/* * Copyright (c) 2006-2021, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2022-03-21 shelton first version */ #include "drv_emac.h" #include #include /* debug option */ //#define EMAC_RX_DUMP //#define EMAC_TX_DUMP //#define DRV_DEBUG #define LOG_TAG "drv.emac" #include #define CRYSTAL_ON_PHY 0 /* emac memory buffer configuration */ #define EMAC_NUM_RX_BUF 4 /* 0x1800 for rx (4 * 1536 = 6k) */ #define EMAC_NUM_TX_BUF 2 /* 0x0600 for tx (2 * 1536 = 3k) */ #define MAX_ADDR_LEN 6 struct rt_at32_emac { /* inherit from ethernet device */ struct eth_device parent; #ifndef PHY_USING_INTERRUPT_MODE rt_timer_t poll_link_timer; #endif /* interface address info, hw address */ rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* emac_speed */ emac_speed_type emac_speed; /* emac_duplex_mode */ emac_duplex_type emac_mode; }; static emac_dma_desc_type *dma_rx_dscr_tab, *dma_tx_dscr_tab; extern emac_dma_desc_type *dma_rx_desc_to_get, *dma_tx_desc_to_set; static rt_uint8_t *rx_buff, *tx_buff; static struct rt_at32_emac at32_emac_device; static uint8_t phy_addr = 0xFF; static struct rt_semaphore tx_wait; static rt_bool_t tx_is_waiting = RT_FALSE; #if defined(EMAC_RX_DUMP) || defined(EMAC_TX_DUMP) #define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ') static void dump_hex(const rt_uint8_t *ptr, rt_size_t buflen) { unsigned char *buf = (unsigned char *)ptr; int i, j; for (i = 0; i < buflen; i += 16) { rt_kprintf("%08X: ", i); for (j = 0; j < 16; j++) if (i + j < buflen) rt_kprintf("%02X ", buf[i + j]); else rt_kprintf(" "); rt_kprintf(" "); for (j = 0; j < 16; j++) if (i + j < buflen) rt_kprintf("%c", __is_print(buf[i + j]) ? buf[i + j] : '.'); rt_kprintf("\n"); } } #endif /** * @brief phy reset */ static void phy_reset(void) { gpio_init_type gpio_init_struct; crm_periph_clock_enable(CRM_GPIOC_PERIPH_CLOCK, TRUE); gpio_default_para_init(&gpio_init_struct); gpio_init_struct.gpio_drive_strength = GPIO_DRIVE_STRENGTH_STRONGER; gpio_init_struct.gpio_mode = GPIO_MODE_OUTPUT; gpio_init_struct.gpio_out_type = GPIO_OUTPUT_PUSH_PULL; gpio_init_struct.gpio_pull = GPIO_PULL_NONE; gpio_init_struct.gpio_pins = GPIO_PINS_8; gpio_init(GPIOC, &gpio_init_struct); gpio_bits_reset(GPIOC, GPIO_PINS_8); rt_thread_mdelay(2); gpio_bits_set(GPIOC, GPIO_PINS_8); rt_thread_mdelay(2000); } /** * @brief phy clock config */ static void phy_clock_config(void) { #if (CRYSTAL_ON_PHY == 0) /* if CRYSTAL_NO_PHY, output clock with pa8 of mcu */ gpio_init_type gpio_init_struct; crm_periph_clock_enable(CRM_GPIOA_PERIPH_CLOCK, TRUE); gpio_default_para_init(&gpio_init_struct); gpio_init_struct.gpio_drive_strength = GPIO_DRIVE_STRENGTH_STRONGER; gpio_init_struct.gpio_mode = GPIO_MODE_MUX; gpio_init_struct.gpio_out_type = GPIO_OUTPUT_PUSH_PULL; gpio_init_struct.gpio_pull = GPIO_PULL_NONE; gpio_init_struct.gpio_pins = GPIO_PINS_8; gpio_init(GPIOA, &gpio_init_struct); /* 9162 clkout output sysclk / 8 == 25 mhz, so system clock must be 200 mhz */ /* 83848 clkout output sysclk / 4 == 50 mhz, so system clock must be 200 mhz */ crm_clock_out_set(CRM_CLKOUT_SCLK); #if defined (PHY_USING_DM9162) crm_clkout_div_set(CRM_CLKOUT_DIV_8); #elif defined (PHY_USING_DP83848) crm_clkout_div_set(CRM_CLKOUT_DIV_4); #endif #endif } /** * @brief emac interface gpio config, rmii mode */ static void emac_gpio_config(void) { gpio_init_type gpio_init_struct; crm_periph_clock_enable(CRM_GPIOA_PERIPH_CLOCK, TRUE); crm_periph_clock_enable(CRM_GPIOB_PERIPH_CLOCK, TRUE); crm_periph_clock_enable(CRM_GPIOC_PERIPH_CLOCK, TRUE); crm_periph_clock_enable(CRM_GPIOD_PERIPH_CLOCK, TRUE); crm_periph_clock_enable(CRM_IOMUX_PERIPH_CLOCK, TRUE); gpio_pin_remap_config(EMAC_MUX, TRUE); gpio_default_para_init(&gpio_init_struct); gpio_init_struct.gpio_drive_strength = GPIO_DRIVE_STRENGTH_STRONGER; gpio_init_struct.gpio_mode = GPIO_MODE_MUX; gpio_init_struct.gpio_out_type = GPIO_OUTPUT_PUSH_PULL; gpio_init_struct.gpio_pull = GPIO_PULL_NONE; gpio_init_struct.gpio_pins = GPIO_PINS_2; gpio_init(GPIOA, &gpio_init_struct); gpio_init_struct.gpio_pins = GPIO_PINS_11 | GPIO_PINS_12 | GPIO_PINS_13; gpio_init(GPIOB, &gpio_init_struct); gpio_init_struct.gpio_pins = GPIO_PINS_1; gpio_init(GPIOC, &gpio_init_struct); gpio_init_struct.gpio_mode = GPIO_MODE_INPUT; gpio_init_struct.gpio_pull = GPIO_PULL_NONE; gpio_init_struct.gpio_pins = GPIO_PINS_1; gpio_init(GPIOA, &gpio_init_struct); gpio_init_struct.gpio_mode = GPIO_MODE_INPUT; gpio_init_struct.gpio_pull = GPIO_PULL_NONE; gpio_init_struct.gpio_pins = GPIO_PINS_8 | GPIO_PINS_9 | GPIO_PINS_10; gpio_init(GPIOD, &gpio_init_struct); } /** * @brief reset phy register */ static error_status emac_phy_register_reset(void) { uint16_t data = 0; uint32_t timeout = 0; uint32_t i = 0; if(emac_phy_register_write(phy_addr, PHY_CONTROL_REG, PHY_RESET_BIT) == ERROR) { return ERROR; } for(i = 0; i < 0x000FFFFF; i++); do { timeout++; if(emac_phy_register_read(phy_addr, PHY_CONTROL_REG, &data) == ERROR) { return ERROR; } } while((data & PHY_RESET_BIT) && (timeout < PHY_TIMEOUT)); for(i = 0; i < 0x00FFFFF; i++); if(timeout == PHY_TIMEOUT) { return ERROR; } return SUCCESS; } /** * @brief set mac speed related parameters */ static error_status emac_speed_config(emac_auto_negotiation_type nego, emac_duplex_type mode, emac_speed_type speed) { uint16_t data = 0; uint32_t timeout = 0; if(nego == EMAC_AUTO_NEGOTIATION_ON) { do { timeout++; if(emac_phy_register_read(phy_addr, PHY_STATUS_REG, &data) == ERROR) { return ERROR; } } while(!(data & PHY_LINKED_STATUS_BIT) && (timeout < PHY_TIMEOUT)); if(timeout == PHY_TIMEOUT) { return ERROR; } timeout = 0; if(emac_phy_register_write(phy_addr, PHY_CONTROL_REG, PHY_AUTO_NEGOTIATION_BIT) == ERROR) { return ERROR; } do { timeout++; if(emac_phy_register_read(phy_addr, PHY_STATUS_REG, &data) == ERROR) { return ERROR; } } while(!