/** ****************************************************************************** * @file HAL_rcc.c * @author AE Team * @version V1.1.0 * @date 28/08/2019 * @brief This file provides all the RCC firmware functions. ****************************************************************************** * @copy * * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE * TIME. AS A RESULT, MindMotion SHALL NOT BE HELD LIABLE FOR ANY * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS. * *

© COPYRIGHT 2019 MindMotion

*/ /* Includes ------------------------------------------------------------------*/ #include "HAL_rcc.h" /** @addtogroup StdPeriph_Driver * @{ */ /** @defgroup RCC * @brief RCC driver modules * @{ */ /** @defgroup RCC_Private_TypesDefinitions * @{ */ /** * @} */ /** @defgroup RCC_Private_Defines * @{ */ /* ------------ RCC registers bit address in the alias region ----------- */ #define RCC_OFFSET (RCC_BASE - PERIPH_BASE) /* --- CR Register ---*/ /* Alias word address of HSION bit */ #define CR_OFFSET (RCC_OFFSET + 0x00) #define HSION_BitNumber 0x00 #define CR_HSION_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (HSION_BitNumber * 4)) /* Alias word address of PLLON bit */ #define PLLON_BitNumber 0x18 #define CR_PLLON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLLON_BitNumber * 4)) /* Alias word address of CSSON bit */ #define CSSON_BitNumber 0x13 #define CR_CSSON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (CSSON_BitNumber * 4)) /* --- CFGR Register ---*/ /* Alias word address of USBPRE bit */ #define CFGR_OFFSET (RCC_OFFSET + 0x04) #define USBPRE_BitNumber 0x16 #define CFGR_USBPRE_BB (PERIPH_BB_BASE + (CFGR_OFFSET * 32) + (USBPRE_BitNumber * 4)) /* --- BDCR Register ---*/ /* Alias word address of RTCEN bit */ #define BDCR_OFFSET (RCC_OFFSET + 0x20) #define RTCEN_BitNumber 0x0F #define BDCR_RTCEN_BB (PERIPH_BB_BASE + (BDCR_OFFSET * 32) + (RTCEN_BitNumber * 4)) /* Alias word address of BDRST bit */ #define BDRST_BitNumber 0x10 #define BDCR_BDRST_BB (PERIPH_BB_BASE + (BDCR_OFFSET * 32) + (BDRST_BitNumber * 4)) /* --- CSR Register ---*/ /* Alias word address of LSION bit */ #define CSR_OFFSET (RCC_OFFSET + 0x24) #define LSION_BitNumber 0x00 #define CSR_LSION_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (LSION_BitNumber * 4)) /* ---------------------- RCC registers bit mask ------------------------ */ /* CR register bit mask */ #define CR_HSEBYP_Reset ((uint32_t)0xFFFBFFFF) #define CR_HSEBYP_Set ((uint32_t)0x00040000) #define CR_HSEON_Reset ((uint32_t)0xFFFEFFFF) #define CR_HSEON_Set ((uint32_t)0x00010000) #define CR_HSITRIM_Mask ((uint32_t)0xFFFFFF07) /* CFGR register bit mask */ #define CFGR_PLL_Mask ((uint32_t)0xFFC0FFFF) #define CFGR_PLLMull_Mask ((uint32_t)0x003C0000) #define CFGR_PLLSRC_Mask ((uint32_t)0x00010000) #define CFGR_PLLXTPRE_Mask ((uint32_t)0x00020000) #define CFGR_SWS_Mask ((uint32_t)0x0000000C) #define CFGR_SW_Mask ((uint32_t)0xFFFFFFFC) #define CFGR_HPRE_Reset_Mask ((uint32_t)0xFFFFFF0F) #define CFGR_HPRE_Set_Mask ((uint32_t)0x000000F0) #define CFGR_PPRE1_Reset_Mask ((uint32_t)0xFFFFF8FF) #define CFGR_PPRE1_Set_Mask ((uint32_t)0x00000700) #define CFGR_PPRE2_Reset_Mask ((uint32_t)0xFFFFC7FF) #define CFGR_PPRE2_Set_Mask ((uint32_t)0x00003800) #define CFGR_ADCPRE_Reset_Mask ((uint32_t)0xFFFF3FFF) #define CFGR_ADCPRE_Set_Mask ((uint32_t)0x0000C000) /* CSR register bit mask */ #define CSR_RMVF_Set ((uint32_t)0x01000000) /* RCC Flag Mask */ #define FLAG_Mask ((uint8_t)0x1F) /* CIR register byte 2 (Bits[15:8]) base address */ #define CIR_BYTE2_ADDRESS ((uint32_t)0x40021009) /* CIR register byte 3 (Bits[23:16]) base address */ #define CIR_BYTE3_ADDRESS ((uint32_t)0x4002100A) /* CFGR register byte 4 (Bits[31:24]) base address */ #define CFGR_BYTE4_ADDRESS ((uint32_t)0x40021007) /* BDCR register base address */ #define BDCR_ADDRESS (PERIPH_BASE + BDCR_OFFSET) #ifndef HSEStartUp_TimeOut /* Time out for HSE start up */ #define HSEStartUp_TimeOut ((uint16_t)0x0500) #endif /** * @} */ /** @defgroup RCC_Private_Macros * @{ */ /** * @} */ /** @defgroup RCC_Private_Variables * @{ */ static __I uint8_t APBAHBPrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9}; static __I uint8_t ADCPrescTable[4] = {2, 4, 6, 8}; /** * @} */ /** @defgroup RCC_Private_FunctionPrototypes * @{ */ /** * @} */ /** @defgroup RCC_Private_Functions * @{ */ /** * @brief Resets the RCC clock configuration to the default reset state. * @param None * @retval : None */ void RCC_DeInit(void) { /* Set HSION bit */ RCC->CR |= (uint32_t)0x00000001; /* Reset SW[1:0], HPRE[3:0], PPRE1[2:0], PPRE2[2:0], ADCPRE[1:0] and MCO[2:0] bits */ RCC->CFGR &= (uint32_t)0xF8FF0000; /* Reset HSEON, CSSON and PLLON bits */ RCC->CR &= (uint32_t)0xFEF6FFFF; /* Reset HSEBYP bit */ RCC->CR &= (uint32_t)0xFFFBFFFF; /* Reset PLLSRC, PLLXTPRE, PLLMUL[3:0] and USBPRE bits */ RCC->CFGR &= (uint32_t)0xFF80FFFF; /* Disable all interrupts */ RCC->CIR = 0x00000000; } /** * @brief Configures the External High Speed oscillator (HSE). * HSE can not be stopped if it is used directly or through the * PLL as system clock. * @param RCC_HSE: specifies the new state of the HSE. * This parameter can be one of the following values: * @arg RCC_HSE_OFF: HSE oscillator OFF * @arg RCC_HSE_ON: HSE oscillator ON * @arg RCC_HSE_Bypass: HSE oscillator bypassed with external * clock * @retval : None */ void RCC_HSEConfig(uint32_t RCC_HSE) { /* Check the parameters */ assert_param(IS_RCC_HSE(RCC_HSE)); /* Reset HSEON and HSEBYP bits before configuring the HSE ------------------*/ /* Reset HSEON bit */ RCC->CR &= CR_HSEON_Reset; /* Reset HSEBYP bit */ RCC->CR &= CR_HSEBYP_Reset; /* Configure HSE (RCC_HSE_OFF is already covered by the code section above) */ switch(RCC_HSE) { case RCC_HSE_ON: /* Set HSEON bit */ RCC->CR |= CR_HSEON_Set; break; case RCC_HSE_Bypass: /* Set HSEBYP and HSEON bits */ RCC->CR |= CR_HSEBYP_Set | CR_HSEON_Set; break; default: break; } } /** * @brief Waits for HSE start-up. * @param None * @retval : An ErrorStatus enumuration value: * - SUCCESS: HSE oscillator is stable and ready to use * - ERROR: HSE oscillator not yet ready */ ErrorStatus RCC_WaitForHSEStartUp(void) { __IO uint32_t StartUpCounter = 0; ErrorStatus status = ERROR; FlagStatus HSEStatus = RESET; /* Wait till HSE is ready and if Time out is reached exit */ do { HSEStatus = RCC_GetFlagStatus(RCC_FLAG_HSERDY); StartUpCounter++; } while((HSEStatus == RESET) && (StartUpCounter != HSEStartUp_TimeOut)); if (RCC_GetFlagStatus(RCC_FLAG_HSERDY) != RESET) { status = SUCCESS; } else { status = ERROR; } return (status); } /** * @brief Adjusts the Internal High Speed oscillator (HSI) calibration * value. * @param HSICalibrationValue: specifies the calibration trimming value. * This parameter must be a number between 0 and 0x1F. * @retval : None */ void RCC_AdjustHSICalibrationValue(uint8_t HSICalibrationValue) { uint32_t tmpreg = 0; /* Check the parameters */ assert_param(IS_RCC_CALIBRATION_VALUE(HSICalibrationValue)); tmpreg = RCC->CR; /* Clear HSITRIM[4:0] bits */ tmpreg &= CR_HSITRIM_Mask; /* Set the HSITRIM[4:0] bits according to HSICalibrationValue value */ tmpreg |= (uint32_t)HSICalibrationValue << 3; /* Store the new value */ RCC->CR = tmpreg; } /** * @brief Enables or disables the Internal High Speed oscillator (HSI). * HSI can not be stopped if it is used directly or through the * PLL as system clock. * @param NewState: new state of the HSI. * This parameter can be: ENABLE or DISABLE. * @retval : None */ void RCC_HSICmd(FunctionalState NewState) { /* Check the parameters */ assert_param(IS_FUNCTIONAL_STATE(NewState)); if(NewState == ENABLE) { RCC->CR |= 0x01; } else { RCC->CR &= 0xfffffffe; } } /** * @brief Configures the PLL clock source and DM DN factor. * This function must be used only when the PLL is disabled. * @param RCC_PLLSource: specifies the PLL entry clock source. * This parameter can be one of the following values: * @arg RCC_PLLSource_HSI_Div2: HSI oscillator clock