/* * File : application.c * This file is part of RT-Thread RTOS * COPYRIGHT (C) 2006, RT-Thread Development Team * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * http://www.rt-thread.org/license/LICENSE * * Change Logs: * Date Author Notes * 2017-06-08 tanek first implementation */ #include #include "board.h" #include #ifdef RT_USING_FINSH #include #endif #include "fsl_enet.h" #include "fsl_gpio.h" #include "fsl_iomuxc.h" #include "fsl_phy.h" #ifdef RT_USING_LWIP #include #include "lwipopts.h" #define ENET_RXBD_NUM (4) #define ENET_TXBD_NUM (4) #define ENET_RXBUFF_SIZE (ENET_FRAME_MAX_FRAMELEN) #define ENET_TXBUFF_SIZE (ENET_FRAME_MAX_FRAMELEN) #define PHY_ADDRESS 0x02u /* debug option */ //#define ETH_RX_DUMP //#define ETH_TX_DUMP #define DBG_ENABLE #define DBG_SECTION_NAME "[ETH]" #define DBG_COLOR #define DBG_LEVEL DBG_INFO #include #define MAX_ADDR_LEN 6 struct rt_imxrt_eth { /* inherit from ethernet device */ struct eth_device parent; enet_handle_t enet_handle; ENET_Type *enet_base; enet_data_error_stats_t error_statistic; rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */ rt_bool_t tx_is_waiting; struct rt_semaphore tx_wait; enet_mii_speed_t speed; enet_mii_duplex_t duplex; }; ALIGN(ENET_BUFF_ALIGNMENT) enet_tx_bd_struct_t g_txBuffDescrip[ENET_TXBD_NUM] SECTION("NonCacheable"); ALIGN(ENET_BUFF_ALIGNMENT) rt_uint8_t g_txDataBuff[ENET_TXBD_NUM][RT_ALIGN(ENET_TXBUFF_SIZE, ENET_BUFF_ALIGNMENT)]; ALIGN(ENET_BUFF_ALIGNMENT) enet_rx_bd_struct_t g_rxBuffDescrip[ENET_RXBD_NUM] SECTION("NonCacheable"); ALIGN(ENET_BUFF_ALIGNMENT) rt_uint8_t g_rxDataBuff[ENET_RXBD_NUM][RT_ALIGN(ENET_RXBUFF_SIZE, ENET_BUFF_ALIGNMENT)]; static struct rt_imxrt_eth imxrt_eth_device; void _enet_rx_callback(struct rt_imxrt_eth * eth) { rt_err_t result; ENET_DisableInterrupts(eth->enet_base, kENET_RxFrameInterrupt); result = eth_device_ready(&(eth->parent)); if( result != RT_EOK ) rt_kprintf("RX err =%d\n", result ); } void _enet_tx_callback(struct rt_imxrt_eth * eth) { if (eth->tx_is_waiting == RT_TRUE) { eth->tx_is_waiting = RT_FALSE; rt_sem_release(ð->tx_wait); } } void _enet_callback(ENET_Type *base, enet_handle_t *handle, enet_event_t event, void *userData) { switch(event) { case kENET_RxEvent: _enet_rx_callback((struct rt_imxrt_eth *)userData); break; case kENET_TxEvent: _enet_tx_callback((struct rt_imxrt_eth *)userData); break; case kENET_ErrEvent: //rt_kprintf("kENET_ErrEvent\n"); break; case kENET_WakeUpEvent: //rt_kprintf("kENET_WakeUpEvent\n"); break; case kENET_TimeStampEvent: //rt_kprintf("kENET_TimeStampEvent\n"); break; case kENET_TimeStampAvailEvent: //rt_kprintf("kENET_TimeStampAvailEvent \n"); break; default: //rt_kprintf("unknow error\n"); break; } } static void _enet_io_init(void) { CLOCK_EnableClock(kCLOCK_Iomuxc); /* iomuxc clock (iomuxc_clk_enable): 0x03u */ IOMUXC_SetPinMux( IOMUXC_GPIO_AD_B0_09_GPIO1_IO09, /* GPIO_AD_B0_09 is configured as GPIO1_IO09 */ 0U); /* Software Input On Field: Input Path is determined by functionality */ IOMUXC_SetPinMux( IOMUXC_GPIO_AD_B0_10_GPIO1_IO10, /* GPIO_AD_B0_10 