/**************************************************************************//** * @file usbd.c * @version V3.00 * @brief M2354 series USBD driver source file * * @copyright SPDX-License-Identifier: Apache-2.0 * @copyright Copyright (C) 2020 Nuvoton Technology Corp. All rights reserved. *****************************************************************************/ #include #include "NuMicro.h" #ifdef __cplusplus extern "C" { #endif /** @addtogroup Standard_Driver Standard Driver @{ */ /** @addtogroup USBD_Driver USBD Driver @{ */ /** @addtogroup USBD_EXPORTED_FUNCTIONS USBD Exported Functions @{ */ /* Global variables for Control Pipe */ uint8_t g_USBD_au8SetupPacket[8] = {0UL}; /*!< Setup packet buffer */ volatile uint8_t g_USBD_u8RemoteWakeupEn = 0UL; /*!< Remote wake up function enable flag */ /** * @cond HIDDEN_SYMBOLS */ static uint8_t *s_USBD_pu8CtrlInPointer = 0; static uint8_t *s_USBD_pu8CtrlOutPointer = 0; static volatile uint32_t s_USBD_u32CtrlInSize = 0UL; static volatile uint32_t s_USBD_u32CtrlOutSize = 0UL; static volatile uint32_t s_USBD_u32CtrlOutSizeLimit = 0UL; static volatile uint32_t s_USBD_u32UsbAddr = 0UL; static volatile uint32_t s_USBD_u32UsbConfig = 0UL; static volatile uint32_t s_USBD_u32CtrlMaxPktSize = 8UL; static volatile uint32_t s_USBD_u32UsbAltInterface = 0UL; static volatile uint8_t s_USBD_u8CtrlInZeroFlag = 0UL; /** * @endcond */ const S_USBD_INFO_T *g_USBD_sInfo; /*!< A pointer for USB information structure */ VENDOR_REQ g_USBD_pfnVendorRequest = NULL; /*!< USB Vendor Request Functional Pointer */ CLASS_REQ g_USBD_pfnClassRequest = NULL; /*!< USB Class Request Functional Pointer */ SET_INTERFACE_REQ g_USBD_pfnSetInterface = NULL; /*!< USB Set Interface Functional Pointer */ SET_CONFIG_CB g_USBD_pfnSetConfigCallback = NULL; /*!< USB Set configuration callback function pointer */ uint32_t g_USBD_u32EpStallLock = 0UL; /*!< Bit map flag to lock specified EP when SET_FEATURE */ /** * @brief This function makes USBD module to be ready to use * * @param[in] param The structure of USBD information. * @param[in] pfnClassReq USB Class request callback function. * @param[in] pfnSetInterface USB Set Interface request callback function. * * @return None * * @details This function will enable USB controller, USB PHY transceiver and pull-up resistor of USB_D+ pin. USB PHY will drive SE0 to bus. */ void USBD_Open(const S_USBD_INFO_T *param, CLASS_REQ pfnClassReq, SET_INTERFACE_REQ pfnSetInterface) { USBD_T *pUSBD; if((__PC() & NS_OFFSET) == NS_OFFSET) { pUSBD = USBD_NS; } else { pUSBD = USBD; } g_USBD_sInfo = param; g_USBD_pfnClassRequest = pfnClassReq; g_USBD_pfnSetInterface = pfnSetInterface; /* get EP0 maximum packet size */ s_USBD_u32CtrlMaxPktSize = g_USBD_sInfo->gu8DevDesc[7]; /* Initial USB engine */ #ifdef SUPPORT_LPM pUSBD->ATTR = 0x7D0UL | USBD_LPMACK; #else pUSBD->ATTR = 0x7D0UL; #endif /* Force SE0 */ USBD_SET_SE0(); } /** * @brief This function makes USB host