divided * by 2 selected as PLL clock entry * @arg RCC_PLLSource_HSE_Div1: HSE oscillator clock selected * as PLL clock entry * @arg RCC_PLLSource_HSE_Div2: HSE oscillator clock divided * by 2 selected as PLL clock entry * @param RCC_PLLDN: specifies the PLL multiplication factor. * This parameter can be RCC_PLLMul_x where x:[31:26] * @param RCC_PLLDM: specifies the PLL Divsior factor. * This parameter can be RCC_Divsior_x where x:[22:20] * @retval : None */ void RCC_PLLDMDNConfig(uint32_t RCC_PLLSource, uint32_t RCC_PLLDN, uint32_t RCC_PLLDM) { uint32_t tmpreg0 = 0; /* Check the parameters */ assert_param(IS_RCC_PLL_SOURCE(RCC_PLLSource)); assert_param(IS_RCC_PLL_MUL(RCC_PLLMul)); tmpreg0 = RCC->CR; /* Clear PLLDN, PLLDM bits */ /* Clear PLLSRC, PLLXTPRE and PLLMUL[3:0] bits */ tmpreg0 &= 0x038fffff; /* Set the PLL configuration bits */ tmpreg0 |= (RCC_PLLDN << 26) | (RCC_PLLDM << 20); RCC->CR = tmpreg0; } /** * @brief Configures the PLL clock source and multiplication factor. * This function must be used only when the PLL is disabled. * @param RCC_PLLSource: specifies the PLL entry clock source. * This parameter can be one of the following values: * @arg RCC_PLLSource_HSI_Div2: HSI oscillator clock divided * by 2 selected as PLL clock entry * @arg RCC_PLLSource_HSE_Div1: HSE oscillator clock selected * as PLL clock entry * @arg RCC_PLLSource_HSE_Div2: HSE oscillator clock divided * by 2 selected as PLL clock entry * @param RCC_PLLMul: specifies the PLL multiplication factor. * This parameter can be RCC_PLLMul_x where x:[31:26][22:20] * @retval : None */ void RCC_PLLConfig(uint32_t RCC_PLLSource, uint32_t RCC_PLLMul) { uint32_t tmpreg = 0; /* Check the parameters */ assert_param(IS_RCC_PLL_SOURCE(RCC_PLLSource)); assert_param(IS_RCC_PLL_MUL(RCC_PLLMul)); tmpreg = RCC->CFGR; /* Clear PLLSRC, PLLXTPRE and PLLMUL[3:0] bits */ tmpreg &= CFGR_PLL_Mask; /* Set the PLL configuration bits */ tmpreg |= RCC_PLLSource; /* Store the new value */ RCC->CFGR = tmpreg; if(RCC_PLLMul == RCC_PLLMul_2) { RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000007, 0x00000003); //Frclk*8/4 } if(RCC_PLLMul == RCC_PLLMul_3) { RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000005, 0x00000001);//Frclk*6/2 } if(RCC_PLLMul == RCC_PLLMul_4) { RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000007, 0x00000001);//Frclk*8/2 } if(RCC_PLLMul == RCC_PLLMul_5) { RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000009, 0x00000001);//Frclk*10/2 } if(RCC_PLLMul == RCC_PLLMul_6) { RCC_PLLDMDNConfig(RCC_PLLSource, 0x0000000B, 0x00000001);//Frclk*12/2 } if(RCC_PLLMul == RCC_PLLMul_7) { RCC_PLLDMDNConfig(RCC_PLLSource, 0x0000000D, 0x00000001);//Frclk*14/2 } if(RCC_PLLMul == RCC_PLLMul_8) { RCC_PLLDMDNConfig(RCC_PLLSource, 0x0000000F, 0x00000001);//Frclk*16/2 } if(RCC_PLLMul == RCC_PLLMul_9) { RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000011, 0x00000001);//Frclk*18/2 } if(RCC_PLLMul == RCC_PLLMul_10) { RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000013, 0x00000001);//Frclk*20/2 } if(RCC_PLLMul == RCC_PLLMul_11) { RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000015, 0x00000001);//Frclk*22/2 } if(RCC_PLLMul == RCC_PLLMul_12) { RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000017, 0x00000001);//Frclk*24/2 } if(RCC_PLLMul == RCC_PLLMul_13) { RCC_PLLDMDNConfig(RCC_PLLSource, 0x00000019, 0x00000001);//Frclk*26/2 } if(RCC_PLLMul == RCC_PLLMul_14) { RCC_PLLDMDNConfig(RCC_PLLSource, 0x0000001B, 0x00000001);//Frclk*28/2 } if(RCC_PLLMul == RCC_PLLMul_15) { RCC_PLLDMDNConfig(RCC_PLLSource, 0x0000001D, 0x00000001);//Frclk*30/2 } if(RCC_PLLMul == RCC_PLLMul_16) { RCC_PLLDMDNConfig(RCC_PLLSource, 0x0000001F, 0x00000001);//Frclk*32/2 } } /** * @brief Enables or disables the PLL. * The PLL can not be disabled if it is used as system clock. * @param NewState: new state of the PLL. * This parameter can be: ENABLE or DISABLE. * @retval : None */ void RCC_PLLCmd(FunctionalState NewState) { /* Check the parameters */ assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { RCC->CR |= 0x01000000; } else { RCC->CR &= 0xfeffffff; } } /** * @brief Configures the system clock (SYSCLK). * @param RCC_SYSCLKSource: specifies the clock source used as system * clock. This parameter can be one of the following values: * @arg RCC_SYSCLKSource_HSI: HSI selected as system clock * @arg RCC_SYSCLKSource_HSE: HSE selected as system clock * @arg RCC_SYSCLKSource_PLLCLK: PLL selected as system clock * @retval : None */ void RCC_SYSCLKConfig(uint32_t RCC_SYSCLKSource) { uint32_t tmpreg = 0; /* Check the parameters */ assert_param(IS_RCC_SYSCLK_SOURCE(RCC_SYSCLKSource)); tmpreg = RCC->CFGR; /* Clear SW[1:0] bits */ tmpreg &= CFGR_SW_Mask; /* Set SW[1:0] bits according to RCC_SYSCLKSource value */ tmpreg |= RCC_SYSCLKSource; /* Store the new value */ RCC->CFGR = tmpreg; } /** * @brief Returns the clock source used as system clock. * @param None * @retval : The clock source used as system clock. The returned value can * be one of the following: * - 0x00: HSI/6 used as system clock * - 0x04: HSE used as system clock * - 0x08: PLL used as system clock */ uint8_t RCC_GetSYSCLKSource(void) { return ((uint8_t)(RCC->CFGR & CFGR_SWS_Mask)); } /** * @brief Configures the AHB clock (HCLK). * @param RCC_SYSCLK: defines the AHB clock divider. This clock is derived from * the system clock (SYSCLK). * This parameter can be one of the following values: * @arg RCC_SYSCLK_Div1: AHB clock = SYSCLK * @arg RCC_SYSCLK_Div2: AHB clock = SYSCLK/2 * @arg RCC_SYSCLK_Div4: AHB clock = SYSCLK/4 * @arg RCC_SYSCLK_Div8: AHB clock = SYSCLK/8 * @arg RCC_SYSCLK_Div16: AHB clock = SYSCLK/16 * @arg RCC_SYSCLK_Div64: AHB clock = SYSCLK/64 * @arg RCC_SYSCLK_Div128: AHB clock = SYSCLK/128 * @arg RCC_SYSCLK_Div256: AHB clock = SYSCLK/256 * @arg RCC_SYSCLK_Div512: AHB clock = SYSCLK/512 * @retval : None */ void RCC_HCLKConfig(uint32_t RCC_SYSCLK) { uint32_t tmpreg = 0; /* Check the parameters */ assert_param(IS_RCC_HCLK(RCC_SYSCLK)); tmpreg = RCC->CFGR; /* Clear HPRE[3:0] bits */ tmpreg &= CFGR_HPRE_Reset_Mask; /* Set HPRE[3:0] bits according to RCC_SYSCLK value */ tmpreg |= RCC_SYSCLK; /* Store the new value */ RCC->CFGR = tmpreg; } /** * @brief Configures the Low Speed APB clock (PCLK1). * @param RCC_HCLK: defines the APB1 clock divider. This clock is derived from * the AHB clock (HCLK). * This parameter can be one of the following values: * @arg RCC_HCLK_Div1: APB1 clock = HCLK * @arg RCC_HCLK_Div2: APB1 clock = HCLK/2 * @arg RCC_HCLK_Div4: APB1 clock = HCLK/4 * @arg RCC_HCLK_Div8: APB1 clock = HCLK/8 * @arg RCC_HCLK_Div16: APB1 clock = HCLK/16 * @retval : None */ void RCC_PCLK1Config(uint32_t RCC_HCLK) { uint32_t tmpreg = 0; /* Check the parameters */ assert_param(IS_RCC_PCLK(RCC_HCLK)); tmpreg = RCC->CFGR; /* Clear PPRE1[2:0] bits */ tmpreg &= CFGR_PPRE1_Reset_Mask; /* Set PPRE1[2:0] bits according to RCC_HCLK value */ tmpreg |= RCC_HCLK; /* Store the new value */ RCC->CFGR = tmpreg; } /** * @brief Configures the High Speed APB clock (PCLK2). * @param RCC_HCLK: defines the APB2 clock divider. This clock is derived from * the AHB clock (HCLK). * This parameter can be one of the following values: * @arg RCC_HCLK_Div1: APB2 clock = HCLK * @arg RCC_HCLK_Div2: APB2 clock = HCLK/2 * @arg RCC_HCLK_Div4: APB2 clock = HCLK/4 * @arg RCC_HCLK_Div8: APB2 clock = HCLK/8 * @arg RCC_HCLK_Div16: APB2 clock = HCLK/16 * @retval : None */ void RCC_PCLK2Config(uint32_t RCC_HCLK) { uint32_t tmpreg = 0; /* Check the parameters */ assert_param(IS_RCC_PCLK(RCC_HCLK)); tmpreg = RCC->CFGR; /* Clear PPRE2[2:0] bits */ tmpreg &= CFGR_PPRE2_Reset_Mask; /* Set PPRE2[2:0] bits according to RCC_HCLK value */ tmpreg |= RCC_HCLK << 3; /* Store the new value */ RCC->CFGR = tmpreg; } /** * @brief Enables or disables the specified RCC interrupts. * @param RCC_IT: specifies the RCC interrupt sources to be enabled or disabled. * This parameter can be any combination of the following values: * @arg RCC_IT_LSIRDY: LSI ready