(data & PHY_NEGO_COMPLETE_BIT) && (timeout < PHY_TIMEOUT)); if(timeout == PHY_TIMEOUT) { return ERROR; } if(emac_phy_register_read(phy_addr, PHY_SPECIFIED_CS_REG, &data) == ERROR) { return ERROR; } #ifdef PHY_USING_DM9162 if(data & PHY_FULL_DUPLEX_100MBPS_BIT) { emac_fast_speed_set(EMAC_SPEED_100MBPS); emac_duplex_mode_set(EMAC_FULL_DUPLEX); } else if(data & PHY_HALF_DUPLEX_100MBPS_BIT) { emac_fast_speed_set(EMAC_SPEED_100MBPS); emac_duplex_mode_set(EMAC_HALF_DUPLEX); } else if(data & PHY_FULL_DUPLEX_10MBPS_BIT) { emac_fast_speed_set(EMAC_SPEED_10MBPS); emac_duplex_mode_set(EMAC_FULL_DUPLEX); } else if(data & PHY_HALF_DUPLEX_10MBPS_BIT) { emac_fast_speed_set(EMAC_SPEED_10MBPS); emac_duplex_mode_set(EMAC_HALF_DUPLEX); } #endif #ifdef PHY_USING_DP83848 if(data & PHY_DUPLEX_MODE) { emac_duplex_mode_set(EMAC_FULL_DUPLEX); } else { emac_duplex_mode_set(EMAC_HALF_DUPLEX); } if(data & PHY_SPEED_MODE) { emac_fast_speed_set(EMAC_SPEED_10MBPS); } else { emac_fast_speed_set(EMAC_SPEED_100MBPS); } #endif } else { if(emac_phy_register_write(phy_addr, PHY_CONTROL_REG, (uint16_t)((mode << 8) | (speed << 13))) == ERROR) { return ERROR; } if(speed == EMAC_SPEED_100MBPS) { emac_fast_speed_set(EMAC_SPEED_100MBPS); } else { emac_fast_speed_set(EMAC_SPEED_10MBPS); } if(mode == EMAC_FULL_DUPLEX) { emac_duplex_mode_set(EMAC_FULL_DUPLEX); } else { emac_duplex_mode_set(EMAC_HALF_DUPLEX); } } return SUCCESS; } /** * @brief initialize emac phy */ static error_status emac_phy_init(emac_control_config_type *control_para) { emac_clock_range_set(); if(emac_phy_register_reset() == ERROR) { return ERROR; } if(emac_speed_config(control_para->auto_nego, control_para->duplex_mode, control_para->fast_ethernet_speed) == ERROR) { return ERROR; } emac_control_config(control_para); return SUCCESS; } /** * @brief emac initialization function */ static rt_err_t rt_at32_emac_init(rt_device_t dev) { emac_control_config_type mac_control_para; emac_dma_config_type dma_control_para; /* check till phy detected */ while(phy_addr == 0xFF) { rt_thread_mdelay(1000); } /* emac reset */ emac_reset(); /* software reset emac dma */ emac_dma_software_reset_set(); while(emac_dma_software_reset_get() == SET); emac_control_para_init(&mac_control_para); mac_control_para.auto_nego = EMAC_AUTO_NEGOTIATION_ON; if(emac_phy_init(&mac_control_para) == ERROR) { LOG_E("emac hardware init failed"); return ERROR; } else { LOG_D("emac hardware init success"); } emac_transmit_flow_control_enable(TRUE); emac_zero_quanta_pause_disable(TRUE); /* set mac address */ emac_local_address_set(at32_emac_device.dev_addr); /* set emac dma rx link list */ emac_dma_descriptor_list_address_set(EMAC_DMA_RECEIVE, dma_rx_dscr_tab, rx_buff, EMAC_NUM_RX_BUF); /* set emac dma tx link list */ emac_dma_descriptor_list_address_set(EMAC_DMA_TRANSMIT, dma_tx_dscr_tab, tx_buff, EMAC_NUM_TX_BUF); /* emac interrupt init */ emac_dma_config(&dma_control_para); emac_dma_interrupt_enable(EMAC_DMA_INTERRUPT_NORMAL_SUMMARY, TRUE); emac_dma_interrupt_enable(EMAC_DMA_INTERRUPT_RX, TRUE); nvic_irq_enable(EMAC_IRQn, 0x07, 0); /* enable emac */ emac_start(); return RT_EOK; } static rt_err_t rt_at32_emac_open(rt_device_t dev, rt_uint16_t oflag) { LOG_D("emac open"); return RT_EOK; } static rt_err_t rt_at32_emac_close(rt_device_t dev) { LOG_D("emac close"); return RT_EOK; } static rt_size_t rt_at32_emac_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size) { LOG_D("emac read"); rt_set_errno(-RT_ENOSYS); return 0; } static rt_size_t rt_at32_emac_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size) { LOG_D("emac write"); rt_set_errno(-RT_ENOSYS); return 0; } static rt_err_t rt_at32_emac_control(rt_device_t dev, int cmd, void *args) { switch (cmd) { case NIOCTL_GADDR: /* get mac address */ if (args) { SMEMCPY(args, at32_emac_device.dev_addr, 6); } else { return -RT_ERROR; } break; default : break; } return RT_EOK; } /** * @brief transmit data */ rt_err_t rt_at32_emac_tx(rt_device_t dev, struct pbuf *p) { struct pbuf *q; rt_uint32_t offset; while ((dma_tx_desc_to_set->status & EMAC_DMATXDESC_OWN) != RESET) { rt_err_t result; rt_uint32_t level; level = rt_hw_interrupt_disable(); tx_is_waiting = RT_TRUE; rt_hw_interrupt_enable(level); /* it's own bit set, wait it */ result = rt_sem_take(&tx_wait, RT_WAITING_FOREVER); if (result == RT_EOK) break; if (result == -RT_ERROR) return -RT_ERROR; } offset = 0; for (q = p; q != NULL; q = q->next) { uint8_t *buffer; /* copy the frame to be sent into memory pointed by the current ethernet dma tx descriptor */ buffer = (uint8_t*)((dma_tx_desc_to_set->buf1addr) + offset); SMEMCPY(buffer, q->payload, q->len); offset += q->len; } #ifdef EMAC_TX_DUMP dump_hex(p->payload, p->tot_len); #endif /* prepare transmit descriptors to give to dma */ LOG_D("transmit frame length :%d", p->tot_len); /* setting the frame length: bits[12:0] */ dma_tx_desc_to_set->controlsize = (p->tot_len & EMAC_DMATXDESC_TBS1); /* Setting the last segment and first segment bits (in this case a frame is transmitted in one descriptor) */ dma_tx_desc_to_set->status |= EMAC_DMATXDESC_LS | EMAC_DMATXDESC_FS; /* enable tx completion interrupt */ dma_tx_desc_to_set->status |= EMAC_DMATXDESC_IC; /* set own bit of the tx descriptor status: gives the buffer back to ethernet dma */ dma_tx_desc_to_set->status |= EMAC_DMATXDESC_OWN; /* When Tx Buffer unavailable flag is set: clear it and resume transmission */ if(emac_dma_flag_get(EMAC_DMA_TBU_FLAG) != RESET) { emac_dma_flag_clear(EMAC_DMA_TBU_FLAG); emac_dma_poll_demand_set(EMAC_DMA_TRANSMIT, 0); } /* selects the next dma tx descriptor list for next buffer to send */ dma_tx_desc_to_set = (emac_dma_desc_type*) (dma_tx_desc_to_set->buf2nextdescaddr); return ERR_OK; } /** * @brief receive data */ struct pbuf *rt_at32_emac_rx(rt_device_t dev) { struct pbuf *p = NULL; struct pbuf *q = NULL; rt_uint32_t offset = 