/*
* @brief LPC15xx I2C Common driver
*
* @note
* Copyright(C) NXP Semiconductors, 2014
* All rights reserved.
*
* @par
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* LPC products. This software is supplied "AS IS" without any warranties of
* any kind, and NXP Semiconductors and its licensor disclaim any and
* all warranties, express or implied, including all implied warranties of
* merchantability, fitness for a particular purpose and non-infringement of
* intellectual property rights. NXP Semiconductors assumes no responsibility
* or liability for the use of the software, conveys no license or rights under any
* patent, copyright, mask work right, or any other intellectual property rights in
* or to any products. NXP Semiconductors reserves the right to make changes
* in the software without notification. NXP Semiconductors also makes no
* representation or warranty that such application will be suitable for the
* specified use without further testing or modification.
*
* @par
* Permission to use, copy, modify, and distribute this software and its
* documentation is hereby granted, under NXP Semiconductors' and its
* licensor's relevant copyrights in the software, without fee, provided that it
* is used in conjunction with NXP Semiconductors microcontrollers. This
* copyright, permission, and disclaimer notice must appear in all copies of
* this code.
*/
#include "chip.h"
/*****************************************************************************
* Private types/enumerations/variables
****************************************************************************/
/*****************************************************************************
* Public types/enumerations/variables
****************************************************************************/
/*****************************************************************************
* Private functions
****************************************************************************/
/* Get the RESET ID corresponding to the given I2C base */
static CHIP_SYSCTL_PERIPH_RESET_T I2C_GetResetID(LPC_I2C_T *pI2C)
{
uint32_t base = (uint32_t) pI2C;
switch (base) {
case LPC_I2C1_BASE:
return RESET_I2C1;
case LPC_I2C2_BASE:
return RESET_I2C2;
case LPC_I2C3_BASE:
return RESET_I2C3;
default:
return RESET_I2C0;
}
}
/* Get the CLOCK ID corresponding to the given I2C base */
static CHIP_SYSCTL_CLOCK_T I2C_GetClockID(LPC_I2C_T *pI2C)
{
uint32_t base = (uint32_t) pI2C;
switch (base) {
case LPC_I2C1_BASE:
return SYSCTL_CLOCK_I2C1;
case LPC_I2C2_BASE:
return SYSCTL_CLOCK_I2C2;
case LPC_I2C3_BASE:
return SYSCTL_CLOCK_I2C3;
default:
return SYSCTL_CLOCK_I2C0;
}
}
/**
* @brief Sets HIGH and LOW duty cycle registers
* @param pI2C : Pointer to selected I2C peripheral
* @param sclH : Number of I2C_PCLK cycles for the SCL HIGH time value between (2 - 9).
* @param sclL : Number of I2C_PCLK cycles for the SCL LOW time value between (2 - 9).
* @return Nothing
* @note The I2C clock divider should be set to the appropriate value before calling this function
* The I2C baud is determined by the following formula:
* I2C_bitFrequency = (I2C_PCLK)/(I2C_CLKDIV * (sclH + sclL))
* where I2C_PCLK is the frequency of the System clock and I2C_CLKDIV is I2C clock divider
*/
static void Chip_I2CM_SetDutyCycle(LPC_I2C_T *pI2C, uint16_t sclH, uint16_t sclL)
{
/* Limit to usable range of timing values */
if (sclH < 2) {
sclH = 2;
}
else if (sclH > 9) {
sclH = 9;
}
if (sclL < 2) {
sclL = 2;
}
else if (sclL > 9) {
sclL = 9;
}
pI2C->MSTTIME = (((sclH - 2) & 0x07) << 4) | ((sclL - 2) & 0x07);
}
/*****************************************************************************
* Public functions
****************************************************************************/
/* Initializes the LPC_I2C peripheral */
void Chip_I2C_Init(LPC_I2C_T *pI2C)
{
/* Enable I2C clock */
Chip_Clock_EnablePeriphClock(I2C_GetClockID(pI2C));
/* Peripheral reset control to I2C */
Chip_SYSCTL_PeriphReset(I2C_GetResetID(pI2C));
}
/* Shuts down the I2C controller block */
void Chip_I2C_DeInit(LPC_I2C_T *pI2C)
{
/* Disable I2C clock */
Chip_Clock_DisablePeriphClock(I2C_GetClockID(pI2C));
}
/* Set up bus speed for LPC_I2C interface */
void Chip_I2CM_SetBusSpeed(LPC_I2C_T *pI2C, uint32_t busSpeed)
{
uint32_t scl = Chip_Clock_GetSystemClockRate() / (Chip_I2C_GetClockDiv(pI2C) * busSpeed);