is configured as GPIO1_IO10 */ 0U); /* Software Input On Field: Input Path is determined by functionality */ IOMUXC_SetPinMux( IOMUXC_GPIO_AD_B0_12_LPUART1_TX, /* GPIO_AD_B0_12 is configured as LPUART1_TX */ 0U); /* Software Input On Field: Input Path is determined by functionality */ IOMUXC_SetPinMux( IOMUXC_GPIO_AD_B0_13_LPUART1_RX, /* GPIO_AD_B0_13 is configured as LPUART1_RX */ 0U); /* Software Input On Field: Input Path is determined by functionality */ IOMUXC_SetPinMux( IOMUXC_GPIO_B1_04_ENET_RX_DATA00, /* GPIO_B1_04 is configured as ENET_RX_DATA00 */ 0U); /* Software Input On Field: Input Path is determined by functionality */ IOMUXC_SetPinMux( IOMUXC_GPIO_B1_05_ENET_RX_DATA01, /* GPIO_B1_05 is configured as ENET_RX_DATA01 */ 0U); /* Software Input On Field: Input Path is determined by functionality */ IOMUXC_SetPinMux( IOMUXC_GPIO_B1_06_ENET_RX_EN, /* GPIO_B1_06 is configured as ENET_RX_EN */ 0U); /* Software Input On Field: Input Path is determined by functionality */ IOMUXC_SetPinMux( IOMUXC_GPIO_B1_07_ENET_TX_DATA00, /* GPIO_B1_07 is configured as ENET_TX_DATA00 */ 0U); /* Software Input On Field: Input Path is determined by functionality */ IOMUXC_SetPinMux( IOMUXC_GPIO_B1_08_ENET_TX_DATA01, /* GPIO_B1_08 is configured as ENET_TX_DATA01 */ 0U); /* Software Input On Field: Input Path is determined by functionality */ IOMUXC_SetPinMux( IOMUXC_GPIO_B1_09_ENET_TX_EN, /* GPIO_B1_09 is configured as ENET_TX_EN */ 0U); /* Software Input On Field: Input Path is determined by functionality */ IOMUXC_SetPinMux( IOMUXC_GPIO_B1_10_ENET_REF_CLK, /* GPIO_B1_10 is configured as ENET_REF_CLK */ 1U); /* Software Input On Field: Force input path of pad GPIO_B1_10 */ IOMUXC_SetPinMux( IOMUXC_GPIO_B1_11_ENET_RX_ER, /* GPIO_B1_11 is configured as ENET_RX_ER */ 0U); /* Software Input On Field: Input Path is determined by functionality */ IOMUXC_SetPinMux( IOMUXC_GPIO_EMC_40_ENET_MDC, /* GPIO_EMC_40 is configured as ENET_MDC */ 0U); /* Software Input On Field: Input Path is determined by functionality */ IOMUXC_SetPinMux( IOMUXC_GPIO_EMC_41_ENET_MDIO, /* GPIO_EMC_41 is configured as ENET_MDIO */ 0U); /* Software Input On Field: Input Path is determined by functionality */ IOMUXC_SetPinConfig( IOMUXC_GPIO_AD_B0_09_GPIO1_IO09, /* GPIO_AD_B0_09 PAD functional properties : */ 0xB0A9u); /* Slew Rate Field: Fast Slew Rate Drive Strength Field: R0/5 Speed Field: medium(100MHz) Open Drain Enable Field: Open Drain Disabled Pull / Keep Enable Field: Pull/Keeper Enabled Pull / Keep Select Field: Pull Pull Up / Down Config. Field: 100K Ohm Pull Up Hyst. Enable Field: Hysteresis Disabled */ IOMUXC_SetPinConfig( IOMUXC_GPIO_AD_B0_10_GPIO1_IO10, /* GPIO_AD_B0_10 PAD functional properties : */ 0xB0A9u); /* Slew Rate Field: Fast Slew Rate Drive Strength Field: R0/5 Speed Field: medium(100MHz) Open Drain Enable Field: Open Drain Disabled Pull / Keep Enable Field: Pull/Keeper Enabled Pull / Keep Select Field: Pull Pull Up / Down Config. Field: 100K Ohm Pull Up Hyst. Enable Field: Hysteresis Disabled */ IOMUXC_SetPinConfig( IOMUXC_GPIO_AD_B0_12_LPUART1_TX, /* GPIO_AD_B0_12 PAD functional properties : */ 0x10B0u); /* Slew Rate Field: Slow Slew Rate Drive Strength Field: R0/6 Speed Field: medium(100MHz) Open Drain Enable Field: Open Drain Disabled Pull / Keep Enable Field: Pull/Keeper Enabled Pull / Keep Select Field: Keeper Pull Up / Down Config. Field: 100K Ohm Pull Down Hyst. Enable Field: Hysteresis Disabled */ IOMUXC_SetPinConfig( IOMUXC_GPIO_AD_B0_13_LPUART1_RX, /* GPIO_AD_B0_13 PAD functional properties : */ 0x10B0u); /* Slew Rate Field: Slow Slew Rate Drive Strength Field: R0/6 Speed Field: medium(100MHz) Open Drain Enable Field: Open Drain Disabled Pull / Keep Enable Field: Pull/Keeper Enabled Pull / Keep Select Field: Keeper Pull Up / Down Config. Field: 100K Ohm Pull Down Hyst. Enable Field: Hysteresis Disabled */ IOMUXC_SetPinConfig( IOMUXC_GPIO_B1_04_ENET_RX_DATA00, /* GPIO_B1_04 PAD functional properties : */ 0xB0E9u); /* Slew Rate Field: Fast Slew Rate Drive Strength Field: R0/5 Speed Field: max(200MHz) Open Drain Enable Field: Open Drain Disabled Pull / Keep Enable Field: Pull/Keeper Enabled Pull / Keep Select Field: Pull Pull Up / Down Config. Field: 100K Ohm Pull Up Hyst. Enable Field: Hysteresis Disabled */ IOMUXC_SetPinConfig( IOMUXC_GPIO_B1_05_ENET_RX_DATA01, /* GPIO_B1_05 PAD functional properties : */ 0xB0E9u); /* Slew Rate Field: Fast Slew Rate Drive Strength Field: R0/5 Speed Field: max(200MHz) Open Drain Enable Field: Open Drain Disabled Pull / Keep Enable Field: Pull/Keeper Enabled Pull / Keep Select Field: Pull Pull Up / Down Config. Field: 100K Ohm Pull Up Hyst. Enable Field: Hysteresis Disabled */ IOMUXC_SetPinConfig( IOMUXC_GPIO_B1_06_ENET_RX_EN, /* GPIO_B1_06 PAD functional properties : */ 0xB0E9u); /* Slew Rate Field: Fast Slew Rate Drive Strength Field: R0/5 Speed Field: max(200MHz) Open Drain Enable Field: Open Drain Disabled Pull / Keep Enable Field: Pull/Keeper Enabled Pull / Keep Select Field: Pull Pull Up / Down Config. Field: 100K Ohm Pull Up Hyst. Enable Field: Hysteresis Disabled */ IOMUXC_SetPinConfig( IOMUXC_GPIO_B1_07_ENET_TX_DATA00, /* GPIO_B1_07 PAD functional properties : */ 0xB0E9u); /* Slew Rate Field: Fast Slew Rate Drive Strength Field: R0/5 Speed Field: max(200MHz) Open Drain Enable Field: Open Drain Disabled Pull / Keep Enable Field: Pull/Keeper Enabled Pull / Keep Select Field: Pull Pull Up / Down Config. Field: 100K Ohm Pull Up Hyst. Enable Field: Hysteresis Disabled */ IOMUXC_SetPinConfig( IOMUXC_GPIO_B1_08_ENET_TX_DATA01, /* GPIO_B1_08 PAD functional properties : */ 0xB0E9u); /* Slew Rate Field: Fast Slew Rate Drive Strength Field: R0/5 Speed Field: max(200MHz) Open Drain Enable Field: Open Drain Disabled Pull / Keep Enable Field: Pull/Keeper Enabled Pull / Keep Select Field: Pull Pull Up / Down Config. Field: 100K Ohm Pull Up Hyst. Enable Field: Hysteresis Disabled */ IOMUXC_SetPinConfig( IOMUXC_GPIO_B1_09_ENET_TX_EN, /* GPIO_B1_09 PAD functional properties : */ 0xB0E9u); /* Slew Rate Field: Fast Slew Rate