0; uint16_t len = 0; uint8_t *buffer; /* get received frame */ len = emac_received_packet_size_get(); if(len > 0) { LOG_D("receive frame len : %d", len); /* we allocate a pbuf chain of pbufs from the lwip buffer pool */ p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL); if(p != NULL) { for (q = p; q != RT_NULL; q= q->next) { /* get rx buffer */ buffer = (uint8_t *)(dma_rx_desc_to_get->buf1addr); #ifdef EMAC_RX_DUMP dump_hex(buffer, len); #endif /* copy the received frame into buffer from memory pointed by the current ethernet dma rx descriptor */ SMEMCPY(q->payload, (buffer + offset), q->len); offset += q->len; } } } else { return p; } /* release descriptors to dma */ dma_rx_desc_to_get->status |= EMAC_DMARXDESC_OWN; /* when rx buffer unavailable flag is set: clear it and resume reception */ if(emac_dma_flag_get(EMAC_DMA_RBU_FLAG) != RESET) { /* clear rbu ethernet dma flag */ emac_dma_flag_clear(EMAC_DMA_RBU_FLAG); /* resume dma reception */ emac_dma_poll_demand_set(EMAC_DMA_RECEIVE, 0); } /* update the ethernet dma global rx descriptor with next rx decriptor */ /* chained mode */ if((dma_rx_desc_to_get->controlsize & EMAC_DMARXDESC_RCH) != RESET) { /* selects the next dma rx descriptor list for next buffer to read */ dma_rx_desc_to_get = (emac_dma_desc_type*) (dma_rx_desc_to_get->buf2nextdescaddr); } /* ring mode */ else { if((dma_rx_desc_to_get->controlsize & EMAC_DMARXDESC_RER) != RESET) { /* selects the first dma rx descriptor for next buffer to read: last rx descriptor was used */ dma_rx_desc_to_get = (emac_dma_desc_type*) (EMAC_DMA->rdladdr); } else { /* selects the next dma rx descriptor list for next buffer to read */ dma_rx_desc_to_get = (emac_dma_desc_type*) ((uint32_t)dma_rx_desc_to_get + 0x10 + ((EMAC_DMA->bm & 0x0000007C) >> 2)); } } return p; } void EMAC_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); /* clear received it */ if(emac_dma_flag_get(EMAC_DMA_NIS_FLAG) != RESET) { emac_dma_flag_clear(EMAC_DMA_NIS_FLAG); } if(emac_dma_flag_get(EMAC_DMA_AIS_FLAG) != RESET) { emac_dma_flag_clear(EMAC_DMA_AIS_FLAG); } if(emac_dma_flag_get(EMAC_DMA_OVF_FLAG) != RESET) { emac_dma_flag_clear(EMAC_DMA_OVF_FLAG); } if(emac_dma_flag_get(EMAC_DMA_RBU_FLAG) != RESET) { emac_dma_flag_clear(EMAC_DMA_RBU_FLAG); } /* packet receiption */ if (emac_dma_flag_get(EMAC_DMA_RI_FLAG) == SET) { /* a frame has been received */ eth_device_ready(&(at32_emac_device.parent)); emac_dma_flag_clear(EMAC_DMA_RI_FLAG); } /* packet transmission */ if (emac_dma_flag_get(EMAC_DMA_TI_FLAG) == SET) { if (tx_is_waiting == RT_TRUE) { tx_is_waiting = RT_FALSE; rt_sem_release(&tx_wait); } emac_dma_flag_clear(EMAC_DMA_TI_FLAG); } /* leave interrupt */ rt_interrupt_leave(); } enum { PHY_LINK = (1 << 0), PHY_10M = (1 << 1), PHY_FULLDUPLEX = (1 << 2), }; static void phy_linkchange() { static rt_uint8_t phy_speed = 0; rt_uint8_t phy_speed_new = 0; rt_uint16_t