to recognize the device * * @param None * * @return None * * @details Enable WAKEUP, FLDET, USB and BUS interrupts. Disable software-disconnect function after 100ms delay with SysTick timer. */ void USBD_Start(void) { /* Disable software-disconnect function */ USBD_CLR_SE0(); /* Clear USB-related interrupts before enable interrupt */ USBD_CLR_INT_FLAG(USBD_INT_BUS | USBD_INT_USB | USBD_INT_FLDET | USBD_INT_WAKEUP); /* Enable USB-related interrupts. */ USBD_ENABLE_INT(USBD_INT_BUS | USBD_INT_USB | USBD_INT_FLDET | USBD_INT_WAKEUP); } /** * @brief Get the received SETUP packet * * @param[in] buf A buffer pointer used to store 8-byte SETUP packet. * * @return None * * @details Store SETUP packet to a user-specified buffer. * */ void USBD_GetSetupPacket(uint8_t *buf) { USBD_MemCopy(buf, g_USBD_au8SetupPacket, 8UL); } /** * @brief Process SETUP packet * * @param None * * @return None * * @details Parse SETUP packet and perform the corresponding action. * */ void USBD_ProcessSetupPacket(void) { /* Get SETUP packet from USB buffer */ USBD_MemCopy(g_USBD_au8SetupPacket, (uint8_t *)USBD_BUF_BASE, 8UL); /* Check the request type */ switch(g_USBD_au8SetupPacket[0] & 0x60UL) { case REQ_STANDARD: /* Standard */ { USBD_StandardRequest(); break; } case REQ_CLASS: /* Class */ { if(g_USBD_pfnClassRequest != NULL) { g_USBD_pfnClassRequest(); } break; } case REQ_VENDOR: /* Vendor */ { if(g_USBD_pfnVendorRequest != NULL) { g_USBD_pfnVendorRequest(); } break; } default: /* reserved */ { /* Setup error, stall the device */ USBD_SET_EP_STALL(EP0); USBD_SET_EP_STALL(EP1); break; } } } /** * @brief Process GetDescriptor request * * @param None * * @return None * * @details Parse GetDescriptor request and perform the corresponding action. * */ void USBD_GetDescriptor(void) { uint32_t u32Len; s_USBD_u8CtrlInZeroFlag = (uint8_t)0UL; u32Len = 0UL; u32Len = g_USBD_au8SetupPacket[7]; u32Len <<= 8UL; u32Len += g_USBD_au8SetupPacket[6]; switch(g_USBD_au8SetupPacket[3]) { /* Get Device Descriptor */ case DESC_DEVICE: { u32Len = USBD_Minimum(u32Len, (uint32_t)LEN_DEVICE); USBD_PrepareCtrlIn((uint8_t *)g_USBD_sInfo->gu8DevDesc, u32Len); break; } /* Get Configuration Descriptor */ case DESC_CONFIG: { uint32_t u32TotalLen; u32TotalLen = g_USBD_sInfo->gu8ConfigDesc[3]; u32TotalLen = g_USBD_sInfo->gu8ConfigDesc[2] + (u32TotalLen << 8UL); if(u32Len > u32TotalLen) { u32Len = u32TotalLen; if((u32Len % s_USBD_u32CtrlMaxPktSize) == 0UL) { s_USBD_u8CtrlInZeroFlag = (uint8_t)1UL; } } USBD_PrepareCtrlIn((uint8_t *)g_USBD_sInfo->gu8ConfigDesc, u32Len); break; } /* Get BOS Descriptor */ case DESC_BOS: { if(g_USBD_sInfo->gu8BosDesc == 0) { USBD_SET_EP_STALL(EP0); USBD_SET_EP_STALL(EP1); } else { u32Len = USBD_Minimum(u32Len, LEN_BOS + LEN_BOSCAP); USBD_PrepareCtrlIn((uint8_t *)g_USBD_sInfo->gu8BosDesc, u32Len); } break; } /* Get HID Descriptor */ case DESC_HID: { /* CV3.0 HID Class Descriptor Test, Need to indicate index of the HID