/* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2019-01-31 flybreak first version * 2019-07-16 WillianChan Increase the output of sensor information * 2020-02-22 luhuadong Add vendor info and sensor types for cmd * 2022-12-17 Meco Man re-implement sensor framework */ #include #define DBG_TAG "sensor_v2.cmd" #define DBG_LVL DBG_INFO #include #include #include static rt_sem_t sensor_rx_sem = RT_NULL; static const char *sensor_get_type_name(rt_sensor_info_t info) { switch(info->type) { case RT_SENSOR_TYPE_ACCE: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_ACCE); case RT_SENSOR_TYPE_GYRO: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_GYRO); case RT_SENSOR_TYPE_MAG: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_MAG); case RT_SENSOR_TYPE_TEMP: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_TEMP); case RT_SENSOR_TYPE_HUMI: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_HUMI); case RT_SENSOR_TYPE_BARO: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_BARO); case RT_SENSOR_TYPE_LIGHT: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_LIGHT); case RT_SENSOR_TYPE_PROXIMITY: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_PROXIMITY); case RT_SENSOR_TYPE_HR: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_HR); case RT_SENSOR_TYPE_TVOC: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_TVOC); case RT_SENSOR_TYPE_NOISE: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_NOISE); case RT_SENSOR_TYPE_STEP: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_STEP); case RT_SENSOR_TYPE_FORCE: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_FORCE); case RT_SENSOR_TYPE_DUST: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_DUST); case RT_SENSOR_TYPE_ECO2: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_ECO2); case RT_SENSOR_TYPE_GNSS: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_GNSS); case RT_SENSOR_TYPE_TOF: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_TOF); case RT_SENSOR_TYPE_SPO2: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_SPO2); case RT_SENSOR_TYPE_IAQ: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_IAQ); case RT_SENSOR_TYPE_ETOH: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_ETOH); case RT_SENSOR_TYPE_BP: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_BP); case RT_SENSOR_TYPE_VOLTAGE: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_VOLTAGE); case RT_SENSOR_TYPE_CURRENT: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_CURRENT); case RT_SENSOR_TYPE_NONE: default: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_TYPE_NONE); } } static const char *sensor_get_vendor_name(rt_sensor_info_t info) { switch(info->vendor) { case RT_SENSOR_VENDOR_VIRTUAL: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_VIRTUAL); case RT_SENSOR_VENDOR_ONCHIP: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_ONCHIP); case RT_SENSOR_VENDOR_STM: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_STM); case RT_SENSOR_VENDOR_BOSCH: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_BOSCH); case RT_SENSOR_VENDOR_INVENSENSE: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_INVENSENSE); case RT_SENSOR_VENDOR_SEMTECH: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_SEMTECH); case RT_SENSOR_VENDOR_GOERTEK: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_GOERTEK); case RT_SENSOR_VENDOR_MIRAMEMS: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_MIRAMEMS); case RT_SENSOR_VENDOR_DALLAS: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_DALLAS); case RT_SENSOR_VENDOR_ASAIR: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_ASAIR); case RT_SENSOR_VENDOR_SHARP: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_SHARP); case RT_SENSOR_VENDOR_SENSIRION: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_SENSIRION); case