/* * File : enc28j60.c * This file is part of RT-Thread RTOS * COPYRIGHT (C) 2009, RT-Thread Development Team * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * http://www.rt-thread.org/license/LICENSE * * Change Logs: * Date Author Notes * 2009-05-05 Bernard the first version */ #include "enc28j60.h" #include #include #include #define MAX_ADDR_LEN 6 #define CSACTIVE GPIOC->BRR = GPIO_Pin_12; #define CSPASSIVE GPIOC->BSRR = GPIO_Pin_12; struct net_device { /* inherit from ethernet device */ struct eth_device parent; /* interface address info. */ rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */ }; static struct net_device enc28j60_dev_entry; static struct net_device *enc28j60_dev =&enc28j60_dev_entry; static rt_uint8_t Enc28j60Bank; static rt_uint16_t NextPacketPtr; static struct rt_semaphore lock_sem; void _delay_us(rt_uint32_t us) { rt_uint32_t len; for (;us > 0; us --) for (len = 0; len < 20; len++ ); } void delay_ms(rt_uint32_t ms) { rt_uint32_t len; for (;ms > 0; ms --) for (len = 0; len < 100; len++ ); } rt_uint8_t spi_read_op(rt_uint8_t op, rt_uint8_t address) { int temp=0; CSACTIVE; SPI_I2S_SendData(SPI1, (op | (address & ADDR_MASK))); while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_BSY)==SET); SPI_I2S_ReceiveData(SPI1); SPI_I2S_SendData(SPI1, 0x00); while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_BSY)==SET); // do dummy read if needed (for mac and mii, see datasheet page 29) if(address & 0x80) { SPI_I2S_ReceiveData(SPI1); SPI_I2S_SendData(SPI1, 0x00); while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_BSY)==SET); } // release CS temp=SPI_I2S_ReceiveData(SPI1); // for(t=0;t<20;t++); CSPASSIVE; return (temp); } // 参数: 命令,地址,数据 void spi_write_op(rt_uint8_t op, rt_uint8_t address, rt_uint8_t data) { rt_uint32_t level; level = rt_hw_interrupt_disable(); CSACTIVE; SPI_I2S_SendData(SPI1, op | (address & ADDR_MASK)); while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_BSY)==SET); SPI_I2S_SendData(SPI1,data); while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_BSY)==SET); CSPASSIVE; rt_hw_interrupt_enable(level); } void enc28j60_set_bank(rt_uint8_t address) { // set the bank (if needed) if((address & BANK_MASK) != Enc28j60Bank) { // set the bank spi_write_op(ENC28J60_BIT_FIELD_CLR, ECON1, (ECON1_BSEL1|ECON1_BSEL0)); spi_write_op(ENC28J60_BIT_FIELD_SET, ECON1, (address & BANK_MASK)>>5); Enc28j60Bank = (address & BANK_MASK); } } rt_uint8_t spi_read(rt_uint8_t address) { // set the bank enc28j60_set_bank(address); // do the read return spi_read_op(ENC28J60_READ_CTRL_REG, address); } void spi_read_buffer(rt_uint8_t* data, rt_size_t len) { CSACTIVE; SPI_I2S_SendData(SPI1,ENC28J60_READ_BUF_MEM); while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_BSY)==SET); SPI_I2S_ReceiveData(SPI1); while(len) { len--; SPI_I2S_SendData(SPI1,0x00) ; while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_BSY)==SET); *data= SPI_I2S_ReceiveData(SPI1); data++; } CSPASSIVE; } void spi_write(rt_uint8_t address, rt_uint8_t data) { // set the bank enc28j60_set_bank(address); // do the write