interrupt * @arg RCC_IT_LSERDY: LSE ready interrupt * @arg RCC_IT_HSIRDY: HSI ready interrupt * @arg RCC_IT_HSERDY: HSE ready interrupt * @arg RCC_IT_PLLRDY: PLL ready interrupt * @param NewState: new state of the specified RCC interrupts. * This parameter can be: ENABLE or DISABLE. * @retval : None */ void RCC_ITConfig(uint8_t RCC_IT, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_RCC_IT(RCC_IT)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Perform Byte access to RCC_CIR[12:8] bits to enable the selected interrupts */ RCC->CIR &= ~((uint32_t)0x1f) << 8; RCC->CIR |= ((uint32_t)RCC_IT) << 8; } else { /* Perform Byte access to RCC_CIR[12:8] bits to disable the selected interrupts */ RCC->CIR &= ~((uint32_t)RCC_IT << 8); } } /** * @brief Configures the USB clock (USBCLK). * @param RCC_USBCLKSource: specifies the USB clock source. This clock is * derived from the PLL output. * This parameter can be one of the following values: * @arg RCC_USBCLKSource_PLLCLK_1Div5: PLL clock divided by 1,5 selected as USB * clock source * @arg RCC_USBCLKSource_PLLCLK_Div1: PLL clock selected as USB clock source * @retval : None */ void RCC_USBCLKConfig(uint32_t RCC_USBCLKSource) { /* Check the parameters */ assert_param(IS_RCC_USBCLK_SOURCE(RCC_USBCLKSource)); RCC->CFGR &= ~(3 << 22); RCC->CFGR |= RCC_USBCLKSource << 22; } /** * @brief Configures the ADC clock (ADCCLK). * @param RCC_PCLK2: defines the ADC clock divider. This clock is derived from * the APB2 clock (PCLK2). * This parameter can be one of the following values: * @arg RCC_PCLK2_Div2: ADC clock = PCLK2/2 * @arg RCC_PCLK2_Div4: ADC clock = PCLK2/4 * @arg RCC_PCLK2_Div6: ADC clock = PCLK2/6 * @arg RCC_PCLK2_Div8: ADC clock = PCLK2/8 * @retval : None */ void RCC_ADCCLKConfig(uint32_t RCC_PCLK2) { uint32_t tmpreg = 0; /* Check the parameters */ assert_param(IS_RCC_ADCCLK(RCC_PCLK2)); tmpreg = RCC->CFGR; /* Clear ADCPRE[1:0] bits */ tmpreg &= CFGR_ADCPRE_Reset_Mask; /* Set ADCPRE[1:0] bits according to RCC_PCLK2 value */ tmpreg |= RCC_PCLK2; /* Store the new value */ RCC->CFGR = tmpreg; } /** * @brief Configures the External Low Speed oscillator (LSE). * @param RCC_LSE: specifies the new state of the LSE. * This parameter can be one of the following values: * @arg RCC_LSE_OFF: LSE oscillator OFF * @arg RCC_LSE_ON: LSE oscillator ON * @arg RCC_LSE_Bypass: LSE oscillator bypassed with external * clock * @retval : None */ void RCC_LSEConfig(uint8_t RCC_LSE) { /* Check the parameters */ assert_param(IS_RCC_LSE(RCC_LSE)); /* Configure LSE (RCC_LSE_OFF is already covered by the code section above) */ switch(RCC_LSE) { case RCC_LSE_ON: /* Set LSEON bit */ RCC->BDCR |= RCC_LSE_ON; break; case RCC_LSE_Bypass: /* Set LSEBYP and LSEON bits */ RCC->BDCR |= RCC_LSE_Bypass | RCC_LSE_ON; break; default: break; } } /** * @brief Enables or disables the Internal Low Speed oscillator (LSI). * LSI can not be disabled if the IWDG is running. * @param NewState: new state of the LSI. * This parameter can be: ENABLE or DISABLE. * @retval : None */ void RCC_LSICmd(FunctionalState NewState) { /* Check the parameters */ assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { RCC->CSR |= 0x00000001; } else { RCC->CSR &= 0xfffffffe; } } /** * @brief Configures the RTC clock (RTCCLK). * Once the RTC clock is selected it can’t be changed unless the * Backup domain is reset. * @param RCC_RTCCLKSource: specifies the RTC clock source. * This parameter can be one of the following values: * @arg RCC_RTCCLKSource_LSE: LSE selected as RTC clock * @arg RCC_RTCCLKSource_LSI: LSI selected as RTC clock * @arg RCC_RTCCLKSource_HSE_Div128: HSE clock divided by 128 * selected as RTC clock * @retval : None */ void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource) { /* Check the parameters */ assert_param(IS_RCC_RTCCLK_SOURCE(RCC_RTCCLKSource)); /* Select the RTC clock source */ RCC->BDCR |= RCC_RTCCLKSource; } /** * @brief Enables or disables the RTC clock. * This function must be used only after