONG(xdrs, &lb)); case XDR_DECODE: if (!XDR_GETLONG(xdrs, &lb)) { return (FALSE); } *bp = (lb == XDR_FALSE) ? FALSE : TRUE; return (TRUE); case XDR_FREE: return (TRUE); } return (FALSE); } /* * XDR enumerations */ bool_t xdr_enum(XDR *xdrs, enum_t *ep) { enum sizecheck { SIZEVAL }; /* used to find the size of an enum */ /* * enums are treated as ints */ /* LINTED */ if (sizeof (enum sizecheck) == sizeof (long)) { return (xdr_long(xdrs, (long *)(void *)ep)); } else /* LINTED */ if (sizeof (enum sizecheck) == sizeof (int)) { return (xdr_int(xdrs, (int *)(void *)ep)); } else /* LINTED */ if (sizeof (enum sizecheck) == sizeof (short)) { return (xdr_short(xdrs, (short *)(void *)ep)); } else { return (FALSE); } } /* * XDR opaque data * Allows the specification of a fixed size sequence of opaque bytes. * cp points to the opaque object and cnt gives the byte length. */ bool_t xdr_opaque(XDR *xdrs, char* cp, unsigned int cnt) { register unsigned int rndup; static char crud[BYTES_PER_XDR_UNIT]; /* * if no data we are done */ if (cnt == 0) return (TRUE); /* * round byte count to full xdr units */ rndup = cnt % BYTES_PER_XDR_UNIT; if (rndup > 0) rndup = BYTES_PER_XDR_UNIT - rndup; if (xdrs->x_op == XDR_DECODE) { if (!XDR_GETBYTES(xdrs, cp, cnt)) { return (FALSE); } if (rndup == 0) return (TRUE); return (XDR_GETBYTES(xdrs, crud, rndup)); } if (xdrs->x_op == XDR_ENCODE) { if (!XDR_PUTBYTES(xdrs, cp, cnt)) { return (FALSE); } if (rndup == 0) return (TRUE); return (XDR_PUTBYTES(xdrs, xdr_zero, rndup)); } if (xdrs->x_op == XDR_FREE) { return (TRUE); } return (FALSE); } /* * XDR counted bytes * *cpp is a pointer to the bytes, *sizep is the count. * If *cpp is NULL maxsize bytes are allocated */ bool_t xdr_bytes(XDR *xdrs, char** cpp, unsigned int *sizep, unsigned int maxsize) { register char *sp = *cpp; /* sp is the actual string pointer */ register unsigned int nodesize; /* * first deal with the length since xdr bytes are counted */ if (!xdr_u_int(xdrs, sizep)) { return (FALSE); } nodesize = *sizep; if ((nodesize > maxsize) && (xdrs->x_op != XDR_FREE)) { return (FALSE); } /* * now deal with the actual bytes */ switch (xdrs->x_op) { case XDR_DECODE: if (nodesize == 0) { return (TRUE); } if (sp == NULL) { *cpp = sp = (char *) rt_malloc(nodesize); } if (sp == NULL) { rt_kprintf("xdr_bytes: out of memory\n"); return (FALSE); } /* fall into ... */ case XDR_ENCODE: return (xdr_opaque(xdrs, sp, nodesize)); case XDR_FREE: if (sp != NULL) { rt_free(sp); *cpp = NULL; } return (TRUE); } return (FALSE); } /* * Implemented here due to commonality of the object. */ bool_t xdr_netobj(XDR *xdrs, struct netobj *np) { return (xdr_bytes(xdrs, &np->n_bytes, &np->n_len, MAX_NETOBJ_SZ)); } /* * XDR a descriminated union * Support routine for discriminated unions. * You create an array of xdrdiscrim structures, terminated with * an entry with a null procedure pointer. The routine gets * the discriminant value and then searches the array of xdrdiscrims * looking for that value. It calls the procedure given in the xdrdiscrim * to handle the discriminant. If there is no specific routine a default * routine may be called. * If there is no specific or default routine an error is returned. */ bool_t xdr_union(XDR* xdrs, enum_t* dscmp, char* unp, const struct xdr_discrim* choices, xdrproc_t dfault) { register enum_t dscm; /* * we deal with the discriminator; it's an enum */ if (!xdr_enum(xdrs, dscmp)) { return (FALSE); } dscm = *dscmp; /* * search choices for a value that matches the discriminator. * if we find one, execute the xdr routine for that value. */ for (; choices->proc != NULL_xdrproc_t; choices++) { if (choices->value == dscm) return ((*(choices->proc)) (xdrs, unp, LASTUNSIGNED)); } /* * no match - execute the default xdr routine if there is one */ return ((dfault == NULL_xdrproc_t) ? FALSE : (*dfault) (xdrs, unp, LASTUNSIGNED)); } /* * Non-portable xdr primitives. * Care should be taken when moving these routines to new architectures. */ /* * XDR null terminated ASCII strings * xdr_string deals with "C strings" - arrays of bytes that are * terminated by a NULL character. The parameter cpp references a * pointer to storage; If the pointer is null, then the necessary * storage is allocated. The last parameter is the max allowed length * of the string as specified by a protocol. */ bool_t xdr_string(XDR *xdrs, char **cpp, unsigned int maxsize) { register char *sp = *cpp; /* sp is the actual string pointer */ unsigned int size; unsigned int nodesize; /* * first deal with the length since xdr