//***************************************************************************** // // uart.c - Driver for the UART. // // Copyright (c) 2005-2017 Texas Instruments Incorporated. All rights reserved. // Software License Agreement // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // Neither the name of Texas Instruments Incorporated nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // This is part of revision 2.1.4.178 of the Tiva Peripheral Driver Library. // //***************************************************************************** //***************************************************************************** // //! \addtogroup uart_api //! @{ // //***************************************************************************** #include #include #include "inc/hw_ints.h" #include "inc/hw_memmap.h" #include "inc/hw_sysctl.h" #include "inc/hw_types.h" #include "inc/hw_uart.h" #include "driverlib/debug.h" #include "driverlib/interrupt.h" #include "driverlib/uart.h" //***************************************************************************** // // The system clock divider defining the maximum baud rate supported by the // UART. // //***************************************************************************** #define UART_CLK_DIVIDER 8 //***************************************************************************** // // A mapping of UART base address to interrupt number. // //***************************************************************************** static const uint32_t g_ppui32UARTIntMap[][2] = { { UART0_BASE, INT_UART0_TM4C123 }, { UART1_BASE, INT_UART1_TM4C123 }, { UART2_BASE, INT_UART2_TM4C123 }, { UART3_BASE, INT_UART3_TM4C123 }, { UART4_BASE, INT_UART4_TM4C123 }, { UART5_BASE, INT_UART5_TM4C123 }, { UART6_BASE, INT_UART6_TM4C123 }, { UART7_BASE, INT_UART7_TM4C123 }, }; static const uint_fast8_t g_ui8UARTIntMapRows = sizeof(g_ppui32UARTIntMap) / sizeof(g_ppui32UARTIntMap[0]); static const uint32_t g_ppui32UARTIntMapSnowflake[][2] = { { UART0_BASE, INT_UART0_TM4C129 }, { UART1_BASE, INT_UART1_TM4C129 }, { UART2_BASE, INT_UART2_TM4C129 }, { UART3_BASE, INT_UART3_TM4C129 }, { UART4_BASE, INT_UART4_TM4C129 }, { UART5_BASE, INT_UART5_TM4C129 }, { UART6_BASE, INT_UART6_TM4C129 }, { UART7_BASE, INT_UART7_TM4C129 }, }; static const uint_fast8_t g_ui8UARTIntMapRowsSnowflake = sizeof(g_ppui32UARTIntMapSnowflake) / sizeof(g_ppui32UARTIntMapSnowflake[0]); //***************************************************************************** // //! \internal //! Checks a UART base address. //! //! \param ui32Base is the base address of the UART port. //! //! This function determines if a UART port base address is valid. //! //! \return Returns \b true if the base address is valid and \b false //! otherwise. // //***************************************************************************** #ifdef DEBUG static bool _UARTBaseValid(uint32_t ui32Base) { return((ui32Base == UART0_BASE) || (ui32Base == UART1_BASE) || (ui32Base == UART2_BASE) || (ui32Base == UART3_BASE) || (ui32Base == UART4_BASE) || (ui32Base == UART5_BASE) || (ui32Base == UART6_BASE) || (ui32Base == UART7_BASE)); } #endif //***************************************************************************** // //! \internal //! Gets the UART interrupt number. //! //! \param ui32Base is the base address of the UART port. //! //! Given a UART base address, this function returns the corresponding //! interrupt number. //! //! \return Returns a UART interrupt number, or 0 if \e ui32Base is invalid. // //***************************************************************************** static uint32_t _UARTIntNumberGet(uint32_t ui32Base) { uint_fast8_t ui8Idx, ui8Rows; const uint32_t (*ppui32UARTIntMap)[2]; // // Default interrupt map. // ppui32UARTIntMap = g_ppui32UARTIntMap; ui8Rows = g_ui8UARTIntMapRows; if(CLASS_IS_TM4C129) { ppui32UARTIntMap = g_ppui32UARTIntMapSnowflake; ui8Rows = g_ui8UARTIntMapRowsSnowflake; } // // Loop through the table that maps UART base addresses to interrupt // numbers. // for(ui8Idx = 0; ui8Idx < ui8Rows; ui8Idx++) { // // See if this base address matches. // if(ppui32UARTIntMap[ui8Idx][0] == ui32Base) { // // Return the corresponding interrupt number. // return(ppui32UARTIntMap[ui8Idx][1]); } } // // The base address could not be found, so return an error. // return(0); } //***************************************************************************** // //! Sets the type of parity. //! //! \param ui32Base is the base address of the UART port. //! \param ui32Parity specifies the type of parity to use. //! //! This function configures the type of parity to use for transmitting and //! expect when receiving. The \e ui32Parity parameter must be one of //! \b UART_CONFIG_PAR_NONE, \b UART_CONFIG_PAR_EVEN, \b UART_CONFIG_PAR_ODD, //! \b UART_CONFIG_PAR_ONE, or \b UART_CONFIG_PAR_ZERO. The last two //! parameters allow direct control of the parity bit; it is always either one //! or zero based on the mode. //! //! \return None. // //***************************************************************************** void UARTParityModeSet(uint32_t ui32Base, uint32_t ui32Parity) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); ASSERT((ui32Parity == UART_CONFIG_PAR_NONE) || (ui32Parity == UART_CONFIG_PAR_EVEN) || (ui32Parity == UART_CONFIG_PAR_ODD) || (ui32Parity == UART_CONFIG_PAR_ONE) || (ui32Parity == UART_CONFIG_PAR_ZERO)); // // Set the parity mode. // HWREG(ui32Base + UART_O_LCRH) = ((HWREG(ui32Base + UART_O_LCRH) & ~(UART_LCRH_SPS | UART_LCRH_EPS | UART_LCRH_PEN)) | ui32Parity); } //***************************************************************************** // //! Gets the type of parity currently being used. //! //! \param ui32Base is the base address of the UART port. //! //! This function gets the type of parity used for transmitting data and //! expected when receiving data. //! //! \return Returns the current parity settings, specified as one of //! \b UART_CONFIG_PAR_NONE, \b UART_CONFIG_PAR_EVEN, \b UART_CONFIG_PAR_ODD, //! \b UART_CONFIG_PAR_ONE, or \b UART_CONFIG_PAR_ZERO. // //***************************************************************************** uint32_t UARTParityModeGet(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Return the current parity setting. // return(HWREG(ui32Base + UART_O_LCRH) & (UART_LCRH_SPS | UART_LCRH_EPS | UART_LCRH_PEN)); } //***************************************************************************** // //! Sets the FIFO level at which interrupts are generated. //! //! \param ui32Base is the base address of the UART port. //! \param ui32TxLevel is the transmit FIFO interrupt level, specified as one //! of \b UART_FIFO_TX1_8, \b UART_FIFO_TX2_8, \b UART_FIFO_TX4_8, //! \b UART_FIFO_TX6_8, or \b UART_FIFO_TX7_8. //! \param ui32RxLevel is the receive FIFO interrupt level, specified as one of //! \b UART_FIFO_RX1_8, \b UART_FIFO_RX2_8, \b UART_FIFO_RX4_8, //! \b UART_FIFO_RX6_8, or \b UART_FIFO_RX7_8. //! //! This function configures the FIFO level at which transmit and receive //! interrupts are generated. //! //! \return None. // //***************************************************************************** void UARTFIFOLevelSet(uint32_t ui32Base, uint32_t ui32TxLevel, uint32_t ui32RxLevel) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); ASSERT((ui32TxLevel == UART_FIFO_TX1_8) || (ui32TxLevel == UART_FIFO_TX2_8) || (ui32TxLevel == UART_FIFO_TX4_8) || (ui32TxLevel == UART_FIFO_TX6_8) || (ui32TxLevel == UART_FIFO_TX7_8)); ASSERT((ui32RxLevel == UART_FIFO_RX1_8) || (ui32RxLevel == UART_FIFO_RX2_8) || (ui32RxLevel == UART_FIFO_RX4_8) || (ui32RxLevel == UART_FIFO_RX6_8) || (ui32RxLevel == UART_FIFO_RX7_8)); // // Set the FIFO interrupt levels. // HWREG(ui32Base + UART_O_IFLS) = ui32TxLevel | ui32RxLevel; } //***************************************************************************** // //! Gets the FIFO level at which interrupts are generated. //! //! \param ui32Base is the base address of the UART port. //! \param pui32TxLevel is a pointer to storage for the transmit FIFO level, //! returned as one of \b UART_FIFO_TX1_8, \b UART_FIFO_TX2_8, //! \b UART_FIFO_TX4_8, \b UART_FIFO_TX6_8, or \b UART_FIFO_TX7_8. //! \param pui32RxLevel is a pointer to storage for the receive FIFO level, //! returned as one of \b UART_FIFO_RX1_8, \b UART_FIFO_RX2_8, //! \b UART_FIFO_RX4_8, \b UART_FIFO_RX6_8, or \b UART_FIFO_RX7_8. //! //! This function gets the FIFO level at which transmit and receive interrupts //! are generated. //! //! \return None. // //***************************************************************************** void UARTFIFOLevelGet(uint32_t ui32Base, uint32_t *pui32TxLevel, uint32_t *pui32RxLevel) { uint32_t ui32Temp; // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Read the FIFO level register. // ui32Temp = HWREG(ui32Base + UART_O_IFLS); // // Extract the transmit and receive FIFO levels. // *pui32TxLevel = ui32Temp & UART_IFLS_TX_M; *pui32RxLevel = ui32Temp & UART_IFLS_RX_M; } //***************************************************************************** // //! Sets the configuration of a UART. //! //! \param ui32Base is the base address of the UART port. //! \param ui32UARTClk is the rate of the clock supplied to the UART module. //! \param ui32Baud is the desired baud rate. //! \param ui32Config is the data format for the port (number of data bits, //! number of stop bits, and parity). //! //! This function configures the UART for operation in the specified data //! format. The baud rate is provided in the \e ui32Baud parameter and the //! data format in the \e ui32Config parameter. //! //! The \e ui32Config parameter is the logical OR of three values: the number //! of data bits, the number of stop bits, and the parity. //! \b UART_CONFIG_WLEN_8, \b UART_CONFIG_WLEN_7, \b UART_CONFIG_WLEN_6, and //! \b UART_CONFIG_WLEN_5 select from eight to five data bits per byte //! (respectively). \b UART_CONFIG_STOP_ONE and \b UART_CONFIG_STOP_TWO select //! one or two stop bits (respectively). \b UART_CONFIG_PAR_NONE, //! \b UART_CONFIG_PAR_EVEN, \b UART_CONFIG_PAR_ODD, \b UART_CONFIG_PAR_ONE, //! and \b UART_CONFIG_PAR_ZERO select the parity mode (no parity bit, even //! parity bit, odd parity bit, parity bit always one, and parity bit always //! zero, respectively). //! //! The peripheral clock is the same as the processor clock. The frequency of //! the system clock is the value returned by SysCtlClockGet() for TM4C123x //! devices or the value returned by SysCtlClockFreqSet() for TM4C129x devices, //! or it can be explicitly hard coded if it is constant and known (to save the //! code/execution overhead of a call to SysCtlClockGet() or fetch of the //! variable call holding the return value of SysCtlClockFreqSet()). //! //! The function disables the UART by calling UARTDisable() before changing the //! the parameters and enables the UART by calling UARTEnable(). //! //! For Tiva parts that have the ability to specify the UART baud clock //! source (via UARTClockSourceSet()), the peripheral clock can be changed to //! PIOSC. In this case, the peripheral clock should be specified as //! 16,000,000 (the nominal rate of PIOSC). //! //! \return None. // //***************************************************************************** void UARTConfigSetExpClk(uint32_t ui32Base, uint32_t ui32UARTClk, uint32_t ui32Baud, uint32_t ui32Config) { uint32_t ui32Div; // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); ASSERT(ui32Baud != 0); ASSERT(ui32UARTClk >= (ui32Baud * UART_CLK_DIVIDER)); // // Stop the UART. // UARTDisable(ui32Base); // // Is the required baud rate greater than the maximum rate supported // without the use of high speed mode? // if((ui32Baud * 16) > ui32UARTClk) { // // Enable high speed mode. // HWREG(ui32Base + UART_O_CTL) |= UART_CTL_HSE; // // Half the supplied baud rate to compensate for enabling high speed // mode. This allows the following code to be common to both cases. // ui32Baud /= 2; } else { // // Disable high speed mode. // HWREG(ui32Base + UART_O_CTL) &= ~(UART_CTL_HSE); } // // Compute the fractional baud rate divider. // ui32Div = (((ui32UARTClk * 8) / ui32Baud) + 1) / 2; // // Set the baud rate. // HWREG(ui32Base + UART_O_IBRD) = ui32Div / 64; HWREG(ui32Base + UART_O_FBRD) = ui32Div % 64; // // Set parity, data length, and number of stop bits. // HWREG(ui32Base + UART_O_LCRH) = ui32Config; // // Clear the flags register. // HWREG(ui32Base + UART_O_FR) = 0; // // Start the UART. // UARTEnable(ui32Base); } //***************************************************************************** // //! Gets the current configuration of a UART. //! //! \param ui32Base is the base address of the UART port. //! \param ui32UARTClk is the rate of the clock supplied to the UART module. //! \param pui32Baud is a pointer to storage for the baud rate. //! \param pui32Config is a pointer to storage for the data format. //! //! This function determines the baud rate and data format for the UART, given //! an explicitly provided peripheral clock (hence the ExpClk suffix). The //! returned baud rate is the actual baud rate; it may not be the exact baud //! rate requested or an ``official'' baud rate. The data format returned in //! \e pui32Config is enumerated the same as the \e ui32Config parameter of //! UARTConfigSetExpClk(). //! //! The peripheral clock is the same as the processor clock. The frequency of //! the system clock is the value returned by SysCtlClockGet() for TM4C123x //! devices or the value returned by SysCtlClockFreqSet() for TM4C129x devices, //! or it can be explicitly hard coded if it is constant and known (to save the //! code/execution overhead of a call to SysCtlClockGet() or fetch of the //! variable call holding the return value of SysCtlClockFreqSet()). //! //! For Tiva parts that have the ability to specify the UART baud clock //! source (via UARTClockSourceSet()), the peripheral clock can be changed to //! PIOSC. In this case, the peripheral clock should be specified as //! 