Drive Strength Field: R0/5 Speed Field: max(200MHz) Open Drain Enable Field: Open Drain Disabled Pull / Keep Enable Field: Pull/Keeper Enabled Pull / Keep Select Field: Pull Pull Up / Down Config. Field: 100K Ohm Pull Up Hyst. Enable Field: Hysteresis Disabled */ IOMUXC_SetPinConfig( IOMUXC_GPIO_B1_10_ENET_REF_CLK, /* GPIO_B1_10 PAD functional properties : */ 0x31u); /* Slew Rate Field: Fast Slew Rate Drive Strength Field: R0/6 Speed Field: low(50MHz) Open Drain Enable Field: Open Drain Disabled Pull / Keep Enable Field: Pull/Keeper Disabled Pull / Keep Select Field: Keeper Pull Up / Down Config. Field: 100K Ohm Pull Down Hyst. Enable Field: Hysteresis Disabled */ IOMUXC_SetPinConfig( IOMUXC_GPIO_B1_11_ENET_RX_ER, /* GPIO_B1_11 PAD functional properties : */ 0xB0E9u); /* Slew Rate Field: Fast Slew Rate Drive Strength Field: R0/5 Speed Field: max(200MHz) Open Drain Enable Field: Open Drain Disabled Pull / Keep Enable Field: Pull/Keeper Enabled Pull / Keep Select Field: Pull Pull Up / Down Config. Field: 100K Ohm Pull Up Hyst. Enable Field: Hysteresis Disabled */ IOMUXC_SetPinConfig( IOMUXC_GPIO_EMC_40_ENET_MDC, /* GPIO_EMC_40 PAD functional properties : */ 0xB0E9u); /* Slew Rate Field: Fast Slew Rate Drive Strength Field: R0/5 Speed Field: max(200MHz) Open Drain Enable Field: Open Drain Disabled Pull / Keep Enable Field: Pull/Keeper Enabled Pull / Keep Select Field: Pull Pull Up / Down Config. Field: 100K Ohm Pull Up Hyst. Enable Field: Hysteresis Disabled */ IOMUXC_SetPinConfig( IOMUXC_GPIO_EMC_41_ENET_MDIO, /* GPIO_EMC_41 PAD functional properties : */ 0xB829u); /* Slew Rate Field: Fast Slew Rate Drive Strength Field: R0/5 Speed Field: low(50MHz) Open Drain Enable Field: Open Drain Enabled Pull / Keep Enable Field: Pull/Keeper Enabled Pull / Keep Select Field: Pull Pull Up / Down Config. Field: 100K Ohm Pull Up Hyst. Enable Field: Hysteresis Disabled */ } static void _enet_clk_init(void) { const clock_enet_pll_config_t config = {true, false, false, 1, 1}; CLOCK_InitEnetPll(&config); IOMUXC_EnableMode(IOMUXC_GPR, kIOMUXC_GPR_ENET1TxClkOutputDir, true); } static void _delay(void) { volatile int i = 1000000; while (i--) i = i; } static void _enet_phy_reset_by_gpio(void) { gpio_pin_config_t gpio_config = {kGPIO_DigitalOutput, 0, kGPIO_NoIntmode}; GPIO_PinInit(GPIO1, 9, &gpio_config); GPIO_PinInit(GPIO1, 10, &gpio_config); /* pull up the ENET_INT before RESET. */ GPIO_WritePinOutput(GPIO1, 10, 1); GPIO_WritePinOutput(GPIO1, 9, 0); _delay(); GPIO_WritePinOutput(GPIO1, 9, 1); } static void _enet_config(void) { enet_config_t config; uint32_t sysClock; /* prepare the buffer configuration. */ enet_buffer_config_t buffConfig = { ENET_RXBD_NUM, ENET_TXBD_NUM, SDK_SIZEALIGN(ENET_RXBUFF_SIZE, ENET_BUFF_ALIGNMENT), SDK_SIZEALIGN(ENET_TXBUFF_SIZE, ENET_BUFF_ALIGNMENT), &g_rxBuffDescrip[0], &g_txBuffDescrip[0], &g_rxDataBuff[0][0], &g_txDataBuff[0][0], }; /* Get default configuration. */ /* * config.miiMode = kENET_RmiiMode; * config.miiSpeed = kENET_MiiSpeed100M; * config.miiDuplex = kENET_MiiFullDuplex; * config.rxMaxFrameLen = ENET_FRAME_MAX_FRAMELEN; */ ENET_GetDefaultConfig(&config); config.interrupt = kENET_TxFrameInterrupt | kENET_RxFrameInterrupt; //config.interrupt = 0xFFFFFFFF; config.miiSpeed = imxrt_eth_device.speed; config.miiDuplex = imxrt_eth_device.duplex; /* Set SMI to get PHY link status. */ sysClock = CLOCK_GetFreq(kCLOCK_AhbClk); dbg_log(DBG_LOG, "deinit\n"); ENET_Deinit(imxrt_eth_device.enet_base); dbg_log(DBG_LOG, "init\n"); ENET_Init(imxrt_eth_device.enet_base, &imxrt_eth_device.enet_handle, &config, &buffConfig, &imxrt_eth_device.dev_addr[0], sysClock); dbg_log(DBG_LOG, "set call back\n"); ENET_SetCallback(&imxrt_eth_device.enet_handle, _enet_callback, &imxrt_eth_device); dbg_log(DBG_LOG, "active read\n"); ENET_ActiveRead(imxrt_eth_device.enet_base); } /* initialize the interface */ static rt_err_t rt_imxrt_eth_init(rt_device_t dev) { dbg_log(DBG_LOG, "rt_imxrt_eth_init...\n"); _enet_config(); return RT_EOK; } static rt_err_t rt_imxrt_eth_open(rt_device_t dev, rt_uint16_t oflag) { dbg_log(DBG_LOG, "rt_imxrt_eth_open...\n"); return RT_EOK; } static rt_err_t rt_imxrt_eth_close(rt_device_t dev) { dbg_log(DBG_LOG, "rt_imxrt_eth_close...\n"); return RT_EOK; } static rt_size_t rt_imxrt_eth_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size) { dbg_log(DBG_LOG, "rt_imxrt_eth_read...\n"); rt_set_errno(-RT_ENOSYS); return 0; } static rt_size_t rt_imxrt_eth_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) { dbg_log(DBG_LOG, "rt_imxrt_eth_write...\n"); rt_set_errno(-RT_ENOSYS); return 0; } static rt_err_t rt_imxrt_eth_control(rt_device_t dev, int cmd, void *args) { dbg_log(DBG_LOG, "rt_imxrt_eth_control...\n"); switch(cmd) { case NIOCTL_GADDR: /* get mac address */ if(args) rt_memcpy(args, imxrt_eth_device.dev_addr, 6); else return -RT_ERROR; break; default : break; } return RT_EOK; } /* ethernet device interface */ /* transmit packet. */ rt_err_t rt_imxrt_eth_tx( rt_device_t dev, struct pbuf* p) { rt_err_t result = RT_EOK; enet_handle_t * enet_handle = &imxrt_eth_device.enet_handle; RT_ASSERT(p != NULL); RT_ASSERT(enet_handle != RT_NULL); dbg_log(DBG_LOG, "rt_imxrt_eth_tx: %d\n", p->len); #ifdef ETH_TX_DUMP { int i; uint8_t * buf; buf = (uint8_t *)p->payload; for (i = 0; i < p->len; i++) { dbg_log(DBG_LOG, "%02X ", buf[i]); if (i % 16 == 15) dbg_log(DBG_LOG, "\n"); } dbg_log(DBG_LOG, "\n"); } #endif do { result = ENET_SendFrame(imxrt_eth_device.enet_base, enet_handle, p->payload, p->len); if (result == kStatus_ENET_TxFrameBusy) { rt_sem_take(&imxrt_eth_device.tx_wait, RT_WAITING_FOREVER); } } while (result == kStatus_ENET_TxFrameBusy); return RT_EOK; } /* reception packet. */ struct pbuf *rt_imxrt_eth_rx(rt_device_t dev) { uint32_t length = 0; status_t status; struct pbuf* p = RT_NULL; enet_handle_t * enet_handle = &imxrt_eth_device.enet_handle; ENET_Type *enet_base = imxrt_eth_device.enet_base; enet_data_error_stats_t *error_statistic = &imxrt_eth_device.error_statistic; /* Get the Frame size */ status = ENET_GetRxFrameSize(enet_handle, &length); /* Call