/* * Copyright (c) 2006-2018, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2017-08-08 Yang the first version * 2018-03-24 LaiYiKeTang add hardware iic * 2019-03-11 JiCheng Adapt RT1020's IO MAP */ #include #include #include "board.h" #include "fsl_gpio.h" #include "fsl_lpi2c.h" #include "drv_i2c.h" //#define DRV_I2C_DEBUG #ifdef RT_USING_I2C #define I2C1BUS_NAME "i2c1" #define I2C2BUS_NAME "i2c2" #define I2C3BUS_NAME "i2c3" #define I2C4BUS_NAME "i2c4" #define LPI2C_CLOCK_SOURCE_DIVIDER 4 /* Get frequency of lpi2c clock */ #define LPI2C_CLOCK_FREQUENCY ((CLOCK_GetFreq(kCLOCK_Usb1PllClk) / 8) / (LPI2C_CLOCK_SOURCE_DIVIDER)) #ifdef RT_USING_HW_I2C1 static struct rt1021_i2c_bus lpi2c1 = { .I2C = LPI2C1, .device_name = I2C1BUS_NAME, }; #endif /* RT_USING_HW_I2C1 */ #ifdef RT_USING_HW_I2C2 static struct rt1021_i2c_bus lpi2c2 = { .I2C = LPI2C2, .device_name = I2C2BUS_NAME, }; #endif /* RT_USING_HW_I2C2 */ #ifdef RT_USING_HW_I2C3 static struct rt1021_i2c_bus lpi2c3 = { .I2C = LPI2C3, .device_name = I2C3BUS_NAME, }; #endif /* RT_USING_HW_I2C3 */ #ifdef RT_USING_HW_I2C4 static struct rt1021_i2c_bus lpi2c4 = { .I2C = LPI2C4, .device_name = I2C4BUS_NAME, }; #endif /* RT_USING_HW_I2C4 */ #if (defined(RT_USING_HW_I2C1) || defined(RT_USING_HW_I2C2) || defined(RT_USING_HW_I2C3) || defined(RT_USING_HW_I2C4)) static rt_size_t imxrt_i2c_mst_xfer(struct rt_i2c_bus_device *bus, struct rt_i2c_msg msgs[], rt_uint32_t num); static rt_size_t imxrt_i2c_slv_xfer(struct rt_i2c_bus_device *bus, struct rt_i2c_msg msgs[], rt_uint32_t num); static rt_err_t imxrt_i2c_bus_control(struct rt_i2c_bus_device *bus, rt_uint32_t, rt_uint32_t); static const struct rt_i2c_bus_device_ops imxrt_i2c_ops = { imxrt_i2c_mst_xfer, imxrt_i2c_slv_xfer, imxrt_i2c_bus_control, }; void imxrt_lpi2c_gpio_init(struct rt1021_i2c_bus *bus) { if (bus->I2C == LPI2C1) { IOMUXC_SetPinMux( IOMUXC_GPIO_AD_B1_14_LPI2C1_SCL, 1U); IOMUXC_SetPinMux( IOMUXC_GPIO_AD_B1_15_LPI2C1_SDA, 1U); IOMUXC_SetPinConfig( IOMUXC_GPIO_AD_B1_14_LPI2C1_SCL, 0xD8B0u); IOMUXC_SetPinConfig( IOMUXC_GPIO_AD_B1_15_LPI2C1_SDA, 0xD8B0u); } else if (bus->I2C == LPI2C2) { IOMUXC_SetPinMux( IOMUXC_GPIO_AD_B1_08_LPI2C2_SCL, 1U); IOMUXC_SetPinMux( IOMUXC_GPIO_AD_B1_09_LPI2C2_SDA, 1U); IOMUXC_SetPinConfig( IOMUXC_GPIO_AD_B1_08_LPI2C2_SCL, 0xD8B0u); IOMUXC_SetPinConfig( IOMUXC_GPIO_AD_B1_09_LPI2C2_SDA, 0xD8B0u); } else if (bus->I2C == LPI2C3) { IOMUXC_SetPinMux( IOMUXC_GPIO_AD_B0_08_LPI2C3_SCL, 1U); IOMUXC_SetPinMux( IOMUXC_GPIO_AD_B0_09_LPI2C3_SDA, 1U); IOMUXC_SetPinConfig( IOMUXC_GPIO_AD_B0_08_LPI2C3_SCL, 0xD8B0u); IOMUXC_SetPinConfig( IOMUXC_GPIO_AD_B0_09_LPI2C3_SDA, 0xD8B0u); } else if (bus->I2C == LPI2C4) { IOMUXC_SetPinMux( IOMUXC_GPIO_EMC_11_LPI2C4_SCL, 1U); IOMUXC_SetPinMux( IOMUXC_GPIO_EMC_10_LPI2C4_SDA, 1U); IOMUXC_SetPinConfig( IOMUXC_GPIO_EMC_11_LPI2C4_SCL, 0xD8B0u); IOMUXC_SetPinConfig( IOMUXC_GPIO_EMC_10_LPI2C4_SDA, 0xD8B0u); } else { RT_ASSERT(RT_NULL); } } static rt_err_t imxrt_lpi2c_configure(struct rt1021_i2c_bus *bus, lpi2c_master_config_t *cfg) { RT_ASSERT(bus != RT_NULL); RT_ASSERT(cfg != RT_NULL); imxrt_lpi2c_gpio_init(bus); bus->parent.ops = &imxrt_i2c_ops; LPI2C_MasterInit(bus->I2C, cfg, LPI2C_CLOCK_FREQUENCY); return