16,000,000 (the nominal rate of PIOSC). //! //! \return None. // //***************************************************************************** void UARTConfigGetExpClk(uint32_t ui32Base, uint32_t ui32UARTClk, uint32_t *pui32Baud, uint32_t *pui32Config) { uint32_t ui32Int, ui32Frac; // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Compute the baud rate. // ui32Int = HWREG(ui32Base + UART_O_IBRD); ui32Frac = HWREG(ui32Base + UART_O_FBRD); *pui32Baud = (ui32UARTClk * 4) / ((64 * ui32Int) + ui32Frac); // // See if high speed mode enabled. // if(HWREG(ui32Base + UART_O_CTL) & UART_CTL_HSE) { // // High speed mode is enabled so the actual baud rate is actually // double what was just calculated. // *pui32Baud *= 2; } // // Get the parity, data length, and number of stop bits. // *pui32Config = (HWREG(ui32Base + UART_O_LCRH) & (UART_LCRH_SPS | UART_LCRH_WLEN_M | UART_LCRH_STP2 | UART_LCRH_EPS | UART_LCRH_PEN)); } //***************************************************************************** // //! Enables transmitting and receiving. //! //! \param ui32Base is the base address of the UART port. //! //! This function enables the UART and its transmit and receive FIFOs. //! //! \return None. // //***************************************************************************** void UARTEnable(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Enable the FIFO. // HWREG(ui32Base + UART_O_LCRH) |= UART_LCRH_FEN; // // Enable RX, TX, and the UART. // HWREG(ui32Base + UART_O_CTL) |= (UART_CTL_UARTEN | UART_CTL_TXE | UART_CTL_RXE); } //***************************************************************************** // //! Disables transmitting and receiving. //! //! \param ui32Base is the base address of the UART port. //! //! This function disables the UART, waits for the end of transmission of the //! current character, and flushes the transmit FIFO. //! //! \return None. // //***************************************************************************** void UARTDisable(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Wait for end of TX. // while(HWREG(ui32Base + UART_O_FR) & UART_FR_BUSY) { } // // Disable the FIFO. // HWREG(ui32Base + UART_O_LCRH) &= ~(UART_LCRH_FEN); // // Disable the UART. // HWREG(ui32Base + UART_O_CTL) &= ~(UART_CTL_UARTEN | UART_CTL_TXE | UART_CTL_RXE); } //***************************************************************************** // //! Enables the transmit and receive FIFOs. //! //! \param ui32Base is the base address of the UART port. //! //! This functions enables the transmit and receive FIFOs in the UART. //! //! \return None. // //***************************************************************************** void UARTFIFOEnable(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Enable the FIFO. // HWREG(ui32Base + UART_O_LCRH) |= UART_LCRH_FEN; } //***************************************************************************** // //! Disables the transmit and receive FIFOs. //! //! \param ui32Base is the base address of the UART port. //! //! This function disables the transmit and receive FIFOs in the UART. //! //! \return None. // //***************************************************************************** void UARTFIFODisable(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Disable the FIFO. // HWREG(ui32Base + UART_O_LCRH) &= ~(UART_LCRH_FEN); } //***************************************************************************** // //! Enables SIR (IrDA) mode on the specified UART. //! //! \param ui32Base is the base address of the UART port. //! \param bLowPower indicates if SIR Low Power Mode is to be used. //! //! This function enables SIR (IrDA) mode on the UART. If the \e bLowPower //! flag is set, then SIR low power mode will be selected as well. This //! function only has an effect if the UART has not been enabled by a call to //! UARTEnable(). The call UARTEnableSIR() must be made before a call to //! UARTConfigSetExpClk() because the UARTConfigSetExpClk() function calls the //! UARTEnable() function. Another option is to call UARTDisable() followed by //! UARTEnableSIR() and then enable the UART by calling UARTEnable(). //! //! \note The availability of SIR (IrDA) operation varies with the Tiva //! part in use. Please consult the datasheet for the part you are using to //! determine whether this support is available. //! //! \return None. // //***************************************************************************** void UARTEnableSIR(uint32_t ui32Base, bool bLowPower) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Enable SIR and SIRLP (if appropriate). // if(bLowPower) { HWREG(ui32Base + UART_O_CTL) |= (UART_CTL_SIREN | UART_CTL_SIRLP); } else { HWREG(ui32Base + UART_O_CTL) |= (UART_CTL_SIREN); } } //***************************************************************************** // //! Disables SIR (IrDA) mode on the specified UART. //! //! \param ui32Base is the base address of the UART port. //! //! This function disables SIR(IrDA) mode on the UART. This function only has //! an effect if the UART has not been enabled by a call to UARTEnable(). The //! call UARTEnableSIR() must be made before a call to UARTConfigSetExpClk() //! because the UARTConfigSetExpClk() function calls the UARTEnable() function. //! Another option is to call UARTDisable() followed by UARTEnableSIR() and //! then enable the UART by calling UARTEnable(). //! //! \note The availability of SIR (IrDA) operation varies with the Tiva //! part in use. Please consult the datasheet for the part you are using to //! determine whether this support is available. //! //! \return None. // //***************************************************************************** void UARTDisableSIR(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Disable SIR and SIRLP (if appropriate). // HWREG(ui32Base + UART_O_CTL) &= ~(UART_CTL_SIREN | UART_CTL_SIRLP); } //***************************************************************************** // //! Enables ISO7816 smart card mode on the specified UART. //! //! \param ui32Base is the base address of the UART port. //! //! This function enables the SMART control bit for the ISO7816 smart card mode //! on the UART. This call also sets 8-bit word length and even parity as //! required by ISO7816. //! //! \note The availability of ISO7816 smart card mode varies with the Tiva //! part and UART in use. Please consult the datasheet for the part you are //! using to determine whether this support is available. //! //! \return None. // //***************************************************************************** void UARTSmartCardEnable(uint32_t ui32Base) { uint32_t ui32Val; // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Set 8-bit word length, even parity, 2 stop bits (note that although the // STP2 bit is ignored when in smartcard mode, this code lets the caller // read back the actual setting in use). // ui32Val = HWREG(ui32Base + UART_O_LCRH); ui32Val &= ~(UART_LCRH_SPS | UART_LCRH_EPS | UART_LCRH_PEN | UART_LCRH_WLEN_M); ui32Val |= UART_LCRH_WLEN_8 | UART_LCRH_PEN | UART_LCRH_EPS | UART_LCRH_STP2; HWREG(ui32Base + UART_O_LCRH) = ui32Val; // // Enable SMART mode. // HWREG(ui32Base + UART_O_CTL) |= UART_CTL_SMART; } //***************************************************************************** // //! Disables ISO7816 smart card mode on the specified UART. //! //! \param ui32Base is the base address of the UART port. //! //! This function clears the SMART (ISO7816 smart card) bit in the UART //! control register. //! //! \note The availability of ISO7816 smart card mode varies with the Tiva //! part and UART in use. Please consult the datasheet for the part you are //! using to determine whether this support is available. //! //! \return None. // //***************************************************************************** void