the RTC clock was * selected using the RCC_RTCCLKConfig function. * @param NewState: new state of the RTC clock. * This parameter can be: ENABLE or DISABLE. * @retval : None */ void RCC_RTCCLKCmd(FunctionalState NewState) { /* Check the parameters */ assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { RCC->BDCR |= 0x00008000; } else { RCC->BDCR &= 0xffff7fff; } } /** * @brief Returns the frequencies of different on chip clocks. * @param RCC_Clocks: pointer to a RCC_ClocksTypeDef structure which * will hold the clocks frequencies. * @retval : None */ void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks) { uint32_t tmp = 0, pllmull1 = 0, pllmull2 = 0, pllsource = 0, presc = 0; /* Get SYSCLK source -------------------------------------------------------*/ tmp = RCC->CFGR & CFGR_SWS_Mask; switch (tmp) { case 0x00: /* HSI used as system clock */ RCC_Clocks->SYSCLK_Frequency = HSI_Value_Pll_OFF; break; case 0x04: /* HSE used as system clock */ RCC_Clocks->SYSCLK_Frequency = HSE_Value; break; case 0x08: /* PLL used as system clock */ /* Get PLL clock source and multiplication factor ----------------------*/ //pllmull = RCC->CFGR & CFGR_PLLMull_Mask; //pllmull = ( pllmull >> 18) + 2; pllmull1 = ((RCC->CR & 0xfc000000) >> 26) + 1; pllmull2 = ((RCC->CR & 0x00700000) >> 20) + 1; pllsource = RCC->CFGR & CFGR_PLLSRC_Mask; if (pllsource == 0x00) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ RCC_Clocks->SYSCLK_Frequency = 2 * (HSI_Value_Pll_ON >> 1) * pllmull1 / pllmull2; } else { /* HSE selected as PLL clock entry */ if ((RCC->CFGR & CFGR_PLLXTPRE_Mask) != (uint32_t)RESET) { /* HSE oscillator clock divided by 2 */ RCC_Clocks->SYSCLK_Frequency = (HSE_Value >> 1) * pllmull1 / pllmull2; } else { RCC_Clocks->SYSCLK_Frequency = HSE_Value * pllmull1 / pllmull2; } } break; default: RCC_Clocks->SYSCLK_Frequency = HSI_Value_Pll_OFF; break; } /* Compute HCLK, PCLK1, PCLK2 and ADCCLK clocks frequencies ----------------*/ /* Get HCLK prescaler */ tmp = RCC->CFGR & CFGR_HPRE_Set_Mask; tmp = tmp >> 4; presc = APBAHBPrescTable[tmp]; /* HCLK clock frequency */ RCC_Clocks->HCLK_Frequency = RCC_Clocks->SYSCLK_Frequency >> presc; /* Get PCLK1 prescaler */ tmp = RCC->CFGR & CFGR_PPRE1_Set_Mask; tmp = tmp >> 8; presc = APBAHBPrescTable[tmp]; /* PCLK1 clock frequency */ RCC_Clocks->PCLK1_Frequency = RCC_Clocks->HCLK_Frequency >> presc; /* Get PCLK2 prescaler */ tmp = RCC->CFGR & CFGR_PPRE2_Set_Mask; tmp = tmp >> 11; presc = APBAHBPrescTable[tmp]; /* PCLK2 clock frequency */ RCC_Clocks->PCLK2_Frequency = RCC_Clocks->HCLK_Frequency >> presc; /* Get ADCCLK prescaler */ tmp = RCC->CFGR & CFGR_ADCPRE_Set_Mask; tmp = tmp >> 14; presc = ADCPrescTable[tmp]; /* ADCCLK clock frequency */ RCC_Clocks->ADCCLK_Frequency = RCC_Clocks->PCLK2_Frequency / presc; } /** * @brief Enables or disables the AHB peripheral clock. * @param RCC_AHBPeriph: specifies the AHB peripheral to gates its clock. * This parameter can be any combination of the following values: * @arg RCC_AHBPeriph_DMA1 * @arg RCC_AHBPeriph_DMA2 * @arg RCC_AHBPeriph_SRAM * @arg RCC_AHBPeriph_FLITF * @arg RCC_AHBPeriph_CRC * @arg RCC_AHBPeriph_FSMC * @arg RCC_AHBPeriph_SDIO * SRAM and FLITF clock can be disabled only during sleep mode. * @param NewState: new state of the specified peripheral clock. * This parameter can be: ENABLE or DISABLE. * @retval : None */ void RCC_AHBPeriphClockCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_RCC_AHB_PERIPH(RCC_AHBPeriph)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { RCC->AHBENR |= RCC_AHBPeriph; } else { RCC->AHBENR &= ~RCC_AHBPeriph; } } /** * @brief Enables or disables the High Speed APB (APB2) peripheral clock. * @param RCC_APB2Periph: specifies the APB2 peripheral to gates its * clock. * This parameter can be any combination of the following values: * @arg RCC_APB2Periph_AFIO, RCC_APB2Periph_GPIOA, RCC_APB2Periph_GPIOB, * RCC_APB2Periph_GPIOC, RCC_APB2Periph_GPIOD, RCC_APB2Periph_GPIOE, * RCC_APB2Periph_GPIOF, RCC_APB2Periph_GPIOG, RCC_APB2Periph_ADC1, * RCC_APB2Periph_ADC2, RCC_APB2Periph_TIM1, RCC_APB2Periph_SPI1, * RCC_APB2Periph_TIM8, RCC_APB2Periph_UART1, * RCC_APB2Periph_ALL * @param NewState: new state of the specified peripheral clock. * This parameter can be: ENABLE or DISABLE. * @retval : None */ void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { RCC->APB2ENR |= RCC_APB2Periph; } else { RCC->APB2ENR &= ~RCC_APB2Periph; } } /** * @brief Enables or disables the Low Speed APB (APB1) peripheral clock. * @param RCC_APB1Periph: specifies the APB1 peripheral to gates its * clock. * This parameter can be any combination of the following values: * @arg RCC_APB1Periph_TIM2, RCC_APB1Periph_TIM3, RCC_APB1Periph_TIM4, * RCC_APB1Periph_TIM5, RCC_APB1Periph_TIM6, RCC_APB1Periph_TIM7, * RCC_APB1Periph_WWDG, RCC_APB1Periph_SPI2, RCC_APB1Periph_SPI3, * RCC_APB1Periph_UART2, RCC_APB1Periph_UART3, RCC_APB1Periph_UART4, * RCC_APB1Periph_UART5, RCC_APB1Periph_I2C1, RCC_APB1Periph_I2C2, * RCC_APB1Periph_USB, RCC_APB1Periph_CAN1, RCC_APB1Periph_BKP, * RCC_APB1Periph_PWR, RCC_APB1Periph_DAC, RCC_APB1Periph_ALL * @param NewState: new state of the specified peripheral clock. * This parameter can be: ENABLE or DISABLE. * @retval : None */ void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { RCC->APB1ENR |= RCC_APB1Periph; } else { RCC->APB1ENR &= ~RCC_APB1Periph; } } /** * @brief Forces or releases High Speed APB (APB2) peripheral reset. * @param RCC_APB2Periph: specifies the APB2 peripheral to reset. * This parameter can be any combination of the following values: * @arg RCC_APB2Periph_AFIO, RCC_APB2Periph_GPIOA, RCC_APB2Periph_GPIOB, * RCC_APB2Periph_GPIOC, RCC_APB2Periph_GPIOD, RCC_APB2Periph_ADC1, * RCC_APB2Periph_ADC2, RCC_APB2Periph_TIM1, RCC_APB2Periph_SPI1, * RCC_APB2Periph_TIM8, RCC_APB2Periph_UART1, RCC_APB2Periph_ADC3, * RCC_APB2Periph_ALL * @param NewState: new state of the specified peripheral reset. * This parameter can be: ENABLE or DISABLE. * @retval : None */ void RCC_APB2PeriphResetCmd(uint32_t RCC_APB2Periph, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { RCC->APB2RSTR |= RCC_APB2Periph; } else { RCC->APB2RSTR &= ~RCC_APB2Periph; } } /** * @brief Forces or releases Low Speed APB (APB1) peripheral reset. * @param RCC_APB1Periph: specifies the APB1 peripheral to reset. * This parameter can be any combination of the following values: * @arg RCC_APB1Periph_TIM2, RCC_APB1Periph_TIM3, RCC_APB1Periph_TIM4, * RCC_APB1Periph_TIM5, RCC_APB1Periph_TIM6, RCC_APB1Periph_TIM7, * RCC_APB1Periph_WWDG, RCC_APB1Periph_SPI2, RCC_APB1Periph_SPI3, * RCC_APB1Periph_UART2, RCC_APB1Periph_UART3, RCC_APB1Periph_UART4, * RCC_APB1Periph_UART5, RCC_APB1Periph_I2C1, RCC_APB1Periph_I2C2, * RCC_APB1Periph_USB, RCC_APB1Periph_CAN1, RCC_APB1Periph_BKP, * RCC_APB1Periph_PWR, RCC_APB1Periph_DAC, RCC_APB1Periph_ALL * @param NewState: new state of the specified peripheral clock. * This parameter can be: ENABLE or DISABLE. * @retval : None */ void RCC_APB1PeriphResetCmd(uint32_t RCC_APB1Periph, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { RCC->APB1RSTR |= RCC_APB1Periph; } else { RCC->APB1RSTR &= ~RCC_APB1Periph; } } /** * @brief Forces or releases the Backup domain reset. * @param NewState: new state of the Backup domain reset. * This parameter can be: ENABLE or DISABLE. * @retval : None */ void RCC_BackupResetCmd(FunctionalState NewState) { /* Check the parameters */ assert_param(IS_FUNCTIONAL_STATE(NewState)); *(__IO uint32_t *) BDCR_BDRST_BB = (uint32_t)NewState; } /** * @brief Enables or disables the Clock Security System. * @param NewState: new state of the Clock Security System.. * This parameter can be: ENABLE or DISABLE. * @retval : None */ void RCC_ClockSecuritySystemCmd(FunctionalState NewState) { /* Check the parameters */ assert_param(IS_FUNCTIONAL_STATE(NewState)); *(__IO uint32_t *) CR_CSSON_BB = (uint32_t)NewState; } /** * @brief Selects the clock source to output on MCO pin. * @param RCC_MCO: specifies the clock source to