strings are counted-strings */ switch (xdrs->x_op) { case XDR_FREE: if (sp == NULL) { return (TRUE); /* already free */ } /* fall through... */ case XDR_ENCODE: size = strlen(sp); break; } if (!xdr_u_int(xdrs, &size)) { return (FALSE); } if (size > maxsize) { return (FALSE); } nodesize = size + 1; /* * now deal with the actual bytes */ switch (xdrs->x_op) { case XDR_DECODE: if (nodesize == 0) { return (TRUE); } if (sp == NULL) *cpp = sp = (char *) rt_malloc(nodesize); if (sp == NULL) { rt_kprintf("xdr_string: out of memory\n"); return (FALSE); } sp[size] = 0; /* fall into ... */ case XDR_ENCODE: return (xdr_opaque(xdrs, sp, size)); case XDR_FREE: rt_free(sp); *cpp = NULL; return (TRUE); } return (FALSE); } /* * Wrapper for xdr_string that can be called directly from * routines like clnt_call */ bool_t xdr_wrapstring(XDR *xdrs, char **cpp) { if (xdr_string(xdrs, cpp, LASTUNSIGNED)) { return (TRUE); } return (FALSE); } /* * XDR an array of arbitrary elements * *addrp is a pointer to the array, *sizep is the number of elements. * If addrp is NULL (*sizep * elsize) bytes are allocated. * elsize is the size (in bytes) of each element, and elproc is the * xdr procedure to call to handle each element of the array. */ bool_t xdr_array(XDR *xdrs, char **addrp, unsigned int *sizep, unsigned int maxsize, unsigned int elsize, xdrproc_t elproc) { register unsigned int i; register char* target = *addrp; register unsigned int c; /* the actual element count */ register bool_t stat = TRUE; register unsigned int nodesize; /* like strings, arrays are really counted arrays */ if (!xdr_u_int(xdrs, sizep)) { return (FALSE); } c = *sizep; if ((c > maxsize) && (xdrs->x_op != XDR_FREE)) { return (FALSE); } /* duh, look for integer overflow (fefe) */ { unsigned int i; nodesize = 0; for (i=c; i; --i) { unsigned int tmp=nodesize+elsize; if (tmpx_op) { case XDR_DECODE: if (c == 0) return (TRUE); *addrp = target = rt_malloc(nodesize); if (target == NULL) { rt_kprintf("xdr_array: out of memory\n"); return (FALSE); } memset(target, 0, nodesize); break; case XDR_FREE: return (TRUE); } /* * now we xdr each element of array */ for (i = 0; (i < c) && stat; i++) { stat = (*elproc) (xdrs, target, LASTUNSIGNED); target += elsize; } /* * the array may need freeing */ if (xdrs->x_op == XDR_FREE) { rt_free(*addrp); *addrp = NULL; } return (stat); } /* * xdr_vector(): * * XDR a fixed length array. Unlike variable-length arrays, * the storage of fixed length arrays is static and unfreeable. * > basep: base of the array * > size: size of the array * > elemsize: size of each element * > xdr_elem: routine to XDR each element */ bool_t xdr_vector(XDR *xdrs, char *basep, unsigned int nelem, unsigned int elemsize, xdrproc_t xdr_elem) { register unsigned int i; register char *elptr; elptr = basep; for (i = 0; i < nelem; i++) { if (!(*xdr_elem) (xdrs, elptr, LASTUNSIGNED)) { return (FALSE); } elptr += elemsize; } return (TRUE); } /* * XDR an indirect pointer * xdr_reference is for recursively translating a structure that is * referenced by a pointer inside the structure that is currently being * translated. pp references a pointer to storage. If *pp is null * the necessary storage is allocated. * size is the sizeof the referneced structure. * proc is the routine to handle the referenced structure. */ bool_t xdr_reference(XDR *xdrs, char **pp, unsigned int size, xdrproc_t proc) { register char* loc = *pp; register bool_t stat; if (loc == NULL) switch (xdrs->x_op) { case XDR_FREE: return (TRUE); case XDR_DECODE: *pp = loc = (char*) rt_malloc(size); if (loc == NULL) { rt_kprintf("xdr_reference: out of memory\n"); return (FALSE); } memset(loc, 0, (int) size); break; } stat = (*proc) (xdrs, loc, LASTUNSIGNED); if (xdrs->x_op == XDR_FREE) { rt_free(loc); *pp = NULL; } return (stat); } /* * xdr_pointer(): * * XDR a pointer to a possibly recursive data structure. This * differs with xdr_reference in that it can serialize/deserialiaze * trees correctly. * * What's sent is actually a union: * * union object_pointer switch (boolean b) { * case TRUE: object_data data; * case FALSE: void nothing; * } * * > objpp: Pointer to the pointer to the object. * > obj_size: size of the object. * > xdr_obj: routine to XDR an object. * */ bool_t xdr_pointer(XDR *xdrs, char **objpp, unsigned int obj_size, xdrproc_t xdr_obj) { bool_t more_data; more_data = (*objpp != NULL); if (!xdr_bool(xdrs, &more_data)) { return (FALSE); } if (!more_data) { *objpp = NULL; return (TRUE); } return (xdr_reference(xdrs, objpp, obj_size, xdr_obj)); }