Chip_I2CM_SetDutyCycle(pI2C, (scl >> 1), (scl - (scl >> 1)));
}
/* Master transfer state change handler handler */
uint32_t Chip_I2CM_XferHandler(LPC_I2C_T *pI2C, I2CM_XFER_T *xfer)
{
uint32_t status = Chip_I2CM_GetStatus(pI2C);
/* Master Lost Arbitration */
if (status & I2C_STAT_MSTRARBLOSS) {
/* Set transfer status as Arbitration Lost */
xfer->status = I2CM_STATUS_ARBLOST;
/* Clear Status Flags */
Chip_I2CM_ClearStatus(pI2C, I2C_STAT_MSTRARBLOSS);
}
/* Master Start Stop Error */
else if (status & I2C_STAT_MSTSTSTPERR) {
/* Set transfer status as Bus Error */
xfer->status = I2CM_STATUS_BUS_ERROR;
/* Clear Status Flags */
Chip_I2CM_ClearStatus(pI2C, I2C_STAT_MSTSTSTPERR);
}
/* Master is Pending */
else if (status & I2C_STAT_MSTPENDING) {
/* Branch based on Master State Code */
switch (Chip_I2CM_GetMasterState(pI2C)) {
/* Master idle */
case I2C_STAT_MSTCODE_IDLE:
/* Do Nothing */
break;
/* Receive data is available */
case I2C_STAT_MSTCODE_RXREADY:
/* Read Data */
*xfer->rxBuff++ = pI2C->MSTDAT;
xfer->rxSz--;
if (xfer->rxSz) {
/* Set Continue if there is more data to read */
Chip_I2CM_MasterContinue(pI2C);
}
else {
/* Set transfer status as OK */
xfer->status = I2CM_STATUS_OK;
/* No data to read send Stop */
Chip_I2CM_SendStop(pI2C);
}
break;
/* Master Transmit available */
case I2C_STAT_MSTCODE_TXREADY:
if (xfer->txSz) {
/* If Tx data available transmit data and continue */
pI2C->MSTDAT = *xfer->txBuff++;
xfer->txSz--;
Chip_I2CM_MasterContinue(pI2C);
}
else {
/* If receive queued after transmit then initiate master receive transfer*/
if (xfer->rxSz) {
/* Write Address and RW bit to data register */
Chip_I2CM_WriteByte(pI2C, (xfer->slaveAddr << 1) | 0x1);
/* Enter to Master Transmitter mode */
Chip_I2CM_SendStart(pI2C);
}
else {
/* If no receive queued then set transfer status as OK */
xfer->status = I2CM_STATUS_OK;
/* Send Stop */
Chip_I2CM_SendStop(pI2C);
}
}
break;
case I2C_STAT_MSTCODE_NACKADR:
/* Set transfer status as NACK on address */
xfer->status = I2CM_STATUS_NAK_ADR;
Chip_I2CM_SendStop(pI2C);
break;
case I2C_STAT_MSTCODE_NACKDAT:
/* Set transfer status as NACK on data */
xfer->status = I2CM_STATUS_NAK_DAT;
Chip_I2CM_SendStop(pI2C);
break;
default:
/* Default case should not occur*/
xfer->status = I2CM_STATUS_ERROR;
break;
}
}
else {
/* Default case should not occur */
xfer->status = I2CM_STATUS_ERROR;
}
return xfer->status != I2CM_STATUS_BUSY;
}
/* Transmit and Receive data in master mode */
void Chip_I2CM_Xfer(LPC_I2C_T *pI2C, I2CM_XFER_T *xfer)
{
/* set the transfer status as busy */
xfer->status = I2CM_STATUS_BUSY;
/* Clear controller state. */
Chip_I2CM_ClearStatus(pI2C, I2C_STAT_MSTRARBLOSS | I2C_STAT_MSTSTSTPERR);
/* Write Address and RW bit to data register */
Chip_I2CM_WriteByte(pI2C, (xfer->slaveAddr << 1) | (xfer->txSz == 0));
/* Enter to Master Transmitter mode */
Chip_I2CM_SendStart(pI2C);
}
/* Transmit and Receive data in master mode */
uint32_t Chip_I2CM_XferBlocking(LPC_I2C_T *pI2C, I2CM_XFER_T *xfer)
{
uint32_t ret = 0;
/* start transfer */
Chip_I2CM_Xfer(pI2C, xfer);
while (ret == 0) {
/* wait for status change interrupt */
while (!Chip_I2CM_IsMasterPending(pI2C)) {}
/* call state change handler */
ret = Chip_I2CM_XferHandler(pI2C, xfer);
}
return ret;
}
/* Slave transfer state change handler */
uint32_t Chip_I2CS_XferHandler(LPC_I2C_T *pI2C, const I2CS_XFER_T *xfers)
{
uint32_t done = 0;
uint8_t data;
uint32_t state;
/* transfer complete? */
if ((Chip_I2C_GetPendingInt(pI2C) & I2C_INTENSET_SLVDESEL) != 0) {
Chip_I2CS_ClearStatus(pI2C, I2C_STAT_SLVDESEL);
xfers->slaveDone();
}
else {
/* Determine the current I2C slave state */
state = Chip_I2CS_GetSlaveState(pI2C);
switch (state) {
case I2C_STAT_SLVCODE_ADDR: /* Slave address received */
/* Get slave address that needs servicing */
data = Chip_I2CS_GetSlaveAddr(pI2C, Chip_I2CS_GetSlaveMatchIndex(pI2C));
/* Call address callback */
xfers->slaveStart(data);
break;
case I2C_STAT_SLVCODE_RX: /* Data byte received */
/* Get received data */
data = Chip_I2CS_ReadByte(pI2C);
done = xfers->slaveRecv(data);
break;
case I2C_STAT_SLVCODE_TX: /* Get byte that needs to be sent */
/* Get data to send */
done = xfers->slaveSend(&data);
Chip_I2CS_WriteByte(pI2C, data);
break;
}
}
if (done == 0) {
Chip_I2CS_SlaveContinue(pI2C);
}
else {
Chip_I2CS_SlaveNACK(pI2C);
}
return done;
}