/* * Copyright (C) 2022-2024, Xiaohua Semiconductor Co., Ltd. * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2022-04-28 CDT first version * 2024-02-06 CDT support HC32F448 * 2024-04-15 CDT support HC32F472 */ /******************************************************************************* * Include files ******************************************************************************/ #include #include #ifdef RT_USING_SERIAL_V2 #if defined (BSP_USING_UART1) || defined (BSP_USING_UART2) || defined (BSP_USING_UART3) || \ defined (BSP_USING_UART4) || defined (BSP_USING_UART5) || defined (BSP_USING_UART6) || \ defined (BSP_USING_UART7) || defined (BSP_USING_UART8) || defined (BSP_USING_UART9) || \ defined (BSP_USING_UART10) #include "drv_usart_v2.h" #include "board_config.h" /******************************************************************************* * Local type definitions ('typedef') ******************************************************************************/ /******************************************************************************* * Local pre-processor symbols/macros ('#define') ******************************************************************************/ #define DMA_CH_REG(reg_base, ch) \ (*(uint32_t *)((uint32_t)(&(reg_base)) + ((ch) * 0x40UL))) #define DMA_TRANS_SET_CNT(unit, ch) \ (READ_REG32(DMA_CH_REG((unit)->DTCTL0,(ch))) >> DMA_DTCTL_CNT_POS) #define DMA_TRANS_CNT(unit, ch) \ (READ_REG32(DMA_CH_REG((unit)->MONDTCTL0, (ch))) >> DMA_DTCTL_CNT_POS) #define UART_BAUDRATE_ERR_MAX (0.025F) #if defined (HC32F460) #define FCG_USART_CLK FCG_Fcg1PeriphClockCmd #elif defined (HC32F4A0) || defined (HC32F448) || defined (HC32F472) #define FCG_USART_CLK FCG_Fcg3PeriphClockCmd #endif #define FCG_TMR0_CLK FCG_Fcg2PeriphClockCmd #define FCG_DMA_CLK FCG_Fcg0PeriphClockCmd /******************************************************************************* * Global variable definitions (declared in header file with 'extern') ******************************************************************************/ extern rt_err_t rt_hw_board_uart_init(CM_USART_TypeDef *USARTx); /******************************************************************************* * Local function prototypes ('static') ******************************************************************************/ #ifdef RT_SERIAL_USING_DMA static void hc32_dma_config(struct rt_serial_device *serial, rt_ubase_t flag); #endif /******************************************************************************* * Local variable definitions ('static') ******************************************************************************/ enum { #ifdef BSP_USING_UART1 UART1_INDEX, #endif #ifdef BSP_USING_UART2 UART2_INDEX, #endif #ifdef BSP_USING_UART3 UART3_INDEX, #endif #ifdef BSP_USING_UART4 UART4_INDEX, #endif #ifdef BSP_USING_UART5 UART5_INDEX, #endif #ifdef BSP_USING_UART6 UART6_INDEX, #endif #ifdef BSP_USING_UART7 UART7_INDEX, #endif #ifdef BSP_USING_UART8 UART8_INDEX, #endif #ifdef BSP_USING_UART9 UART9_INDEX, #endif #ifdef BSP_USING_UART10 UART10_INDEX, #endif }; static struct hc32_uart_config uart_config[] = { #ifdef BSP_USING_UART1 UART1_CONFIG, #endif #ifdef BSP_USING_UART2 UART2_CONFIG, #endif #ifdef BSP_USING_UART3 UART3_CONFIG, #endif #ifdef BSP_USING_UART4 UART4_CONFIG, #endif #ifdef BSP_USING_UART5 UART5_CONFIG, #endif #ifdef BSP_USING_UART6 UART6_CONFIG, #endif #ifdef BSP_USING_UART7 UART7_CONFIG, #endif #ifdef BSP_USING_UART8 UART8_CONFIG, #endif #ifdef BSP_USING_UART9 UART9_CONFIG, #endif #ifdef BSP_USING_UART10 UART10_CONFIG, #endif }; static struct hc32_uart uart_obj[sizeof(uart_config) / sizeof(uart_config[0])] = {0}; /******************************************************************************* * Function implementation - global ('extern') and local ('static') ******************************************************************************/ static rt_err_t hc32_configure(struct rt_serial_device *serial, struct serial_configure *cfg) { struct hc32_uart *uart; stc_usart_uart_init_t uart_init; RT_ASSERT(RT_NULL != cfg); RT_ASSERT(RT_NULL != serial); uart = rt_container_of(serial, struct hc32_uart, serial); USART_UART_StructInit(&uart_init); uart_init.u32OverSampleBit = USART_OVER_SAMPLE_8BIT; uart_init.u32Baudrate = cfg->baud_rate; uart_init.u32ClockSrc = USART_CLK_SRC_INTERNCLK; #if defined (HC32F4A0) if ((CM_USART1 == uart->config->Instance) || (CM_USART2 == uart->config->Instance) || \ (CM_USART6 == uart->config->Instance) || (CM_USART7 == uart->config->Instance)) #elif defined (HC32F460) if ((CM_USART1 == uart->config->Instance) || (CM_USART2 == uart->config->Instance) || \ (CM_USART3 == uart->config->Instance) || (CM_USART4 == uart->config->Instance)) #elif defined (HC32F448) || defined (HC32F472) if ((CM_USART1 == uart->config->Instance) || (CM_USART2 == uart->config->Instance) || \ (CM_USART4 == uart->config->Instance) || (CM_USART5 == uart->config->Instance)) #endif { uart_init.u32CKOutput = USART_CK_OUTPUT_ENABLE; } switch (cfg->data_bits) { case DATA_BITS_8: uart_init.u32DataWidth = USART_DATA_WIDTH_8BIT; break; case DATA_BITS_9: uart_init.u32DataWidth = USART_DATA_WIDTH_9BIT; break; default: uart_init.u32DataWidth = USART_DATA_WIDTH_8BIT; break; } switch (cfg->stop_bits) { case STOP_BITS_1: uart_init.u32StopBit = USART_STOPBIT_1BIT; break; case STOP_BITS_2: uart_init.u32StopBit = USART_STOPBIT_2BIT; break; default: uart_init.u32StopBit = USART_STOPBIT_1BIT; break; } switch (cfg->parity) { case PARITY_NONE: uart_init.u32Parity = USART_PARITY_NONE; break; case PARITY_EVEN: uart_init.u32Parity = USART_PARITY_EVEN; break; case PARITY_ODD: uart_init.u32Parity = USART_PARITY_ODD; break; default: uart_init.u32Parity = USART_PARITY_NONE; break; } if (BIT_ORDER_LSB == cfg->bit_order) { uart_init.u32FirstBit = USART_FIRST_BIT_LSB; } else { uart_init.u32FirstBit = USART_FIRST_BIT_MSB; } #if defined (HC32F4A0) || defined (HC32F448) || defined (HC32F472) switch (cfg->flowcontrol) { case RT_SERIAL_FLOWCONTROL_NONE: uart_init.u32HWFlowControl = USART_HW_FLOWCTRL_NONE; break; case RT_SERIAL_FLOWCONTROL_CTSRTS: uart_init.u32HWFlowControl = USART_HW_FLOWCTRL_RTS_CTS; break; default: uart_init.u32HWFlowControl = USART_HW_FLOWCTRL_NONE; break; } #endif #ifdef RT_SERIAL_USING_DMA uart->dma_rx_remaining_cnt = (serial->config.rx_bufsz <= 1UL) ? serial->config.rx_bufsz : serial->config.rx_bufsz / 2UL; #endif /* Enable USART clock */ FCG_USART_CLK(uart->config->clock, ENABLE); if (RT_EOK != rt_hw_board_uart_init(uart->config->Instance)) { return -RT_ERROR; } /* Configure UART */ uint32_t u32Div; float32_t f32Error; int32_t i32Ret = LL_ERR; USART_DeInit(uart->config->Instance); USART_UART_Init(uart->config->Instance, &uart_init, NULL); for (u32Div = 