spi_write_op(ENC28J60_WRITE_CTRL_REG, address, data); } void enc28j60_phy_write(rt_uint8_t address, rt_uint16_t data) { // set the PHY register address spi_write(MIREGADR, address); // write the PHY data spi_write(MIWRL, data); spi_write(MIWRH, data>>8); // wait until the PHY write completes while(spi_read(MISTAT) & MISTAT_BUSY) { _delay_us(15); } } // read upper 8 bits rt_uint16_t enc28j60_phy_read(rt_uint8_t address) { // Set the right address and start the register read operation spi_write(MIREGADR, address); spi_write(MICMD, MICMD_MIIRD); _delay_us(15); // wait until the PHY read completes while(spi_read(MISTAT) & MISTAT_BUSY); // reset reading bit spi_write(MICMD, 0x00); return (spi_read(MIRDH)); } void enc28j60_clkout(rt_uint8_t clk) { //setup clkout: 2 is 12.5MHz: spi_write(ECOCON, clk & 0x7); } rt_inline rt_uint32_t enc28j60_interrupt_disable() { rt_uint32_t level; /* switch to bank 0 */ enc28j60_set_bank(EIE); /* get last interrupt level */ level = spi_read(EIE); /* disable interrutps */ spi_write_op(ENC28J60_BIT_FIELD_CLR, EIE, level); return level; } rt_inline void enc28j60_interrupt_enable(rt_uint32_t level) { /* switch to bank 0 */ enc28j60_set_bank(EIE); spi_write_op(ENC28J60_BIT_FIELD_SET, EIE, level); } /* * Access the PHY to determine link status */ static rt_bool_t enc28j60_check_link_status() { rt_uint16_t reg; int duplex; reg = enc28j60_phy_read(PHSTAT2); duplex = reg & PHSTAT2_DPXSTAT; if (reg & PHSTAT2_LSTAT) { /* on */ return RT_TRUE; } else { /* off */ return RT_FALSE; } } #ifdef RT_USING_FINSH /* * Debug routine to dump useful register contents */ static void enc28j60(void) { rt_kprintf("-- enc28j60 registers:\n"); rt_kprintf("HwRevID: 0x%02x\n", spi_read(EREVID)); rt_kprintf("Cntrl: ECON1 ECON2 ESTAT EIR EIE\n"); rt_kprintf(" 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n",spi_read(ECON1), spi_read(ECON2), spi_read(ESTAT), spi_read(EIR), spi_read(EIE)); rt_kprintf("MAC : MACON1 MACON3 MACON4\n"); rt_kprintf(" 0x%02x 0x%02x 0x%02x\n", spi_read(MACON1), spi_read(MACON3), spi_read(MACON4)); rt_kprintf("Rx : ERXST ERXND ERXWRPT ERXRDPT ERXFCON EPKTCNT MAMXFL\n"); rt_kprintf(" 0x%04x 0x%04x 0x%04x 0x%04x ", (spi_read(ERXSTH) << 8) | spi_read(ERXSTL), (spi_read(ERXNDH) << 8) | spi_read(ERXNDL), (spi_read(ERXWRPTH) << 8) | spi_read(ERXWRPTL), (spi_read(ERXRDPTH) << 8) | spi_read(ERXRDPTL)); rt_kprintf("0x%02x 0x%02x 0x%04x\n", spi_read(ERXFCON), spi_read(EPKTCNT), (spi_read(MAMXFLH) << 8) | spi_read(MAMXFLL)); rt_kprintf("Tx : ETXST ETXND MACLCON1 MACLCON2 MAPHSUP\n"); rt_kprintf(" 0x%04x 0x%04x 0x%02x 0x%02x 0x%02x\n", (spi_read(ETXSTH) << 8) | spi_read(ETXSTL), (spi_read(ETXNDH) << 8) | spi_read(ETXNDL), spi_read(MACLCON1), spi_read(MACLCON2), spi_read(MAPHSUP)); } #include FINSH_FUNCTION_EXPORT(enc28j60, dump enc28j60 registers); #endif /* * RX handler * ignore PKTIF because is unreliable! (look at the errata datasheet) * check EPKTCNT is the suggested workaround. * We don't need to clear interrupt flag, automatically done when * enc28j60_hw_rx() decrements the packet counter. */ void enc28j60_isr() { /* Variable definitions can be made