RT_EOK; } status_t LPI2C_MasterCheck(LPI2C_Type *base, uint32_t status) { status_t result = kStatus_Success; /* Check for error. These errors cause a stop to automatically be sent. We must */ /* clear the errors before a new transfer can start. */ status &= 0x3c00; if (status) { /* Select the correct error code. Ordered by severity, with bus issues first. */ if (status & kLPI2C_MasterPinLowTimeoutFlag) { result = kStatus_LPI2C_PinLowTimeout; } else if (status & kLPI2C_MasterArbitrationLostFlag) { result = kStatus_LPI2C_ArbitrationLost; } else if (status & kLPI2C_MasterNackDetectFlag) { result = kStatus_LPI2C_Nak; } else if (status & kLPI2C_MasterFifoErrFlag) { result = kStatus_LPI2C_FifoError; } else { assert(false); } /* Clear the flags. */ LPI2C_MasterClearStatusFlags(base, status); /* Reset fifos. These flags clear automatically. */ base->MCR |= LPI2C_MCR_RRF_MASK | LPI2C_MCR_RTF_MASK; } return result; } /*! * @brief Wait until the tx fifo all empty. * @param base The LPI2C peripheral base address. * @retval #kStatus_Success * @retval #kStatus_LPI2C_PinLowTimeout * @retval #kStatus_LPI2C_ArbitrationLost * @retval #kStatus_LPI2C_Nak * @retval #kStatus_LPI2C_FifoError */ static status_t LPI2C_MasterWaitForTxFifoAllEmpty(LPI2C_Type *base) { uint32_t status; size_t txCount; do { status_t result; /* Get the number of words in the tx fifo and compute empty slots. */ LPI2C_MasterGetFifoCounts(base, NULL, &txCount); /* Check for error flags. */ status = LPI2C_MasterGetStatusFlags(base); result = LPI2C_MasterCheck(base, status); if (result) { return result; } } while (txCount); return kStatus_Success; } static rt_size_t imxrt_i2c_mst_xfer(struct rt_i2c_bus_device *bus, struct rt_i2c_msg msgs[], rt_uint32_t num) { struct rt1021_i2c_bus *rt1021_i2c; rt_size_t i; RT_ASSERT(bus != RT_NULL); rt1021_i2c = (struct rt1021_i2c_bus *) bus; rt1021_i2c->msg = msgs; rt1021_i2c->msg_ptr = 0; rt1021_i2c->msg_cnt = num; rt1021_i2c->dptr = 0; for (i = 0; i < num; i++) { if (rt1021_i2c->msg[i].flags & RT_I2C_RD) { if (LPI2C_MasterStart(rt1021_i2c->I2C, rt1021_i2c->msg[i].addr, kLPI2C_Read) != kStatus_Success) { i = 0; break; } if (LPI2C_MasterWaitForTxFifoAllEmpty(rt1021_i2c->I2C) != kStatus_Success) { i = 0; break; } if (LPI2C_MasterReceive(rt1021_i2c->I2C, rt1021_i2c->msg[i].buf, rt1021_i2c->msg[i].len) != kStatus_Success) { i = 0; break; } if (LPI2C_MasterWaitForTxFifoAllEmpty(rt1021_i2c->I2C) != kStatus_Success) { i = 0; break; } } else { if (LPI2C_MasterStart(rt1021_i2c->I2C, rt1021_i2c->msg[i].addr, kLPI2C_Write) != kStatus_Success) { i = 0; break; } if (LPI2C_MasterWaitForTxFifoAllEmpty(rt1021_i2c->I2C) != kStatus_Success) { i = 0; break; } if (LPI2C_MasterSend(rt1021_i2c->I2C, rt1021_i2c->msg[i].buf, rt1021_i2c->msg[i].len) != kStatus_Success) { i = 0; break; } if (LPI2C_MasterWaitForTxFifoAllEmpty(rt1021_i2c->I2C) != kStatus_Success) { i = 0; break; } } } i2c_dbg("send stop condition\n"); if (LPI2C_MasterStop(rt1021_i2c->I2C) != kStatus_Success) { i = 0; } rt1021_i2c->msg = RT_NULL; rt1021_i2c->msg_ptr = 0; rt1021_i2c->msg_cnt = 0; rt1021_i2c->dptr = 0; return i; } static rt_size_t imxrt_i2c_slv_xfer(struct rt_i2c_bus_device *bus, struct rt_i2c_msg