0UL; u32Div <= USART_CLK_DIV64; u32Div++) { USART_SetClockDiv(uart->config->Instance, u32Div); if ((LL_OK == USART_SetBaudrate(uart->config->Instance, uart_init.u32Baudrate, &f32Error)) && ((-UART_BAUDRATE_ERR_MAX <= f32Error) && (f32Error <= UART_BAUDRATE_ERR_MAX))) { i32Ret = LL_OK; break; } } if (i32Ret != LL_OK) { return -RT_ERROR; } /* Enable error interrupt */ #if defined (HC32F460) || defined (HC32F4A0) NVIC_EnableIRQ(uart->config->rxerr_irq.irq_config.irq_num); #elif defined (HC32F448) || defined (HC32F472) INTC_IntSrcCmd(uart->config->tx_int_src, ENABLE); INTC_IntSrcCmd(uart->config->rx_int_src, DISABLE); INTC_IntSrcCmd(uart->config->rxerr_int_src, ENABLE); NVIC_EnableIRQ(uart->config->irq_num); INTC_IntSrcCmd(uart->config->tc_irq.irq_config.int_src, ENABLE); #endif USART_FuncCmd(uart->config->Instance, USART_TX | USART_RX | USART_INT_RX, ENABLE); return RT_EOK; } static rt_err_t hc32_control(struct rt_serial_device *serial, int cmd, void *arg) { struct hc32_uart *uart; rt_ubase_t ctrl_arg = (rt_ubase_t)arg; RT_ASSERT(RT_NULL != serial); uart = rt_container_of(serial, struct hc32_uart, serial); RT_ASSERT(RT_NULL != uart->config->Instance); if (ctrl_arg & (RT_DEVICE_FLAG_RX_BLOCKING | RT_DEVICE_FLAG_RX_NON_BLOCKING)) { if (uart->uart_dma_flag & RT_DEVICE_FLAG_DMA_RX) { ctrl_arg = RT_DEVICE_FLAG_DMA_RX; } else { ctrl_arg = RT_DEVICE_FLAG_INT_RX; } } else if (ctrl_arg & (RT_DEVICE_FLAG_TX_BLOCKING | RT_DEVICE_FLAG_TX_NON_BLOCKING)) { if (uart->uart_dma_flag & RT_DEVICE_FLAG_DMA_TX) { ctrl_arg = RT_DEVICE_FLAG_DMA_TX; } else { ctrl_arg = RT_DEVICE_FLAG_INT_TX; } } switch (cmd) { /* Disable interrupt */ case RT_DEVICE_CTRL_CLR_INT: if (RT_DEVICE_FLAG_INT_RX == ctrl_arg) { #if defined (HC32F460) || defined (HC32F4A0) NVIC_DisableIRQ(uart->config->rx_irq.irq_config.irq_num); INTC_IrqSignOut(uart->config->rx_irq.irq_config.irq_num); #elif defined (HC32F448) || defined (HC32F472) INTC_IntSrcCmd(uart->config->rx_int_src, DISABLE); #endif } else if (RT_DEVICE_FLAG_INT_TX == ctrl_arg) { #if defined (HC32F460) || defined (HC32F4A0) NVIC_DisableIRQ(uart->config->tx_irq.irq_config.irq_num); NVIC_DisableIRQ(uart->config->tc_irq.irq_config.irq_num); USART_FuncCmd(uart->config->Instance, (USART_INT_TX_EMPTY | USART_INT_TX_CPLT), DISABLE); INTC_IrqSignOut(uart->config->tx_irq.irq_config.irq_num); INTC_IrqSignOut(uart->config->tc_irq.irq_config.irq_num); #elif defined (HC32F448) || defined (HC32F472) NVIC_DisableIRQ(uart->config->tc_irq.irq_config.irq_num); INTC_IrqSignOut(uart->config->tc_irq.irq_config.irq_num); USART_FuncCmd(uart->config->Instance, (USART_INT_TX_EMPTY | USART_INT_TX_CPLT), DISABLE); #endif } #ifdef RT_SERIAL_USING_DMA else if (RT_DEVICE_FLAG_DMA_RX == ctrl_arg) { NVIC_DisableIRQ(uart->config->dma_rx->irq_config.irq_num); } else if (RT_DEVICE_FLAG_DMA_TX == ctrl_arg) { USART_FuncCmd(uart->config->Instance, USART_INT_TX_CPLT, DISABLE); NVIC_DisableIRQ(uart->config->dma_tx->irq_config.irq_num); } #endif break; /* Enable interrupt */ case RT_DEVICE_CTRL_SET_INT: #if defined (HC32F460) || defined (HC32F4A0) if (RT_DEVICE_FLAG_INT_RX == ctrl_arg) { hc32_install_irq_handler(&uart->config->rx_irq.irq_config, uart->config->rx_irq.irq_callback, RT_TRUE); USART_FuncCmd(uart->config->Instance, USART_INT_RX, ENABLE); } else if (RT_DEVICE_FLAG_INT_TX == ctrl_arg) { INTC_IrqSignOut(uart->config->tx_irq.irq_config.irq_num); INTC_IrqSignOut(uart->config->tc_irq.irq_config.irq_num); hc32_install_irq_handler(&uart->config->tx_irq.irq_config, uart->config->tx_irq.irq_callback, RT_TRUE); hc32_install_irq_handler(&uart->config->tc_irq.irq_config, uart->config->tc_irq.irq_callback, RT_TRUE); USART_FuncCmd(uart->config->Instance, USART_TX, DISABLE); USART_FuncCmd(uart->config->Instance, USART_TX | USART_INT_TX_EMPTY, ENABLE); } #elif defined (HC32F448) || defined (HC32F472) /* NVIC config */ if (RT_DEVICE_FLAG_INT_RX == ctrl_arg) { /* intsrc enable */ INTC_IntSrcCmd(uart->config->rx_int_src, ENABLE); USART_FuncCmd(uart->config->Instance, USART_INT_RX, ENABLE); } else if (RT_DEVICE_FLAG_INT_TX == ctrl_arg) { NVIC_ClearPendingIRQ(uart->config->tc_irq.irq_config.irq_num); NVIC_EnableIRQ(uart->config->tc_irq.irq_config.irq_num); USART_FuncCmd(uart->config->Instance, USART_TX | USART_INT_TX_EMPTY, ENABLE); } #endif break; case RT_DEVICE_CTRL_CONFIG: if (ctrl_arg & (RT_DEVICE_FLAG_DMA_RX | RT_DEVICE_FLAG_DMA_TX)) { #ifdef RT_SERIAL_USING_DMA hc32_dma_config(serial, ctrl_arg); #endif } else { hc32_control(serial, RT_DEVICE_CTRL_SET_INT, (void *)ctrl_arg); } break; case RT_DEVICE_CHECK_OPTMODE: if (ctrl_arg & RT_DEVICE_FLAG_DMA_TX) { return RT_SERIAL_TX_BLOCKING_NO_BUFFER; } else { return RT_SERIAL_TX_BLOCKING_BUFFER; } case RT_DEVICE_CTRL_CLOSE: USART_DeInit(uart->config->Instance); break; } return RT_EOK; } static int hc32_putc(struct rt_serial_device *serial, char c) { struct hc32_uart *uart; RT_ASSERT(RT_NULL != serial); uart = rt_container_of(serial, struct hc32_uart, serial); RT_ASSERT(RT_NULL != uart->config->Instance); /* Polling mode. */ while (USART_GetStatus(uart->config->Instance, USART_FLAG_TX_CPLT) != SET); USART_WriteData(uart->config->Instance, c); return 1; } static int hc32_getc(struct rt_serial_device *serial) { int ch = -1; struct hc32_uart *uart; RT_ASSERT(RT_NULL != serial); uart = rt_container_of(serial, struct hc32_uart, serial); RT_ASSERT(RT_NULL != uart->config->Instance); if (SET == USART_GetStatus(uart->config->Instance, USART_FLAG_RX_FULL)) { ch = (rt_uint8_t)USART_ReadData(uart->config->Instance); } return ch; } static rt_ssize_t hc32_transmit(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size, rt_uint32_t tx_flag) { struct hc32_uart *uart; #ifdef RT_SERIAL_USING_DMA struct dma_config *uart_dma; #endif RT_ASSERT(RT_NULL != serial); RT_ASSERT(RT_NULL != buf); if (0 == size) { return 0; } uart = rt_container_of(serial, struct hc32_uart, serial); if (uart->uart_dma_flag & RT_DEVICE_FLAG_DMA_TX) { #ifdef RT_SERIAL_USING_DMA uart_dma = uart->config->dma_tx; if (RESET == USART_GetStatus(uart->config->Instance, USART_FLAG_TX_CPLT)) { RT_ASSERT(0); } DMA_SetSrcAddr(uart_dma->Instance, uart_dma->channel, (uint32_t)buf); DMA_SetTransCount(uart_dma->Instance, uart_dma->channel, size); DMA_ChCmd(uart_dma->Instance, uart_dma->channel, ENABLE); USART_FuncCmd(uart->config->Instance, USART_TX, ENABLE); USART_FuncCmd(uart->config->Instance, USART_INT_TX_CPLT, ENABLE); return size; #endif } hc32_control(serial, RT_DEVICE_CTRL_SET_INT, (void *)tx_flag); return size; } static void hc32_uart_rx_irq_handler(struct hc32_uart *uart) { RT_ASSERT(RT_NULL != uart); struct rt_serial_rx_fifo *rx_fifo; rx_fifo = (struct rt_serial_rx_fifo *)uart->serial.serial_rx; RT_ASSERT(rx_fifo != RT_NULL); rt_ringbuffer_putchar(&(rx_fifo->rb), (rt_uint8_t)USART_ReadData(uart->config->Instance)); rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_RX_IND); } static void hc32_uart_tx_irq_handler(struct hc32_uart *uart) { RT_ASSERT(RT_NULL != uart); struct rt_serial_tx_fifo *tx_fifo; tx_fifo = (struct rt_serial_tx_fifo *)uart->serial.serial_tx; RT_ASSERT(tx_fifo != RT_NULL); rt_uint8_t put_char = 0; if (rt_ringbuffer_getchar(&(tx_fifo->rb), &put_char)) { USART_WriteData(uart->config->Instance, put_char); } else { USART_FuncCmd(uart->config->Instance, USART_INT_TX_EMPTY, DISABLE); USART_FuncCmd(uart->config->Instance, USART_INT_TX_CPLT, ENABLE); } } static void hc32_uart_rxerr_irq_handler(struct hc32_uart *uart) { RT_ASSERT(RT_NULL != uart); RT_ASSERT(RT_NULL != uart->config->Instance); if (SET == USART_GetStatus(uart->config->Instance, (USART_FLAG_OVERRUN | USART_FLAG_PARITY_ERR | USART_FLAG_FRAME_ERR))) { USART_ReadData(uart->config->Instance); } USART_ClearStatus(uart->config->Instance, (USART_FLAG_PARITY_ERR | USART_FLAG_FRAME_ERR | USART_FLAG_OVERRUN)); } static void hc32_uart_tc_irq_handler(struct hc32_uart *uart) { RT_ASSERT(RT_NULL != uart); USART_FuncCmd(uart->config->Instance, (USART_TX | USART_INT_TX_CPLT), DISABLE); if (uart->uart_dma_flag & RT_DEVICE_FLAG_DMA_TX) { #ifdef RT_SERIAL_USING_DMA DMA_ClearTransCompleteStatus(uart->config->dma_tx->Instance, (DMA_FLAG_TC_CH0 | DMA_FLAG_BTC_CH0) << uart->config->dma_tx->channel); #endif rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_TX_DMADONE); } else { rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_TX_DONE); } } #ifdef RT_SERIAL_USING_DMA static void hc32_uart_rx_timeout(struct rt_serial_device *serial) { struct hc32_uart *uart; CM_TMR0_TypeDef *TMR0_Instance; uint8_t ch; uint32_t rtb; uint32_t alpha; uint32_t ckdiv; uint32_t cmp_val; stc_tmr0_init_t stcTmr0Init; RT_ASSERT(RT_NULL != serial); uart = rt_container_of(serial, struct hc32_uart, serial); RT_ASSERT(RT_NULL != uart->config->Instance); TMR0_Instance = uart->config->rx_timeout->TMR0_Instance; ch = uart->config->rx_timeout->channel; rtb = uart->config->rx_timeout->timeout_bits; #if defined (HC32F460) if ((CM_USART1 == uart->config->Instance) || (CM_USART3 == uart->config->Instance)) { RT_ASSERT(TMR0_CH_A == ch); } else if ((CM_USART2 == uart->config->Instance) || (CM_USART4 == uart->config->Instance)) { RT_ASSERT(TMR0_CH_B == ch); } #elif defined (HC32F4A0) if ((CM_USART1 == uart->config->Instance) || (CM_USART6 == uart->config->Instance)) { RT_ASSERT(TMR0_CH_A == ch); } else if ((CM_USART2 == uart->config->Instance) || (CM_USART7 == uart->config->Instance)) { RT_ASSERT(TMR0_CH_B == ch); } #elif defined (HC32F448) || defined (HC32F472) if ((CM_USART1 == uart->config->Instance) || (CM_USART4 == uart->config->Instance)) { RT_ASSERT(TMR0_CH_A == ch); } else if ((CM_USART2 == uart->config->Instance) || (CM_USART5 == uart->config->Instance)) { RT_ASSERT(TMR0_CH_B == ch); } #endif FCG_TMR0_CLK(uart->config->rx_timeout->clock, ENABLE); /* TIMER0 basetimer function initialize */ TMR0_SetCountValue(TMR0_Instance, ch, 0U); TMR0_StructInit(&stcTmr0Init); stcTmr0Init.u32ClockDiv = TMR0_CLK_DIV1; stcTmr0Init.u32ClockSrc = TMR0_CLK_SRC_XTAL32; if (TMR0_CLK_DIV1 == stcTmr0Init.u32ClockDiv) { alpha = 7UL; } else if (TMR0_CLK_DIV2 == stcTmr0Init.u32ClockDiv) { alpha = 5UL; } else if ((TMR0_CLK_DIV4 == stcTmr0Init.u32ClockDiv) || \ (TMR0_CLK_DIV8 == stcTmr0Init.u32ClockDiv) || \ (TMR0_CLK_DIV16 == stcTmr0Init.u32ClockDiv)) { alpha = 3UL; } else { alpha = 2UL; } /* TMR0_CMPAR calculation formula: CMPAR = (RTB / (2 ^ CKDIVA)) - alpha */ ckdiv = 1UL << (stcTmr0Init.u32ClockDiv >> TMR0_BCONR_CKDIVA_POS); cmp_val = ((rtb + ckdiv - 1UL) / ckdiv) - alpha; DDL_ASSERT(cmp_val <= 0xFFFFUL); stcTmr0Init.u16CompareValue = (uint16_t)(cmp_val); TMR0_Init(TMR0_Instance, ch, &stcTmr0Init); TMR0_HWStartCondCmd(TMR0_Instance, ch, ENABLE); TMR0_HWClearCondCmd(TMR0_Instance, ch, ENABLE); /* Clear compare flag */ TMR0_ClearStatus(TMR0_Instance, (uint32_t)(0x1UL << (ch * TMR0_STFLR_CMFB_POS))); #if defined (HC32F460) || defined (HC32F4A0) NVIC_EnableIRQ(uart->config->rx_timeout->irq_config.irq_num); #endif USART_ClearStatus(uart->config->Instance, USART_FLAG_RX_TIMEOUT); USART_FuncCmd(uart->config->Instance, (USART_RX_TIMEOUT | USART_INT_RX_TIMEOUT), ENABLE); } static void hc32_dma_config(struct rt_serial_device *serial, rt_ubase_t flag) { rt_uint32_t trans_count = (serial->config.rx_bufsz <= 1UL) ? serial->config.rx_bufsz : serial->config.rx_bufsz / 2UL; struct hc32_uart *uart; stc_dma_init_t dma_init; struct dma_config *uart_dma; RT_ASSERT(RT_NULL != serial); RT_ASSERT(RT_NULL == ((serial->config.rx_bufsz) & ((RT_ALIGN_SIZE) - 1))); uart = rt_container_of(serial, struct hc32_uart, serial); RT_ASSERT(RT_NULL != uart->config->Instance); if (RT_DEVICE_FLAG_DMA_RX == flag) { stc_dma_llp_init_t llp_init; struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx; RT_ASSERT(RT_NULL != uart->config->rx_timeout->TMR0_Instance); RT_ASSERT(RT_NULL != uart->config->dma_rx->Instance); RT_ASSERT(RT_NULL != rx_fifo); #if defined (HC32F448) || defined (HC32F472) INTC_IntSrcCmd(uart->config->rx_int_src, DISABLE); #endif uart_dma = uart->config->dma_rx; /* Initialization uart rx timeout for DMA */ hc32_uart_rx_timeout(serial); /* Enable DMA clock */ FCG_DMA_CLK(uart_dma->clock, ENABLE); DMA_ChCmd(uart_dma->Instance, uart_dma->channel, DISABLE); /* Initialize DMA */ DMA_StructInit(&dma_init); dma_init.u32IntEn = DMA_INT_ENABLE; dma_init.u32SrcAddr = (uint32_t)(&uart->config->Instance->RDR); dma_init.u32DestAddr = (uint32_t)rx_fifo->buffer; dma_init.u32DataWidth = DMA_DATAWIDTH_8BIT; dma_init.u32BlockSize = 1UL; dma_init.u32TransCount = trans_count; dma_init.u32SrcAddrInc = DMA_SRC_ADDR_FIX; dma_init.u32DestAddrInc = DMA_DEST_ADDR_INC; DMA_Init(uart_dma->Instance, uart_dma->channel, &dma_init); /* Initialize LLP */ llp_init.u32State = DMA_LLP_ENABLE; llp_init.u32Mode = DMA_LLP_WAIT; llp_init.u32Addr = (uint32_t)&uart->config->llp_desc; DMA_LlpInit(uart_dma->Instance, uart_dma->channel, &llp_init); /* Configure LLP descriptor */ uart->config->llp_desc[0U].SARx = dma_init.u32SrcAddr; uart->config->llp_desc[0U].DARx = dma_init.u32DestAddr + ((serial->config.rx_bufsz <= 1UL) ? 0UL : dma_init.u32TransCount); uart->config->llp_desc[0U].DTCTLx = (((serial->config.rx_bufsz <= 1U) ? dma_init.u32TransCount : (serial->config.rx_bufsz - dma_init.u32TransCount)) << DMA_DTCTL_CNT_POS) | \ (dma_init.u32BlockSize << DMA_DTCTL_BLKSIZE_POS); uart->config->llp_desc[0U].LLPx = (serial->config.rx_bufsz <= 1U) ? (uint32_t)&uart->config->llp_desc[0U] : (uint32_t)&uart->config->llp_desc[1U]; uart->config->llp_desc[0U].CHCTLx = (dma_init.u32SrcAddrInc | dma_init.u32DestAddrInc | dma_init.u32DataWidth | \ llp_init.u32State | llp_init.u32Mode | dma_init.u32IntEn); if (serial->config.rx_bufsz > 1UL) { uart->config->llp_desc[1U].SARx = dma_init.u32SrcAddr; uart->config->llp_desc[1U].DARx = dma_init.u32DestAddr; uart->config->llp_desc[1U].DTCTLx = (dma_init.u32TransCount << DMA_DTCTL_CNT_POS) | (dma_init.u32BlockSize << DMA_DTCTL_BLKSIZE_POS); uart->config->llp_desc[1U].LLPx = (uint32_t)&uart->config->llp_desc[0U]; uart->config->llp_desc[1U].CHCTLx = (dma_init.u32SrcAddrInc | dma_init.u32DestAddrInc | dma_init.u32DataWidth | \ llp_init.u32State | llp_init.u32Mode | dma_init.u32IntEn); } /* Enable DMA interrupt */ NVIC_EnableIRQ(uart->config->dma_rx->irq_config.irq_num); /* Enable DMA module */ DMA_Cmd(uart_dma->Instance, ENABLE); AOS_SetTriggerEventSrc(uart_dma->trigger_select, uart_dma->trigger_event); DMA_ChCmd(uart_dma->Instance, uart_dma->channel, ENABLE); } else if (RT_DEVICE_FLAG_DMA_TX == flag) { RT_ASSERT(RT_NULL != uart->config->dma_tx->Instance); uart_dma = uart->config->dma_tx; /* Enable DMA clock */ FCG_DMA_CLK(uart_dma->clock, ENABLE); DMA_ChCmd(uart_dma->Instance, uart_dma->channel, DISABLE); /* Initialize DMA */ DMA_StructInit(&dma_init); dma_init.u32IntEn = DMA_INT_DISABLE; dma_init.u32SrcAddr = 0UL; dma_init.u32DestAddr = (uint32_t)(&uart->config->Instance->TDR); dma_init.u32DataWidth = DMA_DATAWIDTH_8BIT; dma_init.u32BlockSize = 1UL; dma_init.u32TransCount = 0UL; dma_init.u32SrcAddrInc = DMA_SRC_ADDR_INC; dma_init.u32DestAddrInc = DMA_DEST_ADDR_FIX; DMA_Init(uart_dma->Instance, uart_dma->channel, &dma_init); /* Enable DMA module */ DMA_Cmd(uart_dma->Instance, ENABLE); AOS_SetTriggerEventSrc(uart_dma->trigger_select, uart_dma->trigger_event); USART_FuncCmd(uart->config->Instance, (USART_TX | USART_INT_TX_EMPTY | USART_INT_TX_CPLT), DISABLE); NVIC_EnableIRQ(uart->config->tc_irq.irq_config.irq_num); } } #if defined (BSP_UART1_RX_USING_DMA) || defined (BSP_UART2_RX_USING_DMA) || defined (BSP_UART3_RX_USING_DMA) || \ defined (BSP_UART4_RX_USING_DMA) || defined (BSP_UART5_RX_USING_DMA) || defined (BSP_UART6_RX_USING_DMA) || \ defined (BSP_UART7_RX_USING_DMA) static void hc32_uart_dma_rx_irq_handler(struct hc32_uart *uart) { rt_base_t level; rt_size_t recv_len; struct rt_serial_device *serial; RT_ASSERT(RT_NULL != uart); RT_ASSERT(RT_NULL != uart->config->Instance); serial = &uart->serial; RT_ASSERT(RT_NULL != serial); level = rt_hw_interrupt_disable(); recv_len = uart->dma_rx_remaining_cnt; uart->dma_rx_remaining_cnt = DMA_TRANS_SET_CNT(uart->config->dma_rx->Instance, uart->config->dma_rx->channel); if (recv_len) { rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8)); } rt_hw_interrupt_enable(level); } static void hc32_uart_rxto_irq_handler(struct hc32_uart *uart) { rt_base_t level; rt_size_t dma_set_cnt, cnt; rt_size_t recv_len; struct rt_serial_device *serial; serial = &uart->serial; RT_ASSERT(serial != RT_NULL); cnt = DMA_TRANS_CNT(uart->config->dma_rx->Instance, uart->config->dma_rx->channel); dma_set_cnt = DMA_TRANS_SET_CNT(uart->config->dma_rx->Instance, uart->config->dma_rx->channel); level = rt_hw_interrupt_disable(); if (cnt <= uart->dma_rx_remaining_cnt) { recv_len = uart->dma_rx_remaining_cnt - cnt; } else { recv_len = uart->dma_rx_remaining_cnt + dma_set_cnt - cnt; } if (recv_len) { uart->dma_rx_remaining_cnt = cnt; rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8)); } rt_hw_interrupt_enable(level); TMR0_Stop(uart->config->rx_timeout->TMR0_Instance, uart->config->rx_timeout->channel); USART_ClearStatus(uart->config->Instance, USART_FLAG_RX_TIMEOUT); } #endif #endif #if defined (HC32F448) || defined (HC32F472) static void hc32_usart_handler(struct hc32_uart *uart) { RT_ASSERT(RT_NULL != uart); #if defined (RT_SERIAL_USING_DMA) if ((SET == USART_GetStatus(uart->config->Instance, USART_FLAG_RX_TIMEOUT)) && \ (ENABLE == USART_GetFuncState(uart->config->Instance, USART_RX_TIMEOUT)) && \ (ENABLE == INTC_GetIntSrcState(uart->config->rxto_int_src))) { #if defined (BSP_UART1_RX_USING_DMA) || defined (BSP_UART2_RX_USING_DMA) || \ defined (BSP_UART4_RX_USING_DMA) || defined (BSP_UART5_RX_USING_DMA) hc32_uart_rxto_irq_handler(uart); #endif } #endif if ((SET == USART_GetStatus(uart->config->Instance, USART_FLAG_RX_FULL)) && \ (ENABLE == USART_GetFuncState(uart->config->Instance, USART_INT_RX)) && \ (ENABLE == INTC_GetIntSrcState(uart->config->rx_int_src))) { hc32_uart_rx_irq_handler(uart); } if ((SET == USART_GetStatus(uart->config->Instance, USART_FLAG_TX_EMPTY)) && \ (ENABLE == USART_GetFuncState(uart->config->Instance, USART_INT_TX_EMPTY)) && \ (ENABLE == INTC_GetIntSrcState(uart->config->tx_int_src))) { hc32_uart_tx_irq_handler(uart); } if ((SET == USART_GetStatus(uart->config->Instance, (USART_FLAG_OVERRUN | \ USART_FLAG_FRAME_ERR | USART_FLAG_PARITY_ERR))) && \ (ENABLE == USART_GetFuncState(uart->config->Instance, USART_INT_RX)) && \ (ENABLE == INTC_GetIntSrcState(uart->config->rxerr_int_src))) { hc32_uart_rxerr_irq_handler(uart); } } #endif #if defined (BSP_USING_UART1) #if defined (HC32F460) || defined (HC32F4A0) static void hc32_uart1_rx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rx_irq_handler(&uart_obj[UART1_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart1_tx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_tx_irq_handler(&uart_obj[UART1_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart1_rxerr_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rxerr_irq_handler(&uart_obj[UART1_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #endif /* HC32F460, HC32F4A0 */ static void hc32_uart1_tc_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_tc_irq_handler(&uart_obj[UART1_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #if defined (RT_SERIAL_USING_DMA) #if defined (BSP_UART1_RX_USING_DMA) #if defined (HC32F460) || defined (HC32F4A0) static void hc32_uart1_rxto_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rxto_irq_handler(&uart_obj[UART1_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #endif /* HC32F460, HC32F4A0 */ static void hc32_uart1_dma_rx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_dma_rx_irq_handler(&uart_obj[UART1_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #endif /* BSP_UART1_RX_USING_DMA */ #endif /* RT_SERIAL_USING_DMA */ #if defined (HC32F448) || defined (HC32F472) void USART1_Handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_usart_handler(&uart_obj[UART1_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } void USART1_TxComplete_Handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart1_tc_irq_handler(); /* leave interrupt */ rt_interrupt_leave(); } #endif /* HC32F448, HC32F472 */ #endif /* BSP_USING_UART1 */ #if defined (BSP_USING_UART2) #if defined (HC32F460) || defined (HC32F4A0) static void hc32_uart2_rx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rx_irq_handler(&uart_obj[UART2_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart2_tx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_tx_irq_handler(&uart_obj[UART2_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart2_rxerr_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rxerr_irq_handler(&uart_obj[UART2_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #endif /* HC32F460, HC32F4A0 */ static void hc32_uart2_tc_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_tc_irq_handler(&uart_obj[UART2_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #if defined (RT_SERIAL_USING_DMA) #if defined (BSP_UART2_RX_USING_DMA) #if defined (HC32F460) || defined (HC32F4A0) static void hc32_uart2_rxto_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rxto_irq_handler(&uart_obj[UART2_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #endif /* HC32F460, HC32F4A0 */ static void hc32_uart2_dma_rx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_dma_rx_irq_handler(&uart_obj[UART2_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #endif /* BSP_UART2_RX_USING_DMA */ #endif /* RT_SERIAL_USING_DMA */ #if defined (HC32F448) || defined (HC32F472) void USART2_Handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_usart_handler(&uart_obj[UART2_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } void USART2_TxComplete_Handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart2_tc_irq_handler(); /* leave interrupt */ rt_interrupt_leave(); } #endif /* HC32F448, HC32F472 */ #endif /* BSP_USING_UART2 */ #if defined (BSP_USING_UART3) #if defined (HC32F460) || defined (HC32F4A0) static void hc32_uart3_rx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rx_irq_handler(&uart_obj[UART3_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart3_tx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_tx_irq_handler(&uart_obj[UART3_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart3_rxerr_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rxerr_irq_handler(&uart_obj[UART3_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #endif /* HC32F460, HC32F4A0 */ static void hc32_uart3_tc_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_tc_irq_handler(&uart_obj[UART3_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #if defined (RT_SERIAL_USING_DMA) #if defined (BSP_UART3_RX_USING_DMA) #if defined (HC32F460) || defined (HC32F4A0) static void hc32_uart3_rxto_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rxto_irq_handler(&uart_obj[UART3_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart3_dma_rx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_dma_rx_irq_handler(&uart_obj[UART3_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #endif /* HC32F460, HC32F4A0 */ #endif /* BSP_UART3_RX_USING_DMA */ #endif /* RT_SERIAL_USING_DMA */ #if defined (HC32F448) || defined (HC32F472) void USART3_Handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_usart_handler(&uart_obj[UART3_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } void USART3_TxComplete_Handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart3_tc_irq_handler(); /* leave interrupt */ rt_interrupt_leave(); } #endif /* HC32F448, HC32F472 */ #endif /* BSP_USING_UART3 */ #if defined (BSP_USING_UART4) #if defined (HC32F460) || defined (HC32F4A0) static void hc32_uart4_rx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rx_irq_handler(&uart_obj[UART4_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart4_tx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_tx_irq_handler(&uart_obj[UART4_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart4_rxerr_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rxerr_irq_handler(&uart_obj[UART4_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #endif /* HC32F460, HC32F4A0 */ static void hc32_uart4_tc_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_tc_irq_handler(&uart_obj[UART4_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #if defined (RT_SERIAL_USING_DMA) #if defined (BSP_UART4_RX_USING_DMA) #if defined (HC32F460) || defined (HC32F4A0) static void hc32_uart4_rxto_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rxto_irq_handler(&uart_obj[UART4_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #endif /* HC32F460, HC32F4A0 */ static void hc32_uart4_dma_rx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_dma_rx_irq_handler(&uart_obj[UART4_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #endif /* BSP_UART4_RX_USING_DMA */ #endif /* RT_SERIAL_USING_DMA */ #if defined (HC32F448) || defined (HC32F472) void USART4_Handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_usart_handler(&uart_obj[UART4_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } void USART4_TxComplete_Handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart4_tc_irq_handler(); /* leave interrupt */ rt_interrupt_leave(); } #endif /* HC32F448, HC32F472 */ #endif /* BSP_USING_UART4 */ #if defined (BSP_USING_UART5) #if defined (HC32F460) || defined (HC32F4A0) static void hc32_uart5_rx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rx_irq_handler(&uart_obj[UART5_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart5_tx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_tx_irq_handler(&uart_obj[UART5_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart5_rxerr_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rxerr_irq_handler(&uart_obj[UART5_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #endif /* HC32F460, HC32F4A0 */ static void hc32_uart5_tc_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_tc_irq_handler(&uart_obj[UART5_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #if defined (HC32F448) || defined (HC32F472) #if defined (RT_SERIAL_USING_DMA) #if defined (BSP_UART5_RX_USING_DMA) static void hc32_uart5_dma_rx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_dma_rx_irq_handler(&uart_obj[UART5_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #endif /* BSP_UART5_RX_USING_DMA */ #endif /* RT_SERIAL_USING_DMA */ void USART5_Handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_usart_handler(&uart_obj[UART5_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } void USART5_TxComplete_Handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart5_tc_irq_handler(); /* leave interrupt */ rt_interrupt_leave(); } #endif /* HC32F448, HC32F472 */ #endif /* BSP_USING_UART5 */ #if defined (BSP_USING_UART6) #if defined (HC32F460) || defined (HC32F4A0) static void