RT_SENSOR_VENDOR_TI: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_TI); case RT_SENSOR_VENDOR_PLANTOWER: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_PLANTOWER); case RT_SENSOR_VENDOR_AMS: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_AMS); case RT_SENSOR_VENDOR_MAXIM: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_MAXIM); case RT_SENSOR_VENDOR_MELEXIS: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_MELEXIS); case RT_SENSOR_VENDOR_LSC: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_LSC); case RT_SENSOR_VENDOR_UNKNOWN: default: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_VENDOR_UNKNOWN); } } static const char *sensor_get_unit_name(rt_sensor_info_t info) { switch(info->unit) { case RT_SENSOR_UNIT_MG: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MG); case RT_SENSOR_UNIT_MDPS: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MDPS); case RT_SENSOR_UNIT_MGAUSS: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MGAUSS); case RT_SENSOR_UNIT_LUX: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_LUX); case RT_SENSOR_UNIT_M: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_M); case RT_SENSOR_UNIT_CM: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_CM); case RT_SENSOR_UNIT_MM: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MM); case RT_SENSOR_UNIT_PA: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_PA); case RT_SENSOR_UNIT_MMHG: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MMHG); case RT_SENSOR_UNIT_PERCENTAGE: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_PERCENTAGE); case RT_SENSOR_UNIT_PERMILLAGE: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_PERMILLAGE); case RT_SENSOR_UNIT_CELSIUS: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_CELSIUS); case RT_SENSOR_UNIT_FAHRENHEIT: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_FAHRENHEIT); case RT_SENSOR_UNIT_KELVIN: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_KELVIN); case RT_SENSOR_UNIT_HZ: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_HZ); case RT_SENSOR_UNIT_V: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_V); case RT_SENSOR_UNIT_MV: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MV); case RT_SENSOR_UNIT_A: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_A); case RT_SENSOR_UNIT_MA: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MA); case RT_SENSOR_UNIT_N: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_N); case RT_SENSOR_UNIT_MN: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MN); case RT_SENSOR_UNIT_BPM: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_BPM); case RT_SENSOR_UNIT_PPM: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_PPM); case RT_SENSOR_UNIT_PPB: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_PPB); case RT_SENSOR_UNIT_DMS: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_DMS); case RT_SENSOR_UNIT_DD: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_DD); case RT_SENSOR_UNIT_MGM3: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_MGM3); case RT_SENSOR_UNIT_NONE: default: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_UNIT_NONE); } } static const char* sensor_get_accuracy_mode_name(rt_sensor_info_t info) { switch(RT_SENSOR_MODE_GET_ACCURACY(info->mode)) { case RT_SENSOR_MODE_ACCURACY_HIGHEST: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_ACCURACY_HIGHEST); case RT_SENSOR_MODE_ACCURACY_HIGH: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_ACCURACY_HIGH); case RT_SENSOR_MODE_ACCURACY_MEDIUM: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_ACCURACY_MEDIUM); case RT_SENSOR_MODE_ACCURACY_LOW: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_ACCURACY_LOW); case RT_SENSOR_MODE_ACCURACY_LOWEST: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_ACCURACY_LOWEST); case RT_SENSOR_MODE_ACCURACY_NOTRUST: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_ACCURACY_NOTRUST); default: rt_kprintf("accuracy mode illegal!