status; emac_phy_register_read(phy_addr, PHY_BASIC_STATUS_REG, (uint16_t *)&status); LOG_D("phy basic status reg is 0x%X", status); if (status & (PHY_AUTONEGO_COMPLETE_MASK | PHY_LINKED_STATUS_MASK)) { rt_uint16_t SR = 0; phy_speed_new |= PHY_LINK; emac_phy_register_read(phy_addr, PHY_SPECIFIED_CS_REG, (uint16_t *)&SR); LOG_D("phy control status reg is 0x%X", SR); if (SR & (PHY_SPEED_MODE)) { phy_speed_new |= PHY_10M; } if (SR & (PHY_DUPLEX_MODE)) { phy_speed_new |= PHY_FULLDUPLEX; } } if (phy_speed != phy_speed_new) { phy_speed = phy_speed_new; if (phy_speed & PHY_LINK) { LOG_D("link up"); if (phy_speed & PHY_10M) { LOG_D("10Mbps"); at32_emac_device.emac_speed = EMAC_SPEED_10MBPS; } else { at32_emac_device.emac_speed = EMAC_SPEED_100MBPS; LOG_D("100Mbps"); } if (phy_speed & PHY_FULLDUPLEX) { LOG_D("full-duplex"); at32_emac_device.emac_mode = EMAC_FULL_DUPLEX; } else { LOG_D("half-duplex"); at32_emac_device.emac_mode = EMAC_HALF_DUPLEX; } /* send link up. */ eth_device_linkchange(&at32_emac_device.parent, RT_TRUE); } else { LOG_I("link down"); eth_device_linkchange(&at32_emac_device.parent, RT_FALSE); } } } #ifdef PHY_USING_INTERRUPT_MODE static void emac_phy_isr(void *args) { rt_uint32_t status = 0; emac_phy_register_read(phy_addr, PHY_INTERRUPT_FLAG_REG, (uint16_t *)&status); LOG_D("phy interrupt status reg is 0x%X", status); phy_linkchange(); } #endif /* PHY_USING_INTERRUPT_MODE */ static void phy_monitor_thread_entry(void *parameter) { uint8_t detected_count = 0; while(phy_addr == 0xFF) { /* phy search */ rt_uint32_t i, temp; for (i = 0; i <= 0x1F; i++) { emac_phy_register_read(i, PHY_BASIC_STATUS_REG, (uint16_t *)&temp); if (temp != 0xFFFF && temp != 0x00) { phy_addr = i; break; } } detected_count++; rt_thread_mdelay(1000); if (detected_count > 10) { LOG_E("No PHY device was detected, please check hardware!"); } } LOG_D("Found a phy, address:0x%02X", phy_addr); /* reset phy */ LOG_D("RESET PHY!"); emac_phy_register_write(phy_addr, PHY_BASIC_CONTROL_REG, PHY_RESET_MASK); rt_thread_mdelay(2000); emac_phy_register_write(phy_addr, PHY_BASIC_CONTROL_REG, PHY_AUTO_NEGOTIATION_MASK); phy_linkchange(); #ifdef PHY_USING_INTERRUPT_MODE /* configuration intterrupt pin */ rt_pin_mode(PHY_INT_PIN, PIN_MODE_INPUT_PULLUP); rt_pin_attach_irq(PHY_INT_PIN, PIN_IRQ_MODE_FALLING, emac_phy_isr, (void *)"callbackargs"); rt_pin_irq_enable(PHY_INT_PIN, PIN_IRQ_ENABLE); /* enable phy interrupt */ emac_phy_register_write(phy_addr, PHY_INTERRUPT_MASK_REG, PHY_INT_MASK); #if defined(PHY_INTERRUPT_CTRL_REG) emac_phy_register_write(phy_addr, PHY_INTERRUPT_CTRL_REG, PHY_INTERRUPT_EN); #endif #else /* PHY_USING_INTERRUPT_MODE */ at32_emac_device.poll_link_timer = rt_timer_create("phylnk", (void (*)(void*))phy_linkchange, NULL, RT_TICK_PER_SECOND, RT_TIMER_FLAG_PERIODIC); if (!at32_emac_device.poll_link_timer || rt_timer_start(at32_emac_device.poll_link_timer) != RT_EOK) { LOG_E("Start link change detection timer