now. */ volatile rt_uint32_t eir, pk_counter; volatile rt_bool_t rx_activiated; rx_activiated = RT_FALSE; /* get EIR */ eir = spi_read(EIR); // rt_kprintf("eir: 0x%08x\n", eir); do { /* errata #4, PKTIF does not reliable */ pk_counter = spi_read(EPKTCNT); if (pk_counter) { /* a frame has been received */ eth_device_ready((struct eth_device*)&(enc28j60_dev->parent)); // switch to bank 0 enc28j60_set_bank(EIE); // disable rx interrutps spi_write_op(ENC28J60_BIT_FIELD_CLR, EIE, EIE_PKTIE); } /* clear PKTIF */ if (eir & EIR_PKTIF) { enc28j60_set_bank(EIR); spi_write_op(ENC28J60_BIT_FIELD_CLR, EIR, EIR_PKTIF); rx_activiated = RT_TRUE; } /* clear DMAIF */ if (eir & EIR_DMAIF) { enc28j60_set_bank(EIR); spi_write_op(ENC28J60_BIT_FIELD_CLR, EIR, EIR_DMAIF); } /* LINK changed handler */ if ( eir & EIR_LINKIF) { enc28j60_check_link_status(); /* read PHIR to clear the flag */ enc28j60_phy_read(PHIR); enc28j60_set_bank(EIR); spi_write_op(ENC28J60_BIT_FIELD_CLR, EIR, EIR_LINKIF); } if (eir & EIR_TXIF) { /* A frame has been transmitted. */ enc28j60_set_bank(EIR); spi_write_op(ENC28J60_BIT_FIELD_CLR, EIR, EIR_TXIF); } /* TX Error handler */ if ((eir & EIR_TXERIF) != 0) { enc28j60_set_bank(ECON1); spi_write_op(ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRST); spi_write_op(ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_TXRST); enc28j60_set_bank(EIR); spi_write_op(ENC28J60_BIT_FIELD_CLR, EIR, EIR_TXERIF); } eir = spi_read(EIR); // rt_kprintf("inner eir: 0x%08x\n", eir); } while ((rx_activiated != RT_TRUE && eir != 0)); } /* RT-Thread Device Interface */ /* initialize the interface */ rt_err_t enc28j60_init(rt_device_t dev) { CSPASSIVE; // perform system reset spi_write_op(ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET); delay_ms(50); NextPacketPtr = RXSTART_INIT; // Rx start spi_write(ERXSTL, RXSTART_INIT&0xFF); spi_write(ERXSTH, RXSTART_INIT>>8); // set receive pointer address spi_write(ERXRDPTL, RXSTOP_INIT&0xFF); spi_write(ERXRDPTH, RXSTOP_INIT>>8); // RX end spi_write(ERXNDL, RXSTOP_INIT&0xFF); spi_write(ERXNDH, RXSTOP_INIT>>8); // TX start spi_write(ETXSTL, TXSTART_INIT&0xFF); spi_write(ETXSTH, TXSTART_INIT>>8); // set transmission pointer address spi_write(EWRPTL, TXSTART_INIT&0xFF); spi_write(EWRPTH, TXSTART_INIT>>8); // TX end spi_write(ETXNDL, TXSTOP_INIT&0xFF); spi_write(ETXNDH, TXSTOP_INIT>>8); // do bank 1 stuff, packet filter: // For broadcast packets we allow only ARP packtets // All other packets should be unicast only for our mac (MAADR) // // The pattern to match on is therefore // Type ETH.DST // ARP BROADCAST // 06 08 -- ff ff ff ff ff ff -> ip checksum for theses bytes=f7f9 // in binary these poitions are:11 0000 0011 1111 // This is hex 303F->EPMM0=0x3f,EPMM1=0x30 spi_write(ERXFCON, ERXFCON_UCEN|ERXFCON_CRCEN|ERXFCON_BCEN); // do bank 2 stuff // enable MAC receive spi_write(MACON1, MACON1_MARXEN|MACON1_TXPAUS|MACON1_RXPAUS); // enable automatic padding to 60bytes and CRC operations // spi_write_op(ENC28J60_BIT_FIELD_SET, MACON3, MACON3_PADCFG0|MACON3_TXCRCEN|MACON3_FRMLNEN); spi_write_op(ENC28J60_BIT_FIELD_SET, MACON3, MACON3_PADCFG0 | MACON3_TXCRCEN | MACON3_FRMLNEN | MACON3_FULDPX); // bring MAC out of reset // set inter-frame gap (back-to-back) // spi_write(MABBIPG, 0x12); spi_write(MABBIPG, 0x15); spi_write(MACON4, MACON4_DEFER); spi_write(MACLCON2, 63); // set inter-frame gap (non-back-to-back) spi_write(MAIPGL, 0x12); spi_write(MAIPGH, 0x0C); // Set the maximum packet size which the controller will accept // Do not send packets longer than MAX_FRAMELEN: spi_write(MAMXFLL, MAX_FRAMELEN&0xFF); spi_write(MAMXFLH, MAX_FRAMELEN>>8); // do bank 3 stuff // write MAC address // NOTE: MAC address in ENC28J60 is byte-backward spi_write(MAADR0, enc28j60_dev->dev_addr[5]); spi_write(MAADR1, enc28j60_dev->dev_addr[4]); spi_write(MAADR2, enc28j60_dev->dev_addr[3]); spi_write(MAADR3, enc28j60_dev->dev_addr[2]); spi_write(MAADR4, enc28j60_dev->dev_addr[1]); spi_write(MAADR5, enc28j60_dev->dev_addr[0]); /* output off */ spi_write(ECOCON, 0x00); // enc28j60_phy_write(PHCON1, 0x00); enc28j60_phy_write(PHCON1, PHCON1_PDPXMD); // full duplex // no loopback of transmitted frames enc28j60_phy_write(PHCON2, PHCON2_HDLDIS); enc28j60_set_bank(ECON2); spi_write_op(ENC28J60_BIT_FIELD_SET, ECON2, ECON2_AUTOINC); // switch to bank 0 enc28j60_set_bank(ECON1); // enable interrutps spi_write_op(ENC28J60_BIT_FIELD_SET, EIE, EIE_INTIE|EIE_PKTIE|EIR_TXIF); // enable packet reception spi_write_op(ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXEN); /* clock out */ // enc28j60_clkout(2); enc28j60_phy_write(PHLCON, 0xD76); //0x476 delay_ms(20); return RT_EOK; } /* control the interface */ rt_err_t enc28j60_control(rt_device_t dev, rt_uint8_t cmd, void *args) { switch(cmd) { case NIOCTL_GADDR: /* get mac address */ if(args) rt_memcpy(args, enc28j60_dev_entry.dev_addr, 6); else return -RT_ERROR; break; default : break; } return RT_EOK; } /* Open the ethernet interface */ rt_err_t enc28j60_open(rt_device_t dev, rt_uint16_t oflag) { return RT_EOK; } /* Close the interface */ rt_err_t enc28j60_close(rt_device_t dev) { return RT_EOK; } /* Read */ rt_size_t enc28j60_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size) { rt_set_errno(-RT_ENOSYS); return 0; } /* Write */ rt_size_t enc28j60_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) { rt_set_errno(-RT_ENOSYS); return 0; } /* ethernet device interface */ /* * Transmit packet. */ rt_err_t enc28j60_tx( rt_device_t dev, struct pbuf* p) { struct pbuf* q; rt_uint32_t len; rt_uint8_t* ptr; rt_uint32_t level; //rt_kprintf("tx pbuf: 0x%08x, total len %d\n", p, p->tot_len); /* lock enc28j60 */ rt_sem_take(&lock_sem, RT_WAITING_FOREVER); /* disable enc28j60 interrupt */ level = enc28j60_interrupt_disable(); // Set the write pointer to start of transmit buffer area spi_write(EWRPTL, TXSTART_INIT&0xFF); spi_write(EWRPTH, TXSTART_INIT>>8); // Set the TXND pointer to correspond to the packet size given spi_write(ETXNDL, (TXSTART_INIT+ p->tot_len + 1)&0xFF); spi_write(ETXNDH, (TXSTART_INIT+ p->tot_len + 1)>>8); // write per-packet control byte (0x00 means use macon3 settings) spi_write_op(ENC28J60_WRITE_BUF_MEM, 0, 0x00); for (q = p; q != NULL; q = q->next) { CSACTIVE; SPI_I2S_SendData(SPI1, ENC28J60_WRITE_BUF_MEM); while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_BSY)==SET); len = q->len; ptr = q->payload; while(len) { SPI_I2S_SendData(SPI1,*ptr) ; while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_BSY)==SET);; ptr++; len--; } CSPASSIVE; } // send the contents of the transmit buffer onto the network spi_write_op(ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRTS); // Reset the transmit logic problem. See Rev. B4 Silicon Errata point 12. if( (spi_read(EIR) & EIR_TXERIF) ) { spi_write_op(ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_TXRTS); } /* enable enc28j60 interrupt */ enc28j60_interrupt_enable(level); rt_sem_release(&lock_sem); return RT_EOK; } struct pbuf *enc28j60_rx(rt_device_t dev) { struct pbuf* p; rt_uint32_t len; rt_uint16_t rxstat; rt_uint32_t pk_counter; rt_uint32_t level; p = RT_NULL; /* lock enc28j60 */ rt_sem_take(&lock_sem, RT_WAITING_FOREVER); /* disable enc28j60 interrupt */ level = enc28j60_interrupt_disable(); pk_counter = spi_read(EPKTCNT); if (pk_counter) { // Set the read pointer to the start of the received packet spi_write(ERDPTL, (NextPacketPtr)); spi_write(ERDPTH, (NextPacketPtr)>>8); // read the next packet pointer NextPacketPtr = spi_read_op(ENC28J60_READ_BUF_MEM, 0); NextPacketPtr |= spi_read_op(ENC28J60_READ_BUF_MEM, 0)<<8; // read the packet length (see datasheet page 43) len = spi_read_op(ENC28J60_READ_BUF_MEM, 0); //0x54 len |= spi_read_op(ENC28J60_READ_BUF_MEM, 0) <<8; //5554 len-=4; //remove the CRC count // read the receive status (see datasheet page 43) rxstat = spi_read_op(ENC28J60_READ_BUF_MEM, 0); rxstat |= ((rt_uint16_t)spi_read_op(ENC28J60_READ_BUF_MEM, 0))<<8; // check CRC and symbol errors (see datasheet page 44, table 7-3): // The ERXFCON.CRCEN is set by default. Normally we should not // need to check this. if ((rxstat & 0x80)==0) { // invalid len=0; } else { /* allocation pbuf */ p = pbuf_alloc(PBUF_LINK, len, PBUF_RAM); if (p != RT_NULL) { rt_uint8_t* data; struct pbuf* q; for (q = p; q != RT_NULL; q= q->next) { data = q->payload; len = q->len; CSACTIVE; SPI_I2S_SendData(SPI1,ENC28J60_READ_BUF_MEM); while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_BSY)==SET); SPI_I2S_ReceiveData(SPI1); while(len) { len--; SPI_I2S_SendData(SPI1,0x00) ; while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_BSY)==SET); *data= SPI_I2S_ReceiveData(SPI1); data++; } CSPASSIVE; } } } // Move the RX read pointer to the start of the next received packet // This frees the memory we just read out spi_write(ERXRDPTL, (NextPacketPtr)); spi_write(ERXRDPTH, (NextPacketPtr)>>8); // decrement the packet counter indicate we are done with this packet spi_write_op(ENC28J60_BIT_FIELD_SET, ECON2, ECON2_PKTDEC); } else { // switch to bank 0 enc28j60_set_bank(ECON1); // enable packet reception spi_write_op(ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXEN); level |= EIE_PKTIE; } /* enable enc28j60 interrupt */ enc28j60_interrupt_enable(level); rt_sem_release(&lock_sem); return p; } static void RCC_Configuration(void) { //RCC_PCLK2Config ( uint32_t RCC_HCLK ) /* enable SPI1 clock */ RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE); /* enable gpiob port clock */ //RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC | RCC_APB2Periph_AFIO, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC , ENABLE); } static void NVIC_Configuration(void) { NVIC_InitTypeDef NVIC_InitStructure; /* Enable the EXTI0 Interrupt */ NVIC_InitStructure.NVIC_IRQChannel = EXTI2_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } static void GPIO_Configuration() { GPIO_InitTypeDef GPIO_InitStructure; EXTI_InitTypeDef EXTI_InitStructure; /* configure PB0 as external interrupt */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; GPIO_Init(GPIOC, &GPIO_InitStructure); /* Configure SPI1 pins: SCK, MISO and MOSI ----------------------------*/ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_Init(GPIOC, &GPIO_InitStructure); /* Connect ENC28J60 EXTI Line to GPIOB Pin 0 */ GPIO_EXTILineConfig(GPIO_PortSourceGPIOC, GPIO_PinSource2); /* Configure ENC28J60 EXTI Line to generate an interrupt on falling edge */ EXTI_InitStructure.EXTI_Line = EXTI_Line2; EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling; EXTI_InitStructure.EXTI_LineCmd = ENABLE; EXTI_Init(&EXTI_InitStructure); /* Clear the Key Button EXTI line pending bit */ EXTI_ClearITPendingBit(EXTI_Line2); } static void SetupSPI (void) { SPI_InitTypeDef SPI_InitStructure; SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; SPI_InitStructure.SPI_Mode = SPI_Mode_Master; SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b; SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low; SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge; SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_8;//SPI_BaudRatePrescaler_4; SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; SPI_InitStructure.SPI_CRCPolynomial = 7; SPI_Init(SPI1, &SPI_InitStructure); SPI_Cmd(SPI1, ENABLE); } void rt_hw_enc28j60_init() { /* configuration PB5 as INT */ RCC_Configuration(); NVIC_Configuration(); GPIO_Configuration(); SetupSPI(); /* init rt-thread device interface */ enc28j60_dev_entry.parent.parent.init = enc28j60_init; enc28j60_dev_entry.parent.parent.open = enc28j60_open; enc28j60_dev_entry.parent.parent.close = enc28j60_close; enc28j60_dev_entry.parent.parent.read = enc28j60_read; enc28j60_dev_entry.parent.parent.write = enc28j60_write; enc28j60_dev_entry.parent.parent.control = enc28j60_control; enc28j60_dev_entry.parent.eth_rx = enc28j60_rx; enc28j60_dev_entry.parent.eth_tx = enc28j60_tx; /* Update MAC address */ /* OUI 00-04-A3 Microchip Technology, Inc. */ enc28j60_dev_entry.dev_addr[0] = 0x00; enc28j60_dev_entry.dev_addr[1] = 0x04; enc28j60_dev_entry.dev_addr[2] = 0xA3; /* generate MAC addr (only for test) */ enc28j60_dev_entry.dev_addr[3] = 0x11; enc28j60_dev_entry.dev_addr[4] = 0x22; enc28j60_dev_entry.dev_addr[5] = 0x33; rt_sem_init(&lock_sem, "lock", 1, RT_IPC_FLAG_FIFO); eth_device_init(&(enc28j60_dev->parent), "e0"); } #ifdef RT_USING_FINSH #include void show_reg(void) { // } FINSH_FUNCTION_EXPORT(show_reg,show en28j60 regs) #endif