\n"); return ""; } } static const char* sensor_get_power_mode_name(rt_sensor_info_t info) { switch(RT_SENSOR_MODE_GET_POWER(info->mode)) { case RT_SENSOR_MODE_POWER_HIGHEST: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_POWER_HIGHEST); case RT_SENSOR_MODE_POWER_HIGH: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_POWER_HIGH); case RT_SENSOR_MODE_POWER_MEDIUM: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_POWER_MEDIUM); case RT_SENSOR_MODE_POWER_LOW: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_POWER_LOW); case RT_SENSOR_MODE_POWER_LOWEST: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_POWER_LOWEST); case RT_SENSOR_MODE_POWER_DOWN: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_POWER_DOWN); default: rt_kprintf("power mode illegal!\n"); return ""; } } static const char* sensor_get_fetch_mode_name(rt_sensor_info_t info) { switch(RT_SENSOR_MODE_GET_FETCH(info->mode)) { case RT_SENSOR_MODE_FETCH_POLLING: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_FETCH_POLLING); case RT_SENSOR_MODE_FETCH_INT: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_FETCH_INT); case RT_SENSOR_MODE_FETCH_FIFO: return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_MODE_FETCH_FIFO); default: rt_kprintf("fetch data mode illegal!\n"); return ""; } } static void sensor_show_data(rt_size_t num, rt_sensor_t sensor, struct rt_sensor_data *sensor_data) { const char *unit_name = sensor_get_unit_name(&sensor->info); switch (sensor->info.type) { case RT_SENSOR_TYPE_ACCE: rt_kprintf("num:%d, x:%f, y:%f, z:%f %s, timestamp:%u\n", num, sensor_data->data.acce.x, sensor_data->data.acce.y, sensor_data->data.acce.z, unit_name, sensor_data->timestamp); break; case RT_SENSOR_TYPE_GYRO: rt_kprintf("num:%d, x:%f, y:%f, z:%f %s, timestamp:%u\n", num, sensor_data->data.gyro.x, sensor_data->data.gyro.y, sensor_data->data.gyro.z, unit_name, sensor_data->timestamp); break; case RT_SENSOR_TYPE_MAG: rt_kprintf("num:%d, x:%f, y:%f, z:%f %s, timestamp:%u\n", num, sensor_data->data.mag.x, sensor_data->data.mag.y, sensor_data->data.mag.z, unit_name, sensor_data->timestamp); break; case RT_SENSOR_TYPE_GNSS: rt_kprintf("num:%d, lon:%f, lat:%f %s, timestamp:%u\n", num, sensor_data->data.coord.longitude, sensor_data->data.coord.latitude, unit_name, sensor_data->timestamp); break; case RT_SENSOR_TYPE_TEMP: rt_kprintf("num:%d, temp:%f%s, timestamp:%u\n", num, sensor_data->data.temp, unit_name, sensor_data->timestamp); break; case RT_SENSOR_TYPE_HUMI: rt_kprintf("num:%d, humi:%f%s, timestamp:%u\n", num, sensor_data->data.humi, unit_name, sensor_data->timestamp); break; case RT_SENSOR_TYPE_BARO: rt_kprintf("num:%d, press:%f%s, timestamp:%u\n", num, sensor_data->data.baro, unit_name, sensor_data->timestamp); break; case RT_SENSOR_TYPE_LIGHT: rt_kprintf("num:%d, light:%f%s, timestamp:%u\n", num, sensor_data->data.light, unit_name, sensor_data->timestamp); break; case RT_SENSOR_TYPE_PROXIMITY: case RT_SENSOR_TYPE_TOF: rt_kprintf("num:%d, distance:%f%s, timestamp:%u\n", num, sensor_data->data.proximity, unit_name, sensor_data->timestamp); break; case RT_SENSOR_TYPE_HR: rt_kprintf("num:%d, heart rate:%f%s, timestamp:%u\n", num, sensor_data->data.hr, unit_name, sensor_data->timestamp); break; case RT_SENSOR_TYPE_TVOC: rt_kprintf("num:%d, tvoc:%f%s, timestamp:%u\n", num, sensor_data->data.tvoc, unit_name, sensor_data->timestamp); break; case RT_SENSOR_TYPE_NOISE: rt_kprintf("num:%d, noise:%f%s, timestamp:%u\n", num, sensor_data->data.noise, unit_name, sensor_data->timestamp); break; case RT_SENSOR_TYPE_STEP: rt_kprintf("num:%d, step:%f%s, timestamp:%u\n", num, sensor_data->data.step, unit_name, sensor_data->timestamp); break; case