output. * This parameter can be one of the following values: * @arg RCC_MCO_NoClock: No clock selected * @arg RCC_MCO_SYSCLK: System clock selected * @arg RCC_MCO_HSI: HSI oscillator clock selected * @arg RCC_MCO_HSE: HSE oscillator clock selected * @arg RCC_MCO_PLLCLK_Div2: PLL clock divided by 2 selected * @retval : None */ void RCC_MCOConfig(uint8_t RCC_MCO) { /* Check the parameters */ assert_param(IS_RCC_MCO(RCC_MCO)); /* Perform Byte access to MCO[2:0] bits to select the MCO source */ *(__IO uint8_t *) CFGR_BYTE4_ADDRESS = RCC_MCO; } /** * @brief Checks whether the specified RCC flag is set or not. * @param RCC_FLAG: specifies the flag to check. * This parameter can be one of the following values: * @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready * @arg RCC_FLAG_HSERDY: HSE oscillator clock ready * @arg RCC_FLAG_PLLRDY: PLL clock ready * @arg RCC_FLAG_LSERDY: LSE oscillator clock ready * @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready * @arg RCC_FLAG_PINRST: Pin reset * @arg RCC_FLAG_PORRST: POR/PDR reset * @arg RCC_FLAG_SFTRST: Software reset * @arg RCC_FLAG_IWDGRST: Independent Watchdog reset * @arg RCC_FLAG_WWDGRST: Window Watchdog reset * @arg RCC_FLAG_LPWRRST: Low Power reset * @retval : The new state of RCC_FLAG (SET or RESET). */ FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG) { uint32_t tmp = 0; uint32_t statusreg = 0; FlagStatus bitstatus = RESET; /* Check the parameters */ assert_param(IS_RCC_FLAG(RCC_FLAG)); /* Get the RCC register index */ tmp = RCC_FLAG >> 5; if (tmp == 1) /* The flag to check is in CR register */ { statusreg = RCC->CR; } else if (tmp == 2) /* The flag to check is in BDCR register */ { statusreg = RCC->BDCR; } else /* The flag to check is in CSR register */ { statusreg = RCC->CSR; } /* Get the flag position */ tmp = RCC_FLAG & FLAG_Mask; if ((statusreg & ((uint32_t)1 << tmp)) != (uint32_t)RESET) { bitstatus = SET; } else { bitstatus = RESET; } /* Return the flag status */ return bitstatus; } /** * @brief Clears the RCC reset flags. * The reset flags are: RCC_FLAG_PINRST, RCC_FLAG_PORRST, * RCC_FLAG_SFTRST, RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST, * RCC_FLAG_LPWRRST * @param None * @retval : None */ void RCC_ClearFlag(void) { /* Set RMVF bit to clear the reset flags */ RCC->CSR |= CSR_RMVF_Set; } /** * @brief Checks whether the specified RCC interrupt has occurred or not. * @param RCC_IT: specifies the RCC interrupt source to check. * This parameter can be one of the following values: * @arg RCC_IT_LSIRDY: LSI ready interrupt * @arg RCC_IT_LSERDY: LSE ready interrupt * @arg RCC_IT_HSIRDY: HSI ready interrupt * @arg RCC_IT_HSERDY: HSE ready interrupt * @arg RCC_IT_PLLRDY: PLL ready interrupt * @arg RCC_IT_CSS: Clock Security System interrupt * @retval : The new state of RCC_IT (SET or RESET). */ ITStatus RCC_GetITStatus(uint8_t RCC_IT) { ITStatus bitstatus = RESET; /* Check the parameters */ assert_param(IS_RCC_GET_IT(RCC_IT)); /* Check the status of the specified RCC interrupt */ if ((RCC->CIR & RCC_IT) != (uint32_t)RESET) { bitstatus = SET; } else { bitstatus = RESET; } /* Return the RCC_IT status */ return bitstatus; } /** * @brief Clears the RCC’s interrupt pending bits. * @param RCC_IT: specifies the interrupt pending bit to clear. * This parameter can be any combination of the following values: * @arg RCC_IT_LSIRDY: LSI ready interrupt * @arg RCC_IT_LSERDY: LSE ready interrupt * @arg RCC_IT_HSIRDY: HSI ready interrupt * @arg RCC_IT_HSERDY: HSE ready interrupt * @arg RCC_IT_PLLRDY: PLL ready interrupt * @arg RCC_IT_CSS: Clock Security System interrupt * @retval : None */ void RCC_ClearITPendingBit(uint8_t RCC_IT) { /* Check the parameters */ assert_param(IS_RCC_CLEAR_IT(RCC_IT)); /* Perform Byte access to RCC_CIR[23:16] bits to clear the selected interrupt pending bits */ RCC->CIR |= (uint32_t)RCC_IT << 16; } /** * @} */ /** * @} */ /** * @} */ /*-------------------------(C) COPYRIGHT 2019 MindMotion ----------------------*/