UARTSmartCardDisable(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Disable the SMART bit. // HWREG(ui32Base + UART_O_CTL) &= ~UART_CTL_SMART; } //***************************************************************************** // //! Sets the states of the DTR and/or RTS modem control signals. //! //! \param ui32Base is the base address of the UART port. //! \param ui32Control is a bit-mapped flag indicating which modem control bits //! should be set. //! //! This function configures the states of the DTR or RTS modem handshake //! outputs from the UART. //! //! The \e ui32Control parameter is the logical OR of any of the following: //! //! - \b UART_OUTPUT_DTR - The modem control DTR signal //! - \b UART_OUTPUT_RTS - The modem control RTS signal //! //! \note The availability of hardware modem handshake signals varies with the //! Tiva part and UART in use. Please consult the datasheet for the part //! you are using to determine whether this support is available. //! //! \return None. // //***************************************************************************** void UARTModemControlSet(uint32_t ui32Base, uint32_t ui32Control) { uint32_t ui32Temp; // // Check the arguments. // ASSERT(ui32Base == UART1_BASE); ASSERT((ui32Control & ~(UART_OUTPUT_RTS | UART_OUTPUT_DTR)) == 0); // // Set the appropriate modem control output bits. // ui32Temp = HWREG(ui32Base + UART_O_CTL); ui32Temp |= (ui32Control & (UART_OUTPUT_RTS | UART_OUTPUT_DTR)); HWREG(ui32Base + UART_O_CTL) = ui32Temp; } //***************************************************************************** // //! Clears the states of the DTR and/or RTS modem control signals. //! //! \param ui32Base is the base address of the UART port. //! \param ui32Control is a bit-mapped flag indicating which modem control bits //! should be set. //! //! This function clears the states of the DTR or RTS modem handshake outputs //! from the UART. //! //! The \e ui32Control parameter is the logical OR of any of the following: //! //! - \b UART_OUTPUT_DTR - The modem control DTR signal //! - \b UART_OUTPUT_RTS - The modem control RTS signal //! //! \note The availability of hardware modem handshake signals varies with the //! Tiva part and UART in use. Please consult the datasheet for the part //! you are using to determine whether this support is available. //! //! \return None. // //***************************************************************************** void UARTModemControlClear(uint32_t ui32Base, uint32_t ui32Control) { uint32_t ui32Temp; // // Check the arguments. // ASSERT(ui32Base == UART1_BASE); ASSERT((ui32Control & ~(UART_OUTPUT_RTS | UART_OUTPUT_DTR)) == 0); // // Set the appropriate modem control output bits. // ui32Temp = HWREG(ui32Base + UART_O_CTL); ui32Temp &= ~(ui32Control & (UART_OUTPUT_RTS | UART_OUTPUT_DTR)); HWREG(ui32Base + UART_O_CTL) = ui32Temp; } //***************************************************************************** // //! Gets the states of the DTR and RTS modem control signals. //! //! \param ui32Base is the base address of the UART port. //! //! This function returns the current states of each of the two UART modem //! control signals, DTR and RTS. //! //! \note The availability of hardware modem handshake signals varies with the //! Tiva part and UART in use. Please consult the datasheet for the part //! you are using to determine whether this support is available. //! //! \return Returns the states of the handshake output signals. This value is //! a logical OR combination of values \b UART_OUTPUT_RTS and //! \b UART_OUTPUT_DTR where the presence of each flag indicates that the //! associated signal is asserted. // //***************************************************************************** uint32_t UARTModemControlGet(uint32_t ui32Base) { // // Check the arguments. // ASSERT(ui32Base == UART1_BASE); return(HWREG(ui32Base + UART_O_CTL) & (UART_OUTPUT_RTS | UART_OUTPUT_DTR)); } //***************************************************************************** // //! Gets the states of the RI, DCD, DSR and CTS modem status signals. //! //! \param ui32Base is the base address of the UART port. //! //! This function returns the current states of each of the four UART modem //! status signals, RI, DCD, DSR and CTS. //! //! \note The availability of hardware modem handshake signals varies with the //! Tiva part and UART in use. Please consult the datasheet for the part //! you are using to determine whether this support is available. //! //! \return Returns the states of the handshake output signals. This value //! is a logical OR combination of values \b UART_INPUT_RI, //! \b UART_INPUT_DCD, \b UART_INPUT_CTS and \b UART_INPUT_DSR where the //! presence of each flag indicates that the associated signal is asserted. // //***************************************************************************** uint32_t UARTModemStatusGet(uint32_t ui32Base) { // // Check the arguments. // ASSERT(ui32Base == UART1_BASE); return(HWREG(ui32Base + UART_O_FR) & (UART_INPUT_RI | UART_INPUT_DCD | UART_INPUT_CTS | UART_INPUT_DSR)); } //***************************************************************************** // //! Sets the UART hardware flow control mode to be used. //! //! \param ui32Base is the base address of the UART port. //! \param ui32Mode indicates the flow control modes to be used. This //! parameter is a logical OR combination of values \b UART_FLOWCONTROL_TX and //! \b UART_FLOWCONTROL_RX to enable hardware transmit (CTS) and receive (RTS) //! flow control or \b UART_FLOWCONTROL_NONE to disable hardware flow control. //! //! This function configures the required hardware flow control modes. If //! \e ui32Mode contains flag \b UART_FLOWCONTROL_TX, data is only transmitted //! if the incoming CTS signal is asserted. If \e ui32Mode contains flag //! \b UART_FLOWCONTROL_RX, the RTS output is controlled by the hardware and is //! asserted only when there is space available in the receive FIFO. If no //! hardware flow control is required, \b UART_FLOWCONTROL_NONE should be //! passed. //! //! \note The availability of hardware flow control varies with the Tiva //! part and UART in use. Please consult the datasheet for the part you are //! using to determine whether this support is available. //! //! \return None. // //***************************************************************************** void UARTFlowControlSet(uint32_t ui32Base, uint32_t ui32Mode) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); ASSERT((ui32Mode & ~(UART_FLOWCONTROL_TX | UART_FLOWCONTROL_RX)) == 0); // // Set the flow control mode as requested. // HWREG(ui32Base + UART_O_CTL) = ((HWREG(ui32Base + UART_O_CTL) & ~(UART_FLOWCONTROL_TX | UART_FLOWCONTROL_RX)) | ui32Mode); } //***************************************************************************** // //! Returns the UART hardware flow control mode currently in use. //! //! \param ui32Base is the base address of the UART port. //! //! This function returns the current hardware flow control mode. //! //! \note The availability of hardware flow control varies with the Tiva //! part and UART in use. Please consult the datasheet for the part you are //! using to determine whether this support is available. //! //! \return Returns the current flow control mode in use. This value is a //! logical OR combination of values \b UART_FLOWCONTROL_TX if transmit //! (CTS) flow control is enabled and \b UART_FLOWCONTROL_RX if receive (RTS) //! flow control is in use. If hardware flow control is disabled, //! \b UART_FLOWCONTROL_NONE is returned. // //***************************************************************************** uint32_t UARTFlowControlGet(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); return(HWREG(ui32Base + UART_O_CTL) & (UART_FLOWCONTROL_TX | UART_FLOWCONTROL_RX)); } //***************************************************************************** // //! Sets the operating mode for the UART transmit interrupt. //! //! \param ui32Base is the base address of the UART port. //! \param ui32Mode is the operating mode for the transmit interrupt. It may //! be \b UART_TXINT_MODE_EOT to trigger interrupts when the transmitter is //! idle or \b UART_TXINT_MODE_FIFO to trigger based on the current transmit //! FIFO level. //! //! This function allows the mode of the UART transmit interrupt to be set. By //! default, the transmit interrupt is asserted when the FIFO level falls past //! a threshold set via a call to UARTFIFOLevelSet(). Alternatively, if this //! function is called with \e ui32Mode set to \b UART_TXINT_MODE_EOT, the //! transmit interrupt is asserted once the transmitter is completely idle - //! the transmit FIFO is empty and all bits, including any stop bits, have //! cleared the transmitter. //! //! \note The availability of end-of-transmission mode varies with the //! Tiva part in use. Please consult the datasheet for the part you are //! using to determine whether this support is available. //! //! \return None. // //***************************************************************************** void UARTTxIntModeSet(uint32_t ui32Base, uint32_t ui32Mode) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); ASSERT((ui32Mode == UART_TXINT_MODE_EOT) || (ui32Mode == UART_TXINT_MODE_FIFO)); // // Set or clear the EOT bit of the UART control register as appropriate. // HWREG(ui32Base + UART_O_CTL) = ((HWREG(ui32Base + UART_O_CTL) & ~(UART_TXINT_MODE_EOT | UART_TXINT_MODE_FIFO)) | ui32Mode); } //***************************************************************************** // //! Returns the current operating mode for the UART transmit interrupt. //! //! \param ui32Base is the base address of the UART port. //! //! This function returns the current operating mode for the UART transmit //! interrupt. The return value is \b UART_TXINT_MODE_EOT if the transmit //! interrupt is currently configured to be asserted once the transmitter is //! completely idle - the transmit FIFO is empty and all bits, including any //! stop bits, have cleared the transmitter. The return value is //! \b UART_TXINT_MODE_FIFO if the interrupt is configured to be asserted based //! on the level of the transmit FIFO. //! //! \note The availability of end-of-transmission mode varies with the //! Tiva part in use. Please consult the datasheet for the part you are //! using to determine whether this support is available. //! //! \return Returns \b UART_TXINT_MODE_FIFO or \b UART_TXINT_MODE_EOT. // //***************************************************************************** uint32_t UARTTxIntModeGet(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Return the current transmit interrupt mode. // return(HWREG(ui32Base + UART_O_CTL) & (UART_TXINT_MODE_EOT | UART_TXINT_MODE_FIFO)); } //***************************************************************************** // //! Determines if there are any characters in the receive FIFO. //! //! \param ui32Base is the base address of the UART port. //! //! This function returns a flag indicating whether or not there is data //! available in the receive FIFO. //! //! \return Returns \b true if there is data in the receive FIFO or \b false //! if there is no data in the receive FIFO. // //***************************************************************************** bool UARTCharsAvail(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Return the availability of characters. // return((HWREG(ui32Base + UART_O_FR) & UART_FR_RXFE) ? false : true); } //***************************************************************************** // //! Determines if there is any space in the transmit FIFO. //! //! \param ui32Base is the base address of the UART port. //! //! This function returns a flag indicating whether or not there is space //! available in the transmit FIFO. //! //! \return Returns \b true if there is space available in the transmit FIFO //! or \b false if there is no space available in the transmit FIFO. // //***************************************************************************** bool UARTSpaceAvail(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Return the availability of space. // return((HWREG(ui32Base + UART_O_FR) & UART_FR_TXFF) ? false : true); } //***************************************************************************** // //! Receives a character from the specified port. //! //! \param ui32Base is the base address of the UART port. //! //! This function gets a character from the receive FIFO for the specified //! port. //! //! \return Returns the character read from the specified port, cast as a //! \e int32_t. A \b -1 is returned if there are no characters present in the //! receive FIFO. The UARTCharsAvail() function should be called before //! attempting to call this function. // //***************************************************************************** int32_t UARTCharGetNonBlocking(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // See if there are any characters in the receive FIFO. // if(!(HWREG(ui32Base + UART_O_FR) & UART_FR_RXFE)) { // // Read and return the next character. // return(HWREG(ui32Base + UART_O_DR)); } else { // // There are no characters, so return a failure. // return(-1); } } //***************************************************************************** // //! Waits for a character from the specified port. //! //! \param ui32Base is the base address of the UART port. //! //! This function gets a character from the receive FIFO for the specified //! port. If there are no characters available, this function waits until a //! character is received before returning. //! //! \return Returns the character read from the specified port, cast as a //! \e int32_t. // //***************************************************************************** int32_t UARTCharGet(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Wait until a char is available. // while(HWREG(ui32Base + UART_O_FR) & UART_FR_RXFE) { } // // Now get the char. // return(HWREG(ui32Base + UART_O_DR)); } //***************************************************************************** // //! Sends a character to the specified port. //! //! \param ui32Base is the base address of the UART port. //! \param ucData is the character to be transmitted. //! //! This function writes the character \e ucData to the transmit FIFO for the //! specified port. This function does not block, so if there is no space //! available, then a \b false is returned and the application must retry the //! function later. //! //! \return Returns \b true if the character was successfully placed in the //! transmit FIFO or \b false if there was no space available in the transmit //! FIFO. // //***************************************************************************** bool UARTCharPutNonBlocking(uint32_t ui32Base, unsigned char ucData) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // See if there is space in the transmit FIFO. // if(!