RT_SENSOR_TYPE_FORCE: rt_kprintf("num:%d, force:%f%s, timestamp:%u\n", num, sensor_data->data.force, unit_name, sensor_data->timestamp); break; case RT_SENSOR_TYPE_DUST: rt_kprintf("num:%d, dust:%f%s, timestamp:%u\n", num, sensor_data->data.dust, unit_name, sensor_data->timestamp); break; case RT_SENSOR_TYPE_ECO2: rt_kprintf("num:%d, eco2:%f%s, timestamp:%u\n", num, sensor_data->data.eco2, unit_name, sensor_data->timestamp); break; case RT_SENSOR_TYPE_IAQ: rt_kprintf("num:%d, IAQ:%f%s, timestamp:%u\n", num, sensor_data->data.iaq, unit_name, sensor_data->timestamp); break; case RT_SENSOR_TYPE_ETOH: rt_kprintf("num:%d, EtOH:%f%s, timestamp:%u\n", num, sensor_data->data.etoh, unit_name, sensor_data->timestamp); break; case RT_SENSOR_TYPE_BP: rt_kprintf("num:%d, bp.sbp:%f, bp.dbp:%f %s, timestamp:%u\n", num, sensor_data->data.bp.sbp, sensor_data->data.bp.dbp, unit_name, sensor_data->timestamp); break; case RT_SENSOR_TYPE_NONE: default: rt_kprintf("Unknown type of sensor!\n"); break; } } static const char* sensor_get_intf_name(rt_sensor_t sensor) { rt_uint8_t type = sensor->config.intf.type; if (type | RT_SENSOR_INTF_I2C) { return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_INTF_I2C); } else if (type | RT_SENSOR_INTF_SPI) { return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_INTF_SPI); } else if (type | RT_SENSOR_INTF_UART) { return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_INTF_UART); } else if (type | RT_SENSOR_INTF_ONEWIRE) { return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_INTF_ONEWIRE); } else if (type | RT_SENSOR_INTF_CAN) { return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_INTF_CAN); } else if (type | RT_SENSOR_INTF_MODBUS) { return RT_SENSOR_MACRO_GET_NAME(RT_SENSOR_INTF_MODBUS); } else { return ""; } } static rt_err_t rx_callback(rt_device_t dev, rt_size_t size) { rt_sem_release(sensor_rx_sem); return 0; } static void sensor_fifo_rx_entry(void *parameter) { rt_sensor_t sensor = (rt_sensor_t)parameter; struct rt_sensor_data *data = RT_NULL; rt_size_t res, i; data = (struct rt_sensor_data *)rt_calloc(sensor->info.fifo_max, sizeof(struct rt_sensor_data)); if (data == RT_NULL) { LOG_E("Memory allocation failed!"); } while (1) { rt_sem_take(sensor_rx_sem, RT_WAITING_FOREVER); res = rt_device_read((rt_device_t)sensor, 0, data, sensor->info.fifo_max); for (i = 0; i < res; i++) { sensor_show_data(i, sensor, &data[i]); } } } static void sensor_fifo(int argc, char **argv) { static rt_thread_t tid1 = RT_NULL; rt_device_t dev = RT_NULL; rt_sensor_t sensor; dev = rt_device_find(argv[1]); if (dev == RT_NULL) { LOG_E("Can't find device:%s", argv[1]); return; } sensor = (rt_sensor_t)dev; if (rt_device_open(dev, RT_DEVICE_FLAG_FIFO_RX) != RT_EOK) { LOG_E("open device failed!"); return; } if (sensor_rx_sem == RT_NULL) { sensor_rx_sem = rt_sem_create("sen_rx_sem", 0, RT_IPC_FLAG_FIFO); } else { LOG_E("The thread is running, please reboot and try again"); return; } tid1 = rt_thread_create("sen_rx_thread", sensor_fifo_rx_entry, sensor, 1024, 15, 5); if (tid1 != RT_NULL) rt_thread_startup(tid1); rt_device_set_rx_indicate(dev, rx_callback); } MSH_CMD_EXPORT(sensor_fifo, Sensor fifo mode test function); static void sensor_irq_rx_entry(void *parameter) { rt_device_t dev = (rt_device_t)parameter; rt_sensor_t sensor = (rt_sensor_t)parameter; struct rt_sensor_data data; rt_size_t res, i = 0; while (1) { rt_sem_take(sensor_rx_sem, RT_WAITING_FOREVER); res = rt_device_read(dev, 0, &data, 1); if (res == 1) { sensor_show_data(i++, sensor, &data); } } } static void sensor_int(int argc, char **argv) { static rt_thread_t tid1 = RT_NULL; rt_device_t dev = RT_NULL; rt_sensor_t sensor; dev = rt_device_find(argv[1]); if (dev == RT_NULL) { LOG_E("Can't find device:%s", argv[1]); return; } sensor = (rt_sensor_t)dev; if (sensor_rx_sem == RT_NULL) { sensor_rx_sem = rt_sem_create("sen_rx_sem", 0, RT_IPC_FLAG_FIFO); } else { LOG_E("The thread is running, please reboot and try again"); return; } tid1 = rt_thread_create("sen_rx_thread", sensor_irq_rx_entry, sensor, 1024, 15, 5); if (tid1 != RT_NULL) rt_thread_startup(tid1); rt_device_set_rx_indicate(dev, rx_callback); if (rt_device_open(dev, RT_DEVICE_FLAG_INT_RX) != RT_EOK) { LOG_E("open device failed!"); return; } } MSH_CMD_EXPORT(sensor_int, Sensor interrupt mode test function); static void sensor_polling(int argc, char **argv) { rt_uint16_t num = 10; rt_device_t dev = RT_NULL; rt_sensor_t sensor; struct rt_sensor_data data; rt_size_t res, i; rt_int32_t delay; rt_err_t result; dev = rt_device_find(argv[1]); if (dev == RT_NULL) { LOG_E("Can't find device:%s", argv[1]); return; } if (argc > 2) num = atoi(argv[2]); sensor = (rt_sensor_t)dev; delay = sensor->info.acquire_min > 100 ? sensor->info.acquire_min : 100; result = rt_device_open(dev, RT_DEVICE_FLAG_RDONLY); if (result != RT_EOK) { LOG_E("open device failed! error code : %d", result); return; } for (i = 0; i < num; i++) { res = rt_device_read(dev, 0, &data, 1); if (res != 1) { LOG_E("read data failed!size is %d", res); } else { sensor_show_data(i, sensor, &data); } rt_thread_mdelay(delay); } rt_device_close(dev); } MSH_CMD_EXPORT(sensor_polling, Sensor polling mode test function); static void sensor_cmd_warning_unknown(void) { LOG_W("Unknown command, please enter 'sensor' get help information!"); rt_kprintf("sensor [OPTION] [PARAM]\n"); rt_kprintf(" list list all sensor devices\n"); rt_kprintf(" probe probe sensor by given name\n"); rt_kprintf(" info get sensor information\n"); rt_kprintf(" read [num] read [num] times sensor (default 5)\n"); rt_kprintf(" power [mode] set or get power mode\n"); rt_kprintf(" accuracy [mode] set or get accuracy mode\n"); rt_kprintf(" fetch [mode] set or get fetch data mode\n"); rt_kprintf(" reset reset sensor chip\n"); } static void sensor_cmd_warning_probe(void) { LOG_W("Please probe sensor device first!"); } static void sensor(int argc, char **argv) { static rt_device_t dev = RT_NULL; struct rt_sensor_data data; rt_sensor_t sensor; rt_size_t res, i; rt_int32_t delay; /* If the number of arguments less than 2 */ if (argc < 2) { sensor_cmd_warning_unknown(); return; } else if (!rt_strcmp(argv[1], "info")) { if (dev == RT_NULL) { sensor_cmd_warning_probe(); return ; } sensor = (rt_sensor_t)dev; rt_kprintf("name :%s\n", sensor->info.name); rt_kprintf("type: :%s\n", sensor_get_type_name(&sensor->info)); rt_kprintf("vendor :%s\n", sensor_get_vendor_name(&sensor->info)); rt_kprintf("unit :%s\n", sensor_get_unit_name(&sensor->info)); rt_kprintf("fetch data:%s\n", sensor_get_fetch_mode_name(&sensor->info)); rt_kprintf("power :%s\n", sensor_get_power_mode_name(&sensor->info)); rt_kprintf("accuracy :%s\n", sensor_get_accuracy_mode_name(&sensor->info)); rt_kprintf("range max :%f\n", sensor->info.scale.range_max); rt_kprintf("range min :%f\n", sensor->info.scale.range_min); rt_kprintf("resolution:%f\n", sensor->info.accuracy.resolution); rt_kprintf("error :%f\n", sensor->info.accuracy.error); rt_kprintf("acquire min:%fms\n", sensor->info.acquire_min); rt_kprintf("fifo max :%d\n", sensor->info.fifo_max); rt_kprintf("interface type :%s\n", sensor_get_intf_name(sensor)); rt_kprintf("interface device :%s\n", sensor->config.intf.dev_name); } else if (!rt_strcmp(argv[1], "read")) { rt_uint16_t num = 5; if (dev == RT_NULL) { sensor_cmd_warning_probe(); return; } if (argc == 3) { num = atoi(argv[2]); } sensor = (rt_sensor_t)dev; delay = sensor->info.acquire_min > 100 ? sensor->info.acquire_min : 100; for (i = 0; i < num; i++) { res = rt_device_read(dev, 0, &data, 1); if (res != 1) { LOG_E("read data failed!size is %d", res); } else { sensor_show_data(i, sensor, &data); } rt_thread_mdelay(delay); } } else if (!rt_strcmp(argv[1], "list")) { struct rt_object *object; struct rt_list_node *node; struct rt_object_information *information; rt_sensor_t sensor_dev; information = rt_object_get_information(RT_Object_Class_Device); if(information == RT_NULL) return; rt_kprintf("device name sensor name sensor type mode resolution range\n"); rt_kprintf("----------- ------------- ------------------ ---- ---------- ----------\n"); for (node = information->object_list.next; node != &(information->object_list); node = node->next) { object = rt_list_entry(node, struct rt_object, list); sensor_dev = (rt_sensor_t)object; if (sensor_dev->parent.type != RT_Device_Class_Sensor) continue; rt_kprintf("%-*.*s %-*s %-*s %u%u%u %-*f %.*f - %.*f%-*s\n", RT_NAME_MAX+3, RT_NAME_MAX, sensor_dev->parent.parent.name, 13, sensor_dev->info.name, 18, sensor_get_type_name(&sensor_dev->info), RT_SENSOR_MODE_GET_ACCURACY(sensor_dev->info.mode), RT_SENSOR_MODE_GET_POWER(sensor_dev->info.mode), RT_SENSOR_MODE_GET_FETCH(sensor_dev->info.mode), 10, sensor_dev->info.accuracy.resolution, 2, sensor_dev->info.scale.range_min, 2, sensor_dev->info.scale.range_max, 5, sensor_get_unit_name(&sensor_dev->info)); } } else if (!rt_strcmp(argv[1], "reset")) { if (dev == RT_NULL) { sensor_cmd_warning_probe(); return; } if (rt_device_control(dev, RT_SENSOR_CTRL_SOFT_RESET, RT_NULL) != RT_EOK) { LOG_E("This sensor doesn't support this command!"); } } else if (!rt_strcmp(argv[1], "probe")) { rt_uint8_t reg = 0xFF; rt_device_t new_dev; if (argc < 3) { sensor_cmd_warning_unknown(); return; } new_dev = rt_device_find(argv[2]); if (new_dev == RT_NULL) { LOG_E("Can't find device:%s", argv[2]); return; } if (rt_device_open(new_dev, RT_DEVICE_FLAG_RDWR) != RT_EOK) { LOG_E("open device failed!"); return; } if (rt_device_control(new_dev, RT_SENSOR_CTRL_GET_ID, ®) == RT_EOK) { rt_kprintf("Sensor Chip ID: %#x\n", reg); } if (dev) { rt_device_close(dev); } dev = new_dev; } else if (!rt_strcmp(argv[1], "power")) { rt_uint32_t mode; if (dev == RT_NULL) { sensor_cmd_warning_probe(); return; } sensor = (rt_sensor_t)dev; if (argc == 2) { rt_kprintf("current power mode: %s\n", sensor_get_power_mode_name(&sensor->info)); } else if (argc == 3) { mode = atoi(argv[2]); if (rt_device_control(dev, RT_SENSOR_CTRL_SET_POWER_MODE, (void *)mode) == RT_EOK) { rt_kprintf("set new power mode as: %s\n", sensor_get_power_mode_name(&sensor->info)); } else { LOG_E("Don't support! Set new power mode error!"); } } else { sensor_cmd_warning_unknown(); } } else if (!rt_strcmp(argv[1], "accuracy")) { rt_uint32_t mode; if (dev == RT_NULL) { sensor_cmd_warning_probe(); return; } sensor = (rt_sensor_t)dev; if (argc == 2) { rt_kprintf("current accuracy mode: %s\n", sensor_get_accuracy_mode_name(&sensor->info)); } else if (argc == 3) { mode = atoi(argv[2]); if (rt_device_control(dev, RT_SENSOR_CTRL_SET_ACCURACY_MODE, (void *)mode) == RT_EOK) { rt_kprintf("set new accuracy mode as: %s\n", sensor_get_accuracy_mode_name(&sensor->info)); } else { LOG_E("Don't support! Set new accuracy mode error!"); } } else { sensor_cmd_warning_unknown(); } } else if (!rt_strcmp(argv[1], "fetch")) { rt_uint32_t mode; if (dev == RT_NULL) { sensor_cmd_warning_probe(); return; } sensor = (rt_sensor_t)dev; if (argc == 2) { rt_kprintf("current fetch data mode: %s\n", sensor_get_fetch_mode_name(&sensor->info)); } else if (argc == 3) { mode = atoi(argv[2]); if (rt_device_control(dev, RT_SENSOR_CTRL_SET_FETCH_MODE, (void *)mode) == RT_EOK) { rt_kprintf("set new fetch data mode as: %s\n", sensor_get_fetch_mode_name(&sensor->info)); } else { LOG_E("Don't support! Set new fetch data mode error!"); } } else { sensor_cmd_warning_unknown(); } } else { sensor_cmd_warning_unknown(); } } MSH_CMD_EXPORT(sensor, sensor test function);