Descriptor within gu8ConfigDescriptor, specifically HID Composite device. */ uint32_t u32ConfigDescOffset; /* u32ConfigDescOffset is configuration descriptor offset (HID descriptor start index) */ u32Len = USBD_Minimum(u32Len, LEN_HID); u32ConfigDescOffset = g_USBD_sInfo->gu32ConfigHidDescIdx[g_USBD_au8SetupPacket[4]]; USBD_PrepareCtrlIn((uint8_t *)&g_USBD_sInfo->gu8ConfigDesc[u32ConfigDescOffset], u32Len); break; } /* Get Report Descriptor */ case DESC_HID_RPT: { if(u32Len > g_USBD_sInfo->gu32HidReportSize[g_USBD_au8SetupPacket[4]]) { u32Len = g_USBD_sInfo->gu32HidReportSize[g_USBD_au8SetupPacket[4]]; if((u32Len % s_USBD_u32CtrlMaxPktSize) == 0UL) { s_USBD_u8CtrlInZeroFlag = (uint8_t)1UL; } } USBD_PrepareCtrlIn((uint8_t *)g_USBD_sInfo->gu8HidReportDesc[g_USBD_au8SetupPacket[4]], u32Len); break; } /* Get String Descriptor */ case DESC_STRING: { /* Get String Descriptor */ if(g_USBD_au8SetupPacket[2] < 4UL) { if(u32Len > g_USBD_sInfo->gu8StringDesc[g_USBD_au8SetupPacket[2]][0]) { u32Len = g_USBD_sInfo->gu8StringDesc[g_USBD_au8SetupPacket[2]][0]; if((u32Len % s_USBD_u32CtrlMaxPktSize) == 0UL) { s_USBD_u8CtrlInZeroFlag = (uint8_t)1UL; } } USBD_PrepareCtrlIn((uint8_t *)g_USBD_sInfo->gu8StringDesc[g_USBD_au8SetupPacket[2]], u32Len); break; } else { /* Not support. Reply STALL. */ USBD_SET_EP_STALL(EP0); USBD_SET_EP_STALL(EP1); break; } } default: /* Not support. Reply STALL. */ USBD_SET_EP_STALL(EP0); USBD_SET_EP_STALL(EP1); break; } } /** * @brief Process standard request * * @param None * * @return None * * @details Parse standard request and perform the corresponding action. * */ void USBD_StandardRequest(void) { uint32_t u32Addr; USBD_T *pUSBD; OTG_T *pOTG; if((__PC() & NS_OFFSET) == NS_OFFSET) { pUSBD = USBD_NS; pOTG = OTG_NS; } else { pUSBD = USBD; pOTG = OTG; } /* clear global variables for new request */ s_USBD_pu8CtrlInPointer = 0; s_USBD_u32CtrlInSize = 0UL; if((g_USBD_au8SetupPacket[0] & 0x80UL) == 0x80UL) /* request data transfer direction */ { /* Device to host */ switch(g_USBD_au8SetupPacket[1]) { case GET_CONFIGURATION: { /* Return current configuration setting */ /* Data stage */ u32Addr = USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP0); M8(u32Addr) = (uint8_t)s_USBD_u32UsbConfig; USBD_SET_DATA1(EP0); USBD_SET_PAYLOAD_LEN(EP0, 1UL); /* Status stage */ USBD_PrepareCtrlOut(0, 0UL); break; } case GET_DESCRIPTOR: { USBD_GetDescriptor(); USBD_PrepareCtrlOut(0, 0UL); /* For status stage */ break; } case GET_INTERFACE: { /* Return current interface setting */ /* Data stage */ u32Addr = USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP0); M8(u32Addr) = (uint8_t)s_USBD_u32UsbAltInterface; USBD_SET_DATA1(EP0); USBD_SET_PAYLOAD_LEN(EP0, 1UL); /* Status stage */ USBD_PrepareCtrlOut(0, 0UL); break; } case GET_STATUS: { /* Device */ if(g_USBD_au8SetupPacket[0] == 0x80UL) { uint8_t u8Tmp; u8Tmp = (uint8_t)0UL; if((g_USBD_sInfo->gu8ConfigDesc[7] & 0x40UL) == 0x40UL) { u8Tmp |= (uint8_t)1UL; /* Self-Powered/Bus-Powered. */ } if((g_USBD_sInfo->gu8ConfigDesc[7] & 0x20UL) == 0x20UL) { u8Tmp |= (uint8_t)(g_USBD_u8RemoteWakeupEn << 1UL); /* Remote wake up */ } u32Addr = USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP0); M8(u32Addr) = u8Tmp; } /* Interface */ else if(g_USBD_au8SetupPacket[0] == 0x81UL) { u32Addr = USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP0); M8(u32Addr) = (uint8_t)0UL; } /* Endpoint */ else if(g_USBD_au8SetupPacket[0] == 0x82UL) { uint8_t ep = (uint8_t)(g_USBD_au8SetupPacket[4] & 0xFUL); u32Addr = USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP0); M8(u32Addr) = (uint8_t)(USBD_GetStall(ep) ? 1UL : 0UL); } u32Addr = USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP0) + 1UL; M8(u32Addr) = (uint8_t)0UL; /* Data stage */ USBD_SET_DATA1(EP0); USBD_SET_PAYLOAD_LEN(EP0, 2UL); /* Status stage */ USBD_PrepareCtrlOut(0, 0UL); break; } default: { /* Setup error, stall the device */ USBD_SET_EP_STALL(EP0); USBD_SET_EP_STALL(EP1); break; } } } else { /* Host to device */ switch(g_USBD_au8SetupPacket[1]) { case CLEAR_FEATURE: { if(g_USBD_au8SetupPacket[2] == FEATURE_ENDPOINT_HALT) { uint32_t epNum, i; /* EP number stall is not allow to be clear in MSC class "Error Recovery Test". a flag: g_USBD_u32EpStallLock is added to support it */ epNum = (uint8_t)(g_USBD_au8SetupPacket[4] & 0xFUL); for(i = 0UL; i < USBD_MAX_EP; i++) { if(((pUSBD->EP[i].CFG & 0xFUL) == epNum) && ((g_USBD_u32EpStallLock & (1UL << i)) == 0UL)) { pUSBD->EP[i].CFGP &= ~USBD_CFGP_SSTALL_Msk; pUSBD->EP[i].CFG &= ~USBD_CFG_DSQSYNC_Msk; } } } else if(g_USBD_au8SetupPacket[2] == FEATURE_DEVICE_REMOTE_WAKEUP) { g_USBD_u8RemoteWakeupEn = (uint8_t)0UL; } /* Status stage */ USBD_SET_DATA1(EP0); USBD_SET_PAYLOAD_LEN(EP0, 0UL); break; } case SET_ADDRESS: { s_USBD_u32UsbAddr = g_USBD_au8SetupPacket[2]; /* DATA IN for end of setup */ /* Status Stage */ USBD_SET_DATA1(EP0); USBD_SET_PAYLOAD_LEN(EP0, 0UL); break; } case SET_CONFIGURATION: { s_USBD_u32UsbConfig = g_USBD_au8SetupPacket[2]; if(g_USBD_pfnSetConfigCallback) { g_USBD_pfnSetConfigCallback(); } /* DATA IN for end of setup */ /* Status stage */ USBD_SET_DATA1(EP0); USBD_SET_PAYLOAD_LEN(EP0, 0UL); break; } case SET_FEATURE: { if((g_USBD_au8SetupPacket[0] & 0xFUL) == 0UL) /* 0: device */ { if((g_USBD_au8SetupPacket[2] == 3UL) && (g_USBD_au8SetupPacket[3] == 0UL)) /* 3: HNP enable */ { pOTG->CTL |= (OTG_CTL_HNPREQEN_Msk | OTG_CTL_BUSREQ_Msk); } } if(g_USBD_au8SetupPacket[2] == FEATURE_ENDPOINT_HALT) { USBD_SetStall((uint8_t)(g_USBD_au8SetupPacket[4] & 0xFUL)); } else if(g_USBD_au8SetupPacket[2] == FEATURE_DEVICE_REMOTE_WAKEUP) { g_USBD_u8RemoteWakeupEn = (uint8_t)1UL; } /* Status stage */ USBD_SET_DATA1(EP0); USBD_SET_PAYLOAD_LEN(EP0, 0UL); break; } case SET_INTERFACE: { s_USBD_u32UsbAltInterface = g_USBD_au8SetupPacket[2]; if(g_USBD_pfnSetInterface != NULL) { g_USBD_pfnSetInterface(s_USBD_u32UsbAltInterface); } /* Status