(HWREG(ui32Base + UART_O_FR) & UART_FR_TXFF)) { // // Write this character to the transmit FIFO. // HWREG(ui32Base + UART_O_DR) = ucData; // // Success. // return(true); } else { // // There is no space in the transmit FIFO, so return a failure. // return(false); } } //***************************************************************************** // //! Waits to send a character from the specified port. //! //! \param ui32Base is the base address of the UART port. //! \param ucData is the character to be transmitted. //! //! This function sends the character \e ucData to the transmit FIFO for the //! specified port. If there is no space available in the transmit FIFO, this //! function waits until there is space available before returning. //! //! \return None. // //***************************************************************************** void UARTCharPut(uint32_t ui32Base, unsigned char ucData) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Wait until space is available. // while(HWREG(ui32Base + UART_O_FR) & UART_FR_TXFF) { } // // Send the char. // HWREG(ui32Base + UART_O_DR) = ucData; } //***************************************************************************** // //! Causes a BREAK to be sent. //! //! \param ui32Base is the base address of the UART port. //! \param bBreakState controls the output level. //! //! Calling this function with \e bBreakState set to \b true asserts a break //! condition on the UART. Calling this function with \e bBreakState set to //! \b false removes the break condition. For proper transmission of a break //! command, the break must be asserted for at least two complete frames. //! //! \return None. // //***************************************************************************** void UARTBreakCtl(uint32_t ui32Base, bool bBreakState) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Set the break condition as requested. // HWREG(ui32Base + UART_O_LCRH) = (bBreakState ? (HWREG(ui32Base + UART_O_LCRH) | UART_LCRH_BRK) : (HWREG(ui32Base + UART_O_LCRH) & ~(UART_LCRH_BRK))); } //***************************************************************************** // //! Determines whether the UART transmitter is busy or not. //! //! \param ui32Base is the base address of the UART port. //! //! This function allows the caller to determine whether all transmitted bytes //! have cleared the transmitter hardware. If \b false is returned, the //! transmit FIFO is empty and all bits of the last transmitted character, //! including all stop bits, have left the hardware shift register. //! //! \return Returns \b true if the UART is transmitting or \b false if all //! transmissions are complete. // //***************************************************************************** bool UARTBusy(uint32_t ui32Base) { // // Check the argument. // ASSERT(_UARTBaseValid(ui32Base)); // // Determine if the UART is busy. // return((HWREG(ui32Base + UART_O_FR) & UART_FR_BUSY) ? true : false); } //***************************************************************************** // //! Registers an interrupt handler for a UART interrupt. //! //! \param ui32Base is the base address of the UART port. //! \param pfnHandler is a pointer to the function to be called when the //! UART interrupt occurs. //! //! This function does the actual registering of the interrupt handler. This //! function enables the global interrupt in the interrupt controller; specific //! UART interrupts must be enabled via UARTIntEnable(). It is the interrupt //! handler's responsibility to clear the interrupt source. //! //! \sa IntRegister() for important information about registering interrupt //! handlers. //! //! \return None. // //***************************************************************************** void UARTIntRegister(uint32_t ui32Base, void (*pfnHandler)(void)) { uint32_t ui32Int; // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Determine the interrupt number based on the UART port. // ui32Int = _UARTIntNumberGet(ui32Base); ASSERT(ui32Int != 0); // // Register the interrupt handler. // IntRegister(ui32Int, pfnHandler); // // Enable the UART interrupt. // IntEnable(ui32Int); } //***************************************************************************** // //! Unregisters an interrupt handler for a UART interrupt. //! //! \param ui32Base is the base address of the UART port. //! //! This function does the actual unregistering of the interrupt handler. It //! clears the handler to be called when a UART interrupt occurs. This //! function also masks off the interrupt in the interrupt controller so that //! the interrupt handler no longer is called. //! //! \sa IntRegister() for important information about registering interrupt //! handlers. //! //! \return None. // //***************************************************************************** void UARTIntUnregister(uint32_t ui32Base) { uint32_t ui32Int; // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Determine the interrupt number based on the UART port. // ui32Int = _UARTIntNumberGet(ui32Base); ASSERT(ui32Int != 0); // // Disable the interrupt. // IntDisable(ui32Int); // // Unregister the interrupt handler. // IntUnregister(ui32Int); } //***************************************************************************** // //! Enables individual UART interrupt sources. //! //! \param ui32Base is the base address of the UART port. //! \param ui32IntFlags is the bit mask of the interrupt sources to be enabled. //! //! This function enables the indicated UART interrupt sources. Only the //! sources that are enabled can be reflected to the processor interrupt; //! disabled sources have no effect on the processor. //! //! The \e ui32IntFlags parameter is the logical OR of any of the following: //! //! - \b UART_INT_9BIT - 9-bit Address Match interrupt //! - \b UART_INT_OE - Overrun Error interrupt //! - \b UART_INT_BE - Break Error interrupt //! - \b UART_INT_PE - Parity Error interrupt //! - \b UART_INT_FE - Framing Error interrupt //! - \b UART_INT_RT - Receive Timeout interrupt //! - \b UART_INT_TX - Transmit interrupt //! - \b UART_INT_RX - Receive interrupt //! - \b UART_INT_DSR - DSR interrupt //! - \b UART_INT_DCD - DCD interrupt //! - \b UART_INT_CTS - CTS interrupt //! - \b UART_INT_RI - RI interrupt //! //! \return None. // //***************************************************************************** void UARTIntEnable(uint32_t ui32Base, uint32_t ui32IntFlags) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Enable the specified interrupts. // HWREG(ui32Base + UART_O_IM) |= ui32IntFlags; } //***************************************************************************** // //! Disables individual UART interrupt sources. //! //! \param ui32Base is the base address of the UART port. //! \param ui32IntFlags is the bit mask of the interrupt sources to be //! disabled. //! //! This function disables the indicated UART interrupt sources. Only the //! sources that are enabled can