failed"); } #endif /* PHY_USING_INTERRUPT_MODE */ } /* Register the EMAC device */ static int rt_hw_at32_emac_init(void) { rt_err_t state = RT_EOK; /* Prepare receive and send buffers */ rx_buff = (rt_uint8_t *)rt_calloc(EMAC_NUM_RX_BUF, EMAC_MAX_PACKET_LENGTH); if (rx_buff == RT_NULL) { LOG_E("No memory"); state = -RT_ENOMEM; goto __exit; } tx_buff = (rt_uint8_t *)rt_calloc(EMAC_NUM_TX_BUF, EMAC_MAX_PACKET_LENGTH); if (tx_buff == RT_NULL) { LOG_E("No memory"); state = -RT_ENOMEM; goto __exit; } dma_rx_dscr_tab = (emac_dma_desc_type *)rt_calloc(EMAC_NUM_RX_BUF, sizeof(emac_dma_desc_type)); if (dma_rx_dscr_tab == RT_NULL) { LOG_E("No memory"); state = -RT_ENOMEM; goto __exit; } dma_tx_dscr_tab = (emac_dma_desc_type *)rt_calloc(EMAC_NUM_TX_BUF, sizeof(emac_dma_desc_type)); if (dma_tx_dscr_tab == RT_NULL) { LOG_E("No memory"); state = -RT_ENOMEM; goto __exit; } /* phy clock */ phy_clock_config(); /* enable periph clock */ crm_periph_clock_enable(CRM_EMAC_PERIPH_CLOCK, TRUE); crm_periph_clock_enable(CRM_EMACTX_PERIPH_CLOCK, TRUE); crm_periph_clock_enable(CRM_EMACRX_PERIPH_CLOCK, TRUE); /* interface mode */ gpio_pin_remap_config(MII_RMII_SEL_GMUX, TRUE); /* emac gpio init */ emac_gpio_config(); at32_emac_device.emac_speed = EMAC_SPEED_100MBPS; at32_emac_device.emac_mode = EMAC_FULL_DUPLEX; at32_emac_device.dev_addr[0] = 0x00; at32_emac_device.dev_addr[1] = 0x80; at32_emac_device.dev_addr[2] = 0xE1; /* generate mac addr from unique id (only for test). */ at32_emac_device.dev_addr[3] = *(rt_uint8_t *)(0x1FFFF7E8 + 4); at32_emac_device.dev_addr[4] = *(rt_uint8_t *)(0x1FFFF7E8 + 2); at32_emac_device.dev_addr[5] = *(rt_uint8_t *)(0x1FFFF7E8 + 0); at32_emac_device.parent.parent.init = rt_at32_emac_init; at32_emac_device.parent.parent.open = rt_at32_emac_open; at32_emac_device.parent.parent.close = rt_at32_emac_close; at32_emac_device.parent.parent.read = rt_at32_emac_read; at32_emac_device.parent.parent.write = rt_at32_emac_write; at32_emac_device.parent.parent.control = rt_at32_emac_control; at32_emac_device.parent.parent.user_data = RT_NULL; at32_emac_device.parent.eth_rx = rt_at32_emac_rx; at32_emac_device.parent.eth_tx = rt_at32_emac_tx; /* reset phy */ phy_reset(); /* start phy monitor */ rt_thread_t tid; tid = rt_thread_create("phy", phy_monitor_thread_entry, RT_NULL, 1024, RT_THREAD_PRIORITY_MAX - 2, 2); if (tid != RT_NULL) { rt_thread_startup(tid); } else { state = -RT_ERROR; } /* register eth device */ state = eth_device_init(&(at32_emac_device.parent), "e0"); if (RT_EOK == state) { LOG_D("emac device init success"); } else { LOG_E("emac device init faild: %d", state); state = -RT_ERROR; goto __exit; } __exit: if (state != RT_EOK) { if (rx_buff) { rt_free(rx_buff); } if (tx_buff) { rt_free(tx_buff); } if (dma_rx_dscr_tab) { rt_free(dma_rx_dscr_tab); } if (dma_tx_dscr_tab) { rt_free(dma_tx_dscr_tab); } } return state; } INIT_DEVICE_EXPORT(rt_hw_at32_emac_init);