hc32_uart6_rx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rx_irq_handler(&uart_obj[UART6_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart6_tx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_tx_irq_handler(&uart_obj[UART6_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart6_rxerr_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rxerr_irq_handler(&uart_obj[UART6_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #endif /* HC32F460, HC32F4A0 */ static void hc32_uart6_tc_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_tc_irq_handler(&uart_obj[UART6_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #if defined (RT_SERIAL_USING_DMA) #if defined (BSP_UART6_RX_USING_DMA) #if defined (HC32F460) || defined (HC32F4A0) static void hc32_uart6_rxto_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rxto_irq_handler(&uart_obj[UART6_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart6_dma_rx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_dma_rx_irq_handler(&uart_obj[UART6_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #endif /* HC32F460, HC32F4A0 */ #endif /* BSP_UART6_RX_USING_DMA */ #endif /* RT_SERIAL_USING_DMA */ #if defined (HC32F448) || defined (HC32F472) void USART6_Handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_usart_handler(&uart_obj[UART6_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } void USART6_TxComplete_Handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart6_tc_irq_handler(); /* leave interrupt */ rt_interrupt_leave(); } #endif /* HC32F448, HC32F472 */ #endif /* BSP_USING_UART6 */ #if defined (BSP_USING_UART7) static void hc32_uart7_rx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rx_irq_handler(&uart_obj[UART7_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart7_tx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_tx_irq_handler(&uart_obj[UART7_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart7_rxerr_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rxerr_irq_handler(&uart_obj[UART7_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart7_tc_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_tc_irq_handler(&uart_obj[UART7_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #if defined (RT_SERIAL_USING_DMA) #if defined (BSP_UART7_RX_USING_DMA) static void hc32_uart7_rxto_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rxto_irq_handler(&uart_obj[UART7_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart7_dma_rx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_dma_rx_irq_handler(&uart_obj[UART7_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #endif /* BSP_UART7_RX_USING_DMA */ #endif /* RT_SERIAL_USING_DMA */ #endif /* BSP_USING_UART7 */ #if defined (BSP_USING_UART8) static void hc32_uart8_rx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rx_irq_handler(&uart_obj[UART8_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart8_tx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_tx_irq_handler(&uart_obj[UART8_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart8_rxerr_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rxerr_irq_handler(&uart_obj[UART8_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart8_tc_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_tc_irq_handler(&uart_obj[UART8_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #endif /* BSP_USING_UART8 */ #if defined (BSP_USING_UART9) static void hc32_uart9_rx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rx_irq_handler(&uart_obj[UART9_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart9_tx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_tx_irq_handler(&uart_obj[UART9_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart9_rxerr_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rxerr_irq_handler(&uart_obj[UART9_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart9_tc_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_tc_irq_handler(&uart_obj[UART9_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #endif /* BSP_USING_UART9 */ #if defined (BSP_USING_UART10) static void hc32_uart10_rx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rx_irq_handler(&uart_obj[UART10_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart10_tx_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_tx_irq_handler(&uart_obj[UART10_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart10_rxerr_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_rxerr_irq_handler(&uart_obj[UART10_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } static void hc32_uart10_tc_irq_handler(void) { /* enter interrupt */ rt_interrupt_enter(); hc32_uart_tc_irq_handler(&uart_obj[UART10_INDEX]); /* leave interrupt */ rt_interrupt_leave(); } #endif /* BSP_USING_UART10 */ /** * @brief This function gets dma witch uart used infomation include unit, * channel, interrupt etc. * @param None * @retval None */ static void hc32_uart_get_info(void) { struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT; #ifdef BSP_USING_UART1 uart_obj[UART1_INDEX].uart_dma_flag = 0; uart_obj[UART1_INDEX].serial.config = config; uart_obj[UART1_INDEX].serial.config.rx_bufsz = BSP_UART1_RX_BUFSIZE; uart_obj[UART1_INDEX].serial.config.tx_bufsz = BSP_UART1_TX_BUFSIZE; #ifdef BSP_UART1_RX_USING_DMA uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX; static struct dma_config uart1_dma_rx = UART1_DMA_RX_CONFIG; static struct hc32_uart_rxto uart1_rx_timeout = UART1_RXTO_CONFIG; uart1_dma_rx.irq_callback = hc32_uart1_dma_rx_irq_handler; #if defined (HC32F460) || defined (HC32F4A0) uart1_rx_timeout.irq_callback = hc32_uart1_rxto_irq_handler; #endif uart_config[UART1_INDEX].rx_timeout = &uart1_rx_timeout; uart_config[UART1_INDEX].dma_rx = &uart1_dma_rx; #endif #ifdef BSP_UART1_TX_USING_DMA uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX; static struct dma_config uart1_dma_tx = UART1_DMA_TX_CONFIG; uart_config[UART1_INDEX].dma_tx = &uart1_dma_tx; #endif #endif #ifdef BSP_USING_UART2 uart_obj[UART2_INDEX].uart_dma_flag = 0; uart_obj[UART2_INDEX].serial.config = config; uart_obj[UART2_INDEX].serial.config.rx_bufsz = BSP_UART2_RX_BUFSIZE; uart_obj[UART2_INDEX].serial.config.tx_bufsz = BSP_UART2_TX_BUFSIZE; #ifdef BSP_UART2_RX_USING_DMA uart_obj[UART2_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX; static struct dma_config uart2_dma_rx = UART2_DMA_RX_CONFIG; static struct hc32_uart_rxto uart2_rx_timeout = UART2_RXTO_CONFIG; uart2_dma_rx.irq_callback = hc32_uart2_dma_rx_irq_handler; #if defined (HC32F460) || defined (HC32F4A0) uart2_rx_timeout.irq_callback = hc32_uart2_rxto_irq_handler; #endif uart_config[UART2_INDEX].rx_timeout = &uart2_rx_timeout; uart_config[UART2_INDEX].dma_rx = &uart2_dma_rx; #endif #ifdef BSP_UART2_TX_USING_DMA uart_obj[UART2_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX; static struct dma_config uart2_dma_tx = UART2_DMA_TX_CONFIG; uart_config[UART2_INDEX].dma_tx = &uart2_dma_tx; #endif #endif #ifdef BSP_USING_UART3 uart_obj[UART3_INDEX].uart_dma_flag = 0; uart_obj[UART3_INDEX].serial.config = config; uart_obj[UART3_INDEX].serial.config.rx_bufsz = BSP_UART3_RX_BUFSIZE; uart_obj[UART3_INDEX].serial.config.tx_bufsz = BSP_UART3_TX_BUFSIZE; #if defined (HC32F460) #ifdef BSP_UART3_RX_USING_DMA uart_obj[UART3_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX; static struct dma_config uart3_dma_rx = UART3_DMA_RX_CONFIG; static struct hc32_uart_rxto uart3_rx_timeout = UART3_RXTO_CONFIG; uart3_dma_rx.irq_callback = hc32_uart3_dma_rx_irq_handler; uart3_rx_timeout.irq_callback = hc32_uart3_rxto_irq_handler; uart_config[UART3_INDEX].rx_timeout = &uart3_rx_timeout; uart_config[UART3_INDEX].dma_rx = &uart3_dma_rx; #endif #ifdef BSP_UART3_TX_USING_DMA uart_obj[UART3_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX; static struct dma_config uart3_dma_tx = UART3_DMA_TX_CONFIG; uart_config[UART3_INDEX].dma_tx = &uart3_dma_tx; #endif #endif #endif #ifdef BSP_USING_UART4 uart_obj[UART4_INDEX].uart_dma_flag = 0; uart_obj[UART4_INDEX].serial.config = config; uart_obj[UART4_INDEX].serial.config.rx_bufsz = BSP_UART4_RX_BUFSIZE; uart_obj[UART4_INDEX].serial.config.tx_bufsz = BSP_UART4_TX_BUFSIZE; #if defined (HC32F460) || defined (HC32F448) || defined (HC32F472) #ifdef BSP_UART4_RX_USING_DMA uart_obj[UART4_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX; static struct dma_config uart4_dma_rx = UART4_DMA_RX_CONFIG; static struct hc32_uart_rxto uart4_rx_timeout = UART4_RXTO_CONFIG; uart4_dma_rx.irq_callback = hc32_uart4_dma_rx_irq_handler; #if defined (HC32F460) uart4_rx_timeout.irq_callback = hc32_uart4_rxto_irq_handler; #endif uart_config[UART4_INDEX].rx_timeout = &uart4_rx_timeout; uart_config[UART4_INDEX].dma_rx = &uart4_dma_rx; #endif #ifdef BSP_UART4_TX_USING_DMA uart_obj[UART4_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX; static struct dma_config uart4_dma_tx = UART4_DMA_TX_CONFIG; uart_config[UART4_INDEX].dma_tx = &uart4_dma_tx; #endif #endif #endif #ifdef BSP_USING_UART5 uart_obj[UART5_INDEX].uart_dma_flag = 0; uart_obj[UART5_INDEX].serial.config = config; uart_obj[UART5_INDEX].serial.config.rx_bufsz = BSP_UART5_RX_BUFSIZE; uart_obj[UART5_INDEX].serial.config.tx_bufsz = BSP_UART5_TX_BUFSIZE; #if defined (HC32F448) || defined (HC32F472) #ifdef BSP_UART5_RX_USING_DMA uart_obj[UART5_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX; static struct dma_config uart5_dma_rx = UART5_DMA_RX_CONFIG; static struct hc32_uart_rxto uart5_rx_timeout = UART5_RXTO_CONFIG; uart5_dma_rx.irq_callback = hc32_uart5_dma_rx_irq_handler; uart_config[UART5_INDEX].rx_timeout = &uart5_rx_timeout; uart_config[UART5_INDEX].dma_rx = &uart5_dma_rx; #endif #ifdef BSP_UART5_TX_USING_DMA uart_obj[UART5_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX; static struct dma_config uart5_dma_tx = UART5_DMA_TX_CONFIG; uart_config[UART5_INDEX].dma_tx = &uart5_dma_tx; #endif #endif #endif #ifdef BSP_USING_UART6 uart_obj[UART6_INDEX].uart_dma_flag = 0; uart_obj[UART6_INDEX].serial.config = config; uart_obj[UART6_INDEX].serial.config.rx_bufsz = BSP_UART6_RX_BUFSIZE; uart_obj[UART6_INDEX].serial.config.tx_bufsz = BSP_UART6_TX_BUFSIZE; #if defined (HC32F4A0) #ifdef BSP_UART6_RX_USING_DMA uart_obj[UART6_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX; static struct dma_config uart6_dma_rx = UART6_DMA_RX_CONFIG; static struct hc32_uart_rxto uart6_rx_timeout = UART6_RXTO_CONFIG; uart6_dma_rx.irq_callback = hc32_uart6_dma_rx_irq_handler; uart6_rx_timeout.irq_callback = hc32_uart6_rxto_irq_handler; uart_config[UART6_INDEX].rx_timeout = &uart6_rx_timeout; uart_config[UART6_INDEX].dma_rx = &uart6_dma_rx; #endif #ifdef BSP_UART6_TX_USING_DMA uart_obj[UART6_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX; static struct dma_config uart6_dma_tx = UART6_DMA_TX_CONFIG; uart_config[UART6_INDEX].dma_tx = &uart6_dma_tx; #endif #endif #endif #ifdef BSP_USING_UART7 uart_obj[UART7_INDEX].uart_dma_flag = 0; uart_obj[UART7_INDEX].serial.config = config; uart_obj[UART7_INDEX].serial.config.rx_bufsz = BSP_UART7_RX_BUFSIZE; uart_obj[UART7_INDEX].serial.config.tx_bufsz = BSP_UART7_TX_BUFSIZE; #if defined (HC32F4A0) #ifdef BSP_UART7_RX_USING_DMA uart_obj[UART7_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX; static struct dma_config uart7_dma_rx = UART7_DMA_RX_CONFIG; static struct hc32_uart_rxto uart7_rx_timeout = UART7_RXTO_CONFIG; uart7_dma_rx.irq_callback = hc32_uart7_dma_rx_irq_handler; uart7_rx_timeout.irq_callback = hc32_uart7_rxto_irq_handler; uart_config[UART7_INDEX].rx_timeout = &uart7_rx_timeout; uart_config[UART7_INDEX].dma_rx = &uart7_dma_rx; #endif #ifdef BSP_UART7_TX_USING_DMA uart_obj[UART7_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX; static struct dma_config uart7_dma_tx = UART7_DMA_TX_CONFIG; uart_config[UART7_INDEX].dma_tx = &uart7_dma_tx; #endif #endif #endif #ifdef BSP_USING_UART8 uart_obj[UART8_INDEX].uart_dma_flag = 0; uart_obj[UART8_INDEX].serial.config = config; uart_obj[UART8_INDEX].serial.config.rx_bufsz = BSP_UART8_RX_BUFSIZE; uart_obj[UART8_INDEX].serial.config.tx_bufsz = BSP_UART8_TX_BUFSIZE; #endif #ifdef BSP_USING_UART9 uart_obj[UART9_INDEX].uart_dma_flag = 0; uart_obj[UART9_INDEX].serial.config = config; uart_obj[UART9_INDEX].serial.config.rx_bufsz = BSP_UART9_RX_BUFSIZE; uart_obj[UART9_INDEX].serial.config.tx_bufsz = BSP_UART9_TX_BUFSIZE; #endif #ifdef BSP_USING_UART10 uart_obj[UART10_INDEX].uart_dma_flag = 0; uart_obj[UART10_INDEX].serial.config = config; uart_obj[UART10_INDEX].serial.config.rx_bufsz = BSP_UART10_RX_BUFSIZE; uart_obj[UART10_INDEX].serial.config.tx_bufsz = BSP_UART10_TX_BUFSIZE; #endif } #if defined (HC32F460) || defined (HC32F4A0) /** * @brief This function gets uart irq handle. * @param None * @retval None */ static void hc32_get_uart_callback(void) { #ifdef BSP_USING_UART1 uart_config[UART1_INDEX].rxerr_irq.irq_callback = hc32_uart1_rxerr_irq_handler; uart_config[UART1_INDEX].rx_irq.irq_callback = hc32_uart1_rx_irq_handler; uart_config[UART1_INDEX].tx_irq.irq_callback = hc32_uart1_tx_irq_handler; struct hc32_uart_irq_config uart1_tc_irq = UART1_TX_CPLT_CONFIG; uart_config[UART1_INDEX].tc_irq = uart1_tc_irq; uart_config[UART1_INDEX].tc_irq.irq_callback = hc32_uart1_tc_irq_handler; #endif #ifdef BSP_USING_UART2 uart_config[UART2_INDEX].rxerr_irq.irq_callback = hc32_uart2_rxerr_irq_handler; uart_config[UART2_INDEX].rx_irq.irq_callback = hc32_uart2_rx_irq_handler; uart_config[UART2_INDEX].tx_irq.irq_callback = hc32_uart2_tx_irq_handler; struct hc32_uart_irq_config uart2_tc_irq = UART2_TX_CPLT_CONFIG; uart_config[UART2_INDEX].tc_irq = uart2_tc_irq; uart_config[UART2_INDEX].tc_irq.irq_callback = hc32_uart2_tc_irq_handler; #endif #ifdef BSP_USING_UART3 uart_config[UART3_INDEX].rxerr_irq.irq_callback = hc32_uart3_rxerr_irq_handler; uart_config[UART3_INDEX].rx_irq.irq_callback = hc32_uart3_rx_irq_handler; uart_config[UART3_INDEX].tx_irq.irq_callback = hc32_uart3_tx_irq_handler; struct hc32_uart_irq_config uart3_tc_irq = UART3_TX_CPLT_CONFIG; uart_config[UART3_INDEX].tc_irq = uart3_tc_irq; uart_config[UART3_INDEX].tc_irq.irq_callback = hc32_uart3_tc_irq_handler; #endif #ifdef BSP_USING_UART4 uart_config[UART4_INDEX].rxerr_irq.irq_callback = hc32_uart4_rxerr_irq_handler; uart_config[UART4_INDEX].rx_irq.irq_callback = hc32_uart4_rx_irq_handler; uart_config[UART4_INDEX].tx_irq.irq_callback = hc32_uart4_tx_irq_handler; struct hc32_uart_irq_config uart4_tc_irq = UART4_TX_CPLT_CONFIG; uart_config[UART4_INDEX].tc_irq = uart4_tc_irq; uart_config[UART4_INDEX].tc_irq.irq_callback = hc32_uart4_tc_irq_handler; #endif #ifdef BSP_USING_UART5 uart_config[UART5_INDEX].rxerr_irq.irq_callback = hc32_uart5_rxerr_irq_handler; uart_config[UART5_INDEX].rx_irq.irq_callback = hc32_uart5_rx_irq_handler; uart_config[UART5_INDEX].tx_irq.irq_callback = hc32_uart5_tx_irq_handler; struct hc32_uart_irq_config uart5_tc_irq = UART5_TX_CPLT_CONFIG; uart_config[UART5_INDEX].tc_irq = uart5_tc_irq; uart_config[UART5_INDEX].tc_irq.irq_callback = hc32_uart5_tc_irq_handler; #endif #ifdef BSP_USING_UART6 uart_config[UART6_INDEX].rxerr_irq.irq_callback = hc32_uart6_rxerr_irq_handler; uart_config[UART6_INDEX].rx_irq.irq_callback = hc32_uart6_rx_irq_handler; uart_config[UART6_INDEX].tx_irq.irq_callback = hc32_uart6_tx_irq_handler; struct hc32_uart_irq_config uart6_tc_irq = UART6_TX_CPLT_CONFIG; uart_config[UART6_INDEX].tc_irq = uart6_tc_irq; uart_config[UART6_INDEX].tc_irq.irq_callback = hc32_uart6_tc_irq_handler; #endif #ifdef BSP_USING_UART7 uart_config[UART7_INDEX].rxerr_irq.irq_callback = hc32_uart7_rxerr_irq_handler; uart_config[UART7_INDEX].rx_irq.irq_callback = hc32_uart7_rx_irq_handler; uart_config[UART7_INDEX].tx_irq.irq_callback = hc32_uart7_tx_irq_handler; struct hc32_uart_irq_config uart7_tc_irq = UART7_TX_CPLT_CONFIG; uart_config[UART7_INDEX].tc_irq = uart7_tc_irq; uart_config[UART7_INDEX].tc_irq.irq_callback = hc32_uart7_tc_irq_handler; #endif #ifdef BSP_USING_UART8 uart_config[UART8_INDEX].rxerr_irq.irq_callback = hc32_uart8_rxerr_irq_handler; uart_config[UART8_INDEX].rx_irq.irq_callback = hc32_uart8_rx_irq_handler; uart_config[UART8_INDEX].tx_irq.irq_callback = hc32_uart8_tx_irq_handler; struct hc32_uart_irq_config uart8_tc_irq = UART8_TX_CPLT_CONFIG; uart_config[UART8_INDEX].tc_irq = uart8_tc_irq; uart_config[UART8_INDEX].tc_irq.irq_callback = hc32_uart8_tc_irq_handler; #endif #ifdef BSP_USING_UART9 uart_config[UART9_INDEX].rxerr_irq.irq_callback = hc32_uart9_rxerr_irq_handler; uart_config[UART9_INDEX].rx_irq.irq_callback = hc32_uart9_rx_irq_handler; uart_config[UART9_INDEX].tx_irq.irq_callback = hc32_uart9_tx_irq_handler; struct hc32_uart_irq_config uart9_tc_irq = UART9_TX_CPLT_CONFIG; uart_config[UART9_INDEX].tc_irq = uart9_tc_irq; uart_config[UART9_INDEX].tc_irq.irq_callback = hc32_uart9_tc_irq_handler; #endif #ifdef BSP_USING_UART10 uart_config[UART10_INDEX].rxerr_irq.irq_callback = hc32_uart10_rxerr_irq_handler; uart_config[UART10_INDEX].rx_irq.irq_callback = hc32_uart10_rx_irq_handler; uart_config[UART10_INDEX].tx_irq.irq_callback = hc32_uart10_tx_irq_handler; struct hc32_uart_irq_config uart10_tc_irq = UART10_TX_CPLT_CONFIG; uart_config[UART10_INDEX].tc_irq = uart10_tc_irq; uart_config[UART10_INDEX].tc_irq.irq_callback = hc32_uart10_tc_irq_handler; #endif } #elif defined (HC32F448) || defined (HC32F472) /** * @brief This function gets uart irq handle. * @param None * @retval None */ static void hc32_get_uart_callback(void) { #ifdef BSP_USING_UART1 struct hc32_uart_irq_config uart1_tc_irq = UART1_TX_CPLT_CONFIG; uart_config[UART1_INDEX].tc_irq = uart1_tc_irq; uart_config[UART1_INDEX].tc_irq.irq_callback = hc32_uart1_tc_irq_handler; #endif #ifdef BSP_USING_UART2 struct hc32_uart_irq_config uart2_tc_irq = UART2_TX_CPLT_CONFIG; uart_config[UART2_INDEX].tc_irq = uart2_tc_irq; uart_config[UART2_INDEX].tc_irq.irq_callback = hc32_uart2_tc_irq_handler; #endif #ifdef BSP_USING_UART3 struct hc32_uart_irq_config uart3_tc_irq = UART3_TX_CPLT_CONFIG; uart_config[UART3_INDEX].tc_irq = uart3_tc_irq; uart_config[UART3_INDEX].tc_irq.irq_callback = hc32_uart3_tc_irq_handler; #endif #ifdef BSP_USING_UART4 struct hc32_uart_irq_config uart4_tc_irq = UART4_TX_CPLT_CONFIG; uart_config[UART4_INDEX].tc_irq = uart4_tc_irq; uart_config[UART4_INDEX].tc_irq.irq_callback = hc32_uart4_tc_irq_handler; #endif #ifdef BSP_USING_UART5 struct hc32_uart_irq_config uart5_tc_irq = UART5_TX_CPLT_CONFIG; uart_config[UART5_INDEX].tc_irq = uart5_tc_irq; uart_config[UART5_INDEX].tc_irq.irq_callback = hc32_uart5_tc_irq_handler; #endif #ifdef BSP_USING_UART6 struct hc32_uart_irq_config uart6_tc_irq = UART6_TX_CPLT_CONFIG; uart_config[UART6_INDEX].tc_irq = uart6_tc_irq; uart_config[UART6_INDEX].tc_irq.irq_callback = hc32_uart6_tc_irq_handler; #endif } #endif /* HC32F448, HC32F472 */ static const struct rt_uart_ops hc32_uart_ops = { .configure = hc32_configure, .control = hc32_control, .putc = hc32_putc, .getc = hc32_getc, .transmit = hc32_transmit }; int rt_hw_usart_init(void) { rt_err_t result = RT_EOK; rt_size_t obj_num = sizeof(uart_obj) / sizeof(struct hc32_uart); hc32_uart_get_info(); hc32_get_uart_callback(); for (int i = 0; i < obj_num; i++) { /* init UART object */ uart_obj[i].serial.ops = &hc32_uart_ops; uart_obj[i].config = &uart_config[i]; #if defined (HC32F460) || defined (HC32F4A0) /* register the handle */ hc32_install_irq_handler(&uart_config[i].rxerr_irq.irq_config, uart_config[i].rxerr_irq.irq_callback, RT_FALSE); #endif #ifdef RT_SERIAL_USING_DMA if (uart_obj[i].uart_dma_flag & RT_DEVICE_FLAG_DMA_RX) { hc32_install_irq_handler(&uart_config[i].dma_rx->irq_config, uart_config[i].dma_rx->irq_callback, RT_FALSE); #if defined (HC32F460) || defined (HC32F4A0) hc32_install_irq_handler(&uart_config[i].rx_timeout->irq_config, uart_config[i].rx_timeout->irq_callback, RT_FALSE); #endif } if (uart_obj[i].uart_dma_flag & RT_DEVICE_FLAG_DMA_TX) { hc32_install_irq_handler(&uart_config[i].tc_irq.irq_config, uart_config[i].tc_irq.irq_callback, RT_FALSE); } #endif /* register UART device */ result = rt_hw_serial_register(&uart_obj[i].serial, uart_obj[i].config->name, (RT_DEVICE_FLAG_RDWR | uart_obj[i].uart_dma_flag), &uart_obj[i]); RT_ASSERT(result == RT_EOK); } return result; } #endif #endif /* RT_USING_SERIAL_V2 */ /******************************************************************************* * EOF (not truncated) ******************************************************************************/