be reflected to the processor interrupt; //! disabled sources have no effect on the processor. //! //! The \e ui32IntFlags parameter has the same definition as the //! \e ui32IntFlags parameter to UARTIntEnable(). //! //! \return None. // //***************************************************************************** void UARTIntDisable(uint32_t ui32Base, uint32_t ui32IntFlags) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Disable the specified interrupts. // HWREG(ui32Base + UART_O_IM) &= ~(ui32IntFlags); } //***************************************************************************** // //! Gets the current interrupt status. //! //! \param ui32Base is the base address of the UART port. //! \param bMasked is \b false if the raw interrupt status is required and //! \b true if the masked interrupt status is required. //! //! This function returns the interrupt status for the specified UART. Either //! the raw interrupt status or the status of interrupts that are allowed to //! reflect to the processor can be returned. //! //! \return Returns the current interrupt status, enumerated as a bit field of //! values described in UARTIntEnable(). // //***************************************************************************** uint32_t UARTIntStatus(uint32_t ui32Base, bool bMasked) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Return either the interrupt status or the raw interrupt status as // requested. // if(bMasked) { return(HWREG(ui32Base + UART_O_MIS)); } else { return(HWREG(ui32Base + UART_O_RIS)); } } //***************************************************************************** // //! Clears UART interrupt sources. //! //! \param ui32Base is the base address of the UART port. //! \param ui32IntFlags is a bit mask of the interrupt sources to be cleared. //! //! The specified UART interrupt sources are cleared, so that they no longer //! assert. This function must be called in the interrupt handler to keep the //! interrupt from being triggered again immediately upon exit. //! //! The \e ui32IntFlags parameter has the same definition as the //! \e ui32IntFlags parameter to UARTIntEnable(). //! //! \note Because there is a write buffer in the Cortex-M processor, it may //! take several clock cycles before the interrupt source is actually cleared. //! Therefore, it is recommended that the interrupt source be cleared early in //! the interrupt handler (as opposed to the very last action) to avoid //! returning from the interrupt handler before the interrupt source is //! actually cleared. Failure to do so may result in the interrupt handler //! being immediately reentered (because the interrupt controller still sees //! the interrupt source asserted). //! //! \return None. // //***************************************************************************** void UARTIntClear(uint32_t ui32Base, uint32_t ui32IntFlags) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Clear the requested interrupt sources. // HWREG(ui32Base + UART_O_ICR) = ui32IntFlags; } //***************************************************************************** // //! Enable UART uDMA operation. //! //! \param ui32Base is the base address of the UART port. //! \param ui32DMAFlags is a bit mask of the uDMA features to enable. //! //! The specified UART uDMA features are enabled. The UART can be //! configured to use uDMA for transmit or receive and to disable //! receive if an error occurs. The \e ui32DMAFlags parameter is the //! logical OR of any of the following values: //! //! - \b UART_DMA_RX - enable uDMA for receive //! - \b UART_DMA_TX - enable uDMA for transmit //! - \b UART_DMA_ERR_RXSTOP - disable uDMA receive on UART error //! //! \note The uDMA controller must also be set up before DMA can be used //! with the UART. //! //! \return None. // //***************************************************************************** void UARTDMAEnable(uint32_t ui32Base, uint32_t ui32DMAFlags) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Set the requested bits in the UART uDMA control register. // HWREG(ui32Base + UART_O_DMACTL) |= ui32DMAFlags; } //***************************************************************************** // //! Disable UART uDMA operation. //! //! \param ui32Base is the base address of the UART port. //! \param ui32DMAFlags is a bit mask of the uDMA features to disable. //! //! This function is used to disable UART uDMA features that were enabled //! by UARTDMAEnable(). The specified UART uDMA features are disabled. The //! \e ui32DMAFlags parameter is the logical OR of any of the following values: //! //! - \b UART_DMA_RX - disable uDMA for receive //! - \b UART_DMA_TX - disable uDMA for transmit //! - \b UART_DMA_ERR_RXSTOP - do not disable uDMA receive on UART error //! //! \return None. // //***************************************************************************** void UARTDMADisable(uint32_t ui32Base, uint32_t ui32DMAFlags) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Clear the requested bits in the UART uDMA control register. // HWREG(ui32Base + UART_O_DMACTL) &= ~ui32DMAFlags; } //***************************************************************************** // //! Gets current receiver errors. //! //! \param ui32Base is the base address of the UART port. //! //! This function returns the current state of each of the 4 receiver error //! sources. The returned errors are equivalent to the four error bits //! returned via the previous call to UARTCharGet() or UARTCharGetNonBlocking() //! with the exception that the overrun error is set immediately when the //! overrun occurs rather than when a character is next read. //! //! \return Returns a logical OR combination of the receiver error flags, //! \b UART_RXERROR_FRAMING, \b UART_RXERROR_PARITY, \b UART_RXERROR_BREAK //! and \b UART_RXERROR_OVERRUN. // //***************************************************************************** uint32_t UARTRxErrorGet(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Return the current value of the receive status register. // return(HWREG(ui32Base + UART_O_RSR) & 0x0000000F); } //***************************************************************************** // //! Clears all reported receiver errors. //! //! \param ui32Base is the base address of the UART port. //! //! This function is used to clear all receiver error conditions reported via //! UARTRxErrorGet(). If using the overrun, framing error, parity error or //! break interrupts, this function must be called after clearing the interrupt //! to ensure that later errors of the same type trigger another interrupt. //! //! \return None. // //***************************************************************************** void UARTRxErrorClear(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Any write to the Error Clear Register clears all bits which are // currently set. // HWREG(ui32Base + UART_O_ECR) = 0; } //***************************************************************************** // //! Sets the baud clock source for the specified UART. //! //! \param ui32Base is the base address of the UART port. //! \param ui32Source is the baud clock source for the UART. //! //! This function allows the baud clock source for the UART to be selected. //! The possible clock source are the system