stage */ USBD_SET_DATA1(EP0); USBD_SET_PAYLOAD_LEN(EP0, 0UL); break; } default: { /* Setup error, stall the device */ USBD_SET_EP_STALL(EP0); USBD_SET_EP_STALL(EP1); break; } } } } /** * @brief Prepare the first Control IN pipe * * @param[in] pu8Buf The pointer of data sent to USB host. * @param[in] u32Size The IN transfer size. * * @return None * * @details Prepare data for Control IN transfer. * */ void USBD_PrepareCtrlIn(uint8_t pu8Buf[], uint32_t u32Size) { uint32_t u32Addr; if(u32Size > s_USBD_u32CtrlMaxPktSize) { /* Data size > MXPLD */ s_USBD_pu8CtrlInPointer = pu8Buf + s_USBD_u32CtrlMaxPktSize; s_USBD_u32CtrlInSize = u32Size - s_USBD_u32CtrlMaxPktSize; USBD_SET_DATA1(EP0); u32Addr = USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP0); USBD_MemCopy((uint8_t *)u32Addr, pu8Buf, s_USBD_u32CtrlMaxPktSize); USBD_SET_PAYLOAD_LEN(EP0, s_USBD_u32CtrlMaxPktSize); } else { /* Data size <= MXPLD */ s_USBD_pu8CtrlInPointer = 0; s_USBD_u32CtrlInSize = 0UL; USBD_SET_DATA1(EP0); u32Addr = USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP0); USBD_MemCopy((uint8_t *)u32Addr, pu8Buf, u32Size); USBD_SET_PAYLOAD_LEN(EP0, u32Size); } } /** * @brief Repeat Control IN pipe * * @param None * * @return None * * @details This function processes the remained data of Control IN transfer. * */ void USBD_CtrlIn(void) { uint32_t u32Addr; if(s_USBD_u32CtrlInSize) { /* Process remained data */ if(s_USBD_u32CtrlInSize > s_USBD_u32CtrlMaxPktSize) { /* Data size > MXPLD */ u32Addr = USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP0); USBD_MemCopy((uint8_t *)u32Addr, (uint8_t *)s_USBD_pu8CtrlInPointer, s_USBD_u32CtrlMaxPktSize); USBD_SET_PAYLOAD_LEN(EP0, s_USBD_u32CtrlMaxPktSize); s_USBD_pu8CtrlInPointer += s_USBD_u32CtrlMaxPktSize; s_USBD_u32CtrlInSize -= s_USBD_u32CtrlMaxPktSize; } else { /* Data size <= MXPLD */ u32Addr = USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP0); USBD_MemCopy((uint8_t *)u32Addr, (uint8_t *)s_USBD_pu8CtrlInPointer, s_USBD_u32CtrlInSize); USBD_SET_PAYLOAD_LEN(EP0, s_USBD_u32CtrlInSize); s_USBD_pu8CtrlInPointer = 0; s_USBD_u32CtrlInSize = 0UL; } } else /* No more data for IN token */ { /* In ACK for Set address */ if((g_USBD_au8SetupPacket[0] == REQ_STANDARD) && (g_USBD_au8SetupPacket[1] == SET_ADDRESS)) { u32Addr = USBD_GET_ADDR(); if((u32Addr != s_USBD_u32UsbAddr) && (u32Addr == 0UL)) { USBD_SET_ADDR(s_USBD_u32UsbAddr); } } /* For the case of data size is integral times maximum packet size */ if(s_USBD_u8CtrlInZeroFlag) { USBD_SET_PAYLOAD_LEN(EP0, 0UL); s_USBD_u8CtrlInZeroFlag = (uint8_t)0UL; } } } /** * @brief Prepare the first Control OUT pipe * * @param[in] pu8Buf The pointer of data received from USB host. * @param[in] u32Size The OUT transfer size. * * @return None * * @details This function is used to prepare the first Control OUT transfer. * */ void USBD_PrepareCtrlOut(uint8_t *pu8Buf, uint32_t u32Size) { s_USBD_pu8CtrlOutPointer = pu8Buf; s_USBD_u32CtrlOutSize = 0UL; s_USBD_u32CtrlOutSizeLimit = u32Size; USBD_SET_PAYLOAD_LEN(EP1, s_USBD_u32CtrlMaxPktSize); } /** * @brief Repeat Control OUT pipe * * @param None * * @return None * * @details This function processes the successive Control OUT transfer. * */ void USBD_CtrlOut(void) { uint32_t u32Size; uint32_t u32Addr; if(s_USBD_u32CtrlOutSize < s_USBD_u32CtrlOutSizeLimit) { u32Size = USBD_GET_PAYLOAD_LEN(EP1); u32Addr = USBD_BUF_BASE + USBD_GET_EP_BUF_ADDR(EP1); USBD_MemCopy((uint8_t *)s_USBD_pu8CtrlOutPointer, (uint8_t *)u32Addr, u32Size); s_USBD_pu8CtrlOutPointer += u32Size; s_USBD_u32CtrlOutSize += u32Size; if(s_USBD_u32CtrlOutSize < s_USBD_u32CtrlOutSizeLimit) { USBD_SET_PAYLOAD_LEN(EP1, s_USBD_u32CtrlMaxPktSize); } } } /** * @brief Reset software flags * * @param None * * @return None * * @details This function resets all variables for protocol and resets USB device address to 0. * */ void USBD_SwReset(void) { uint32_t i, u32CFG; USBD_T *pUSBD; if((__PC() & NS_OFFSET) == NS_OFFSET) { pUSBD = USBD_NS; } else { pUSBD = USBD; } /* Reset all variables for protocol */ s_USBD_pu8CtrlInPointer = 0; s_USBD_u32CtrlInSize = 0UL; s_USBD_pu8CtrlOutPointer = 0; s_USBD_u32CtrlOutSize = 0UL; s_USBD_u32CtrlOutSizeLimit = 0UL; g_USBD_u32EpStallLock = 0UL; memset(g_USBD_au8SetupPacket, 0, 8UL); for(i = 0UL; i < USBD_MAX_EP; i++) { if(!USBD_IS_DB_MODE(i)) { /* Reset PID DATA0 */ pUSBD->EP[i].CFG &= ~USBD_CFG_DSQSYNC_Msk; } else { /* Reset double buffer setting */ u32CFG = pUSBD->EP[i].CFG; pUSBD->EP[i].CFG = u32CFG; } } /* Reset USB device address */ USBD_SET_ADDR(0UL); } /** * @brief USBD Set Vendor Request * * @param[in] pfnVendorReq Vendor Request Callback Function * * @return None * * @details This function is used to set USBD vendor request callback function */ void USBD_SetVendorRequest(VENDOR_REQ pfnVendorReq) { g_USBD_pfnVendorRequest = pfnVendorReq; } /** * @brief The callback function which called when get SET CONFIGURATION request * * @param[in] pfnSetConfigCallback Callback function pointer for SET CONFIGURATION request * * @return None * * @details This function is used to set the callback function which will be called at SET CONFIGURATION request. */ void USBD_SetConfigCallback(SET_CONFIG_CB pfnSetConfigCallback) { g_USBD_pfnSetConfigCallback = pfnSetConfigCallback; } /** * @brief EP stall lock function to avoid stall clear by USB SET FEATURE request. * * @param[in] u32EpBitmap Use bitmap to select which endpoints will be locked * * @return None * * @details This function is used to lock relative endpoint to avoid stall clear by SET FEATURE request. * If ep stall locked, user needs to reset USB device or re-configure device to clear it. */ void USBD_LockEpStall(uint32_t u32EpBitmap) { g_USBD_u32EpStallLock = u32EpBitmap; } /**@}*/ /* end of group USBD_EXPORTED_FUNCTIONS */ /**@}*/ /* end of group USBD_Driver */ /**@}*/ /* end of group Standard_Driver */ #ifdef __cplusplus } #endif