msgs[], rt_uint32_t num) { return 0; } static rt_err_t imxrt_i2c_bus_control(struct rt_i2c_bus_device *bus, rt_uint32_t cmd, rt_uint32_t arg) { return RT_ERROR; } #endif int rt_hw_i2c_init(void) { #if (defined(RT_USING_HW_I2C1) || defined(RT_USING_HW_I2C2) || defined(RT_USING_HW_I2C3) || defined(RT_USING_HW_I2C4)) lpi2c_master_config_t masterConfig = {0}; /*Clock setting for LPI2C*/ CLOCK_SetMux(kCLOCK_Lpi2cMux, 0); CLOCK_SetDiv(kCLOCK_Lpi2cDiv, LPI2C_CLOCK_SOURCE_DIVIDER - 1); #endif #if defined(RT_USING_HW_I2C1) LPI2C_MasterGetDefaultConfig(&masterConfig); #if defined(HW_I2C1_BADURATE_400kHZ) masterConfig.baudRate_Hz = 400000U; #elif defined(HW_I2C1_BADURATE_100kHZ) masterConfig.baudRate_Hz = 100000U; #endif imxrt_lpi2c_configure(&lpi2c1, &masterConfig); rt_i2c_bus_device_register(&lpi2c1.parent, lpi2c1.device_name); #endif #if defined(RT_USING_HW_I2C2) LPI2C_MasterGetDefaultConfig(&masterConfig); #if defined(HW_I2C2_BADURATE_400kHZ) masterConfig.baudRate_Hz = 400000U; #elif defined(HW_I2C2_BADURATE_100kHZ) masterConfig.baudRate_Hz = 100000U; #endif imxrt_lpi2c_configure(&lpi2c2, &masterConfig); rt_i2c_bus_device_register(&lpi2c2.parent, lpi2c2.device_name); #endif #if defined(RT_USING_HW_I2C3) LPI2C_MasterGetDefaultConfig(&masterConfig); #if defined(HW_I2C3_BADURATE_400kHZ) masterConfig.baudRate_Hz = 400000U; #elif defined(HW_I2C3_BADURATE_100kHZ) masterConfig.baudRate_Hz = 100000U; #endif imxrt_lpi2c_configure(&lpi2c3, &masterConfig); rt_i2c_bus_device_register(&lpi2c3.parent, lpi2c3.device_name); #endif #if defined(RT_USING_HW_I2C4) LPI2C_MasterGetDefaultConfig(&masterConfig); #if defined(HW_I2C4_BADURATE_400kHZ) masterConfig.baudRate_Hz = 400000U; #elif defined(HW_I2C4_BADURATE_100kHZ) masterConfig.baudRate_Hz = 100000U; #endif imxrt_lpi2c_configure(&lpi2c4, &masterConfig); rt_i2c_bus_device_register(&lpi2c4.parent, lpi2c4.device_name); #endif return 0; } INIT_DEVICE_EXPORT(rt_hw_i2c_init); #if defined(RT_USING_FINSH) && defined(DRV_I2C_DEBUG) #include static rt_device_t _i2c_find(const char *name) { rt_device_t dev; dev = rt_device_find(name); if (!dev) { rt_kprintf("search device failed: %s\n", name); return RT_NULL; } if (rt_device_open(dev, RT_DEVICE_OFLAG_RDWR) != RT_EOK) { rt_kprintf("open device failed: %s\n", name); return RT_NULL; } rt_kprintf("open i2c bus: %s\n", name); return dev; } static void _search_i2c_device(rt_device_t dev, uint8_t cmd) { int count = 0; struct rt_i2c_msg msgs[2]; uint8_t buf = 0; msgs[0].flags = RT_I2C_WR; msgs[0].buf = &cmd; msgs[0].len = sizeof(cmd); msgs[1].flags = RT_I2C_RD; msgs[1].buf = &buf; msgs[1].len = 1; for (int i = 0; i <= 0x7f; i++) { int len; msgs[0].addr = i; msgs[1].addr = i; len = rt_i2c_transfer((struct rt_i2c_bus_device *)dev, msgs, 2); if (len == 2) { count++; rt_kprintf("add:%02X transfer success, id: %02X\n", i, buf); } } rt_kprintf("i2c device: %d\n", count); } static int i2c_test(const char *name, uint8_t cmd) { rt_device_t dev = _i2c_find(name); if (dev == RT_NULL) { rt_kprintf("search i2c device faild\n"); return -1; } _search_i2c_device(dev, cmd); rt_device_close(dev); return 0; } FINSH_FUNCTION_EXPORT(i2c_test, e.g: i2c_test("i2c1", 0xA3)); #endif #endif /* RT_USING_I2C */