clock (\b UART_CLOCK_SYSTEM) or //! the precision internal oscillator (\b UART_CLOCK_PIOSC). //! //! Changing the baud clock source changes the baud rate generated by the //! UART. Therefore, the baud rate should be reconfigured after any change to //! the baud clock source. //! //! \note The ability to specify the UART baud clock source varies with the //! Tiva part in use. Please consult the datasheet for the part you are //! using to determine whether this support is available. //! //! \return None. // //***************************************************************************** void UARTClockSourceSet(uint32_t ui32Base, uint32_t ui32Source) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); ASSERT((ui32Source == UART_CLOCK_SYSTEM) || (ui32Source == UART_CLOCK_PIOSC)); // // Set the UART clock source. // HWREG(ui32Base + UART_O_CC) = ui32Source; } //***************************************************************************** // //! Gets the baud clock source for the specified UART. //! //! \param ui32Base is the base address of the UART port. //! //! This function returns the baud clock source for the specified UART. The //! possible baud clock source are the system clock (\b UART_CLOCK_SYSTEM) or //! the precision internal oscillator (\b UART_CLOCK_PIOSC). //! //! \note The ability to specify the UART baud clock source varies with the //! Tiva part in use. Please consult the datasheet for the part you are //! using to determine whether this support is available. //! //! \return None. // //***************************************************************************** uint32_t UARTClockSourceGet(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Return the UART clock source. // return(HWREG(ui32Base + UART_O_CC)); } //***************************************************************************** // //! Enables 9-bit mode on the specified UART. //! //! \param ui32Base is the base address of the UART port. //! //! This function enables the 9-bit operational mode of the UART. //! //! \note The availability of 9-bit mode varies with the Tiva part in use. //! Please consult the datasheet for the part you are using to determine //! whether this support is available. //! //! \return None. // //***************************************************************************** void UART9BitEnable(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Enable 9-bit mode. // HWREG(ui32Base + UART_O_9BITADDR) |= UART_9BITADDR_9BITEN; } //***************************************************************************** // //! Disables 9-bit mode on the specified UART. //! //! \param ui32Base is the base address of the UART port. //! //! This function disables the 9-bit operational mode of the UART. //! //! \note The availability of 9-bit mode varies with the Tiva part in use. //! Please consult the datasheet for the part you are using to determine //! whether this support is available. //! //! \return None. // //***************************************************************************** void UART9BitDisable(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Disable 9-bit mode. // HWREG(ui32Base + UART_O_9BITADDR) &= ~UART_9BITADDR_9BITEN; } //***************************************************************************** // //! Sets the device address(es) for 9-bit mode. //! //! \param ui32Base is the base address of the UART port. //! \param ui8Addr is the device address. //! \param ui8Mask is the device address mask. //! //! This function configures the device address or range of device addresses //! that respond to requests on the 9-bit UART port. The received address is //! masked with the mask and then compared against the given address, allowing //! either a single address (if \b ui8Mask is 0xff) or a set of addresses to be //! matched. //! //! \note The availability of 9-bit mode varies with the Tiva part in use. //! Please consult the datasheet for the part you are using to determine //! whether this support is available. //! //! \return None. // //***************************************************************************** void UART9BitAddrSet(uint32_t ui32Base, uint8_t ui8Addr, uint8_t ui8Mask) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Set the address and mask. // HWREG(ui32Base + UART_O_9BITADDR) = ui8Addr << UART_9BITADDR_ADDR_S; HWREG(ui32Base + UART_O_9BITAMASK) = ui8Mask << UART_9BITAMASK_MASK_S; } //***************************************************************************** // //! Sends an address character from the specified port when operating in 9-bit //! mode. //! //! \param ui32Base is the base address of the UART port. //! \param ui8Addr is the address to be transmitted. //! //! This function waits until all data has been sent from the specified port //! and then sends the given address as an address byte. It then waits until //! the address byte has been transmitted before returning. //! //! The normal data functions (UARTCharPut(), UARTCharPutNonBlocking(), //! UARTCharGet(), and UARTCharGetNonBlocking()) are used to send and receive //! data characters in 9-bit mode. //! //! \note The availability of 9-bit mode varies with the Tiva part in use. //! Please consult the datasheet for the part you are using to determine //! whether this support is available. //! //! \return None. // //***************************************************************************** void UART9BitAddrSend(uint32_t ui32Base, uint8_t ui8Addr) { uint32_t ui32LCRH; // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Wait until the FIFO is empty and the UART is not busy. // while((HWREG(ui32Base + UART_O_FR) & (UART_FR_TXFE | UART_FR_BUSY)) != UART_FR_TXFE) { } // // Force the address/data bit to 1 to indicate this is an address byte. // ui32LCRH = HWREG(ui32Base + UART_O_LCRH); HWREG(ui32Base + UART_O_LCRH) = ((ui32LCRH & ~UART_LCRH_EPS) | UART_LCRH_SPS | UART_LCRH_PEN); // // Send the address. // HWREG(ui32Base + UART_O_DR) = ui8Addr; // // Wait until the address has been sent. // while((HWREG(ui32Base + UART_O_FR) & (UART_FR_TXFE | UART_FR_BUSY)) != UART_FR_TXFE) { } // // Restore the address/data setting. // HWREG(ui32Base + UART_O_LCRH) = ui32LCRH; } //***************************************************************************** // //! Enables internal loopback mode for a UART port //! //! \param ui32Base is the base address of the UART port. //! //! This function configures a UART port in internal loopback mode to help with //! diagnostics and debug. In this mode, the transmit and receive terminals of //! the same UART port are internally connected. Hence, the data transmitted //! on the UnTx output is received on the UxRx input, without having to go //! through I/O's. UARTCharPut(), UARTCharGet() functions can be used along //! with this function. //! //! \return None. // //***************************************************************************** void UARTLoopbackEnable(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_UARTBaseValid(ui32Base)); // // Write the Loopback Enable bit to register. // HWREG(ui32Base + UART_O_CTL) |= UART_CTL_LBE; } //***************************************************************************** // // Close the Doxygen group. //! @} // //*****************************************************************************