ENET_ReadFrame when there is a received frame. */ if (length != 0) { /* Received valid frame. Deliver the rx buffer with the size equal to length. */ p = pbuf_alloc(PBUF_RAW, length, PBUF_POOL); if (p != NULL) { status = ENET_ReadFrame(enet_base, enet_handle, p->payload, length); if (status == kStatus_Success) { #ifdef ETH_RX_DUMP uint8_t *buf; int i; ETH_PRINTF("A frame received. the length:%d\n", p->len); buf = (uint8_t *)p->payload; for (i = 0; i < p->len; i++) { dbg_log(DBG_LOG, "%02X ", buf[i]); if (i % 16 == 15) dbg_log(DBG_LOG, "\n"); } dbg_log(DBG_LOG, "\n"); #endif return p; } else { dbg_log(DBG_LOG, " A frame read failed\n"); pbuf_free(p); } } else { dbg_log(DBG_LOG, " pbuf_alloc faild\n"); } } else if (status == kStatus_ENET_RxFrameError) { dbg_log(DBG_WARNING, "ENET_GetRxFrameSize: kStatus_ENET_RxFrameError\n"); /* Update the received buffer when error happened. */ /* Get the error information of the received g_frame. */ ENET_GetRxErrBeforeReadFrame(enet_handle, error_statistic); /* update the receive buffer. */ ENET_ReadFrame(enet_base, enet_handle, NULL, 0); } ENET_EnableInterrupts(enet_base, kENET_RxFrameInterrupt); return NULL; } static void phy_monitor_thread_entry(void *parameter) { phy_speed_t speed; phy_duplex_t duplex; bool link = false; _enet_phy_reset_by_gpio(); PHY_Init(imxrt_eth_device.enet_base, PHY_ADDRESS, CLOCK_GetFreq(kCLOCK_AhbClk)); while (1) { bool new_link = false; status_t status = PHY_GetLinkStatus(imxrt_eth_device.enet_base, PHY_ADDRESS, &new_link); if ((status == kStatus_Success) && (link != new_link)) { link = new_link; if (link) // link up { PHY_GetLinkSpeedDuplex(imxrt_eth_device.enet_base, PHY_ADDRESS, &speed, &duplex); if (kPHY_Speed10M == speed) { dbg_log(DBG_LOG, "10M\n"); } else { dbg_log(DBG_LOG, "100M\n"); } if (kPHY_HalfDuplex == duplex) { dbg_log(DBG_LOG, "half dumplex\n"); } else { dbg_log(DBG_LOG, "full dumplex\n"); } if ((imxrt_eth_device.speed != (enet_mii_speed_t)speed) || (imxrt_eth_device.duplex != (enet_mii_duplex_t)duplex)) { imxrt_eth_device.speed = (enet_mii_speed_t)speed; imxrt_eth_device.duplex = (enet_mii_duplex_t)duplex; dbg_log(DBG_LOG, "link up, and update eth mode.\n"); rt_imxrt_eth_init((rt_device_t)&imxrt_eth_device); } else { dbg_log(DBG_LOG, "link up, eth not need re-config.\n"); } dbg_log(DBG_LOG, "link up.\n"); eth_device_linkchange(&imxrt_eth_device.parent, RT_TRUE); } else // link down { dbg_log(DBG_LOG, "link down.\n"); eth_device_linkchange(&imxrt_eth_device.parent, RT_FALSE); } } rt_thread_delay(RT_TICK_PER_SECOND * 2); } } static int rt_hw_imxrt_eth_init(void) { rt_err_t state; _enet_io_init(); _enet_clk_init(); /* OUI 00-80-E1 STMICROELECTRONICS. */ imxrt_eth_device.dev_addr[0] = 0x00; imxrt_eth_device.dev_addr[1] = 0x80; imxrt_eth_device.dev_addr[2] = 0xE1; /* generate MAC addr from 96bit unique ID (only for test). */ imxrt_eth_device.dev_addr[3] = 0x12; imxrt_eth_device.dev_addr[4] = 0x34; imxrt_eth_device.dev_addr[5] = 0x56; imxrt_eth_device.speed = kENET_MiiSpeed100M; imxrt_eth_device.duplex = kENET_MiiFullDuplex; imxrt_eth_device.enet_base = ENET; imxrt_eth_device.parent.parent.init = rt_imxrt_eth_init; imxrt_eth_device.parent.parent.open = rt_imxrt_eth_open; imxrt_eth_device.parent.parent.close = rt_imxrt_eth_close; imxrt_eth_device.parent.parent.read = rt_imxrt_eth_read; imxrt_eth_device.parent.parent.write = rt_imxrt_eth_write; imxrt_eth_device.parent.parent.control = rt_imxrt_eth_control; imxrt_eth_device.parent.parent.user_data = RT_NULL; imxrt_eth_device.parent.eth_rx = rt_imxrt_eth_rx; imxrt_eth_device.parent.eth_tx = rt_imxrt_eth_tx; dbg_log(DBG_LOG, "sem init: tx_wait\r\n"); /* init tx semaphore */ rt_sem_init(&imxrt_eth_device.tx_wait, "tx_wait", 0, RT_IPC_FLAG_FIFO); /* register eth device */ dbg_log(DBG_LOG, "eth_device_init start\r\n"); state = eth_device_init(&(imxrt_eth_device.parent), "e0"); if (RT_EOK == state) { dbg_log(DBG_LOG, "eth_device_init success\r\n"); } else { dbg_log(DBG_LOG, "eth_device_init faild: %d\r\n", state); } eth_device_linkchange(&imxrt_eth_device.parent, RT_FALSE); /* start phy monitor */ { rt_thread_t tid; tid = rt_thread_create("phy", phy_monitor_thread_entry, RT_NULL, 512, RT_THREAD_PRIORITY_MAX - 2, 2); if (tid != RT_NULL) rt_thread_startup(tid); } return state; } INIT_DEVICE_EXPORT(rt_hw_imxrt_eth_init); #endif #ifdef RT_USING_FINSH #include void phy_read(uint32_t phyReg) { uint32_t data; status_t status; status = PHY_Read(imxrt_eth_device.enet_base, PHY_ADDRESS, phyReg, &data); if (kStatus_Success == status) { rt_kprintf("PHY_Read: %02X --> %08X", phyReg, data); } else { rt_kprintf("PHY_Read: %02X --> faild", phyReg); } } void phy_write(uint32_t phyReg, uint32_t data) { status_t status; status = PHY_Write(imxrt_eth_device.enet_base, PHY_ADDRESS, phyReg, data); if (kStatus_Success == status) { rt_kprintf("PHY_Write: %02X --> %08X\n", phyReg, data); } else { rt_kprintf("PHY_Write: %02X --> faild\n", phyReg); } } void phy_dump(void) { uint32_t data; status_t status; int i; for (i = 0; i < 32; i++) { status = PHY_Read(imxrt_eth_device.enet_base, PHY_ADDRESS, i, &data); if (kStatus_Success != status) { rt_kprintf("phy_dump: %02X --> faild", i); break; } if (i % 8 == 7) { rt_kprintf("%02X --> %08X ", i, data); } else { rt_kprintf("%02X --> %08X\n", i, data); } } } void enet_reg_dump(void) { ENET_Type *enet_base = imxrt_eth_device.enet_base; #define DUMP_REG(__REG) \ rt_kprintf("%s(%08X): %08X\n", #__REG, (uint32_t)&enet_base->__REG, enet_base->__REG) DUMP_REG(EIR); DUMP_REG(EIMR); DUMP_REG(RDAR); DUMP_REG(TDAR); DUMP_REG(ECR); DUMP_REG(MMFR); DUMP_REG(MSCR); DUMP_REG(MIBC); DUMP_REG(RCR); DUMP_REG(TCR); DUMP_REG(PALR); DUMP_REG(PAUR); DUMP_REG(OPD); DUMP_REG(TXIC); DUMP_REG(RXIC); DUMP_REG(IAUR); DUMP_REG(IALR); DUMP_REG(GAUR); DUMP_REG(GALR); DUMP_REG(TFWR); DUMP_REG(RDSR); DUMP_REG(TDSR); DUMP_REG(MRBR); DUMP_REG(RSFL); DUMP_REG(RSEM); DUMP_REG(RAEM); DUMP_REG(RAFL); DUMP_REG(TSEM); DUMP_REG(TAEM); DUMP_REG(TAFL); DUMP_REG(TIPG); DUMP_REG(FTRL); DUMP_REG(TACC); DUMP_REG(RACC); DUMP_REG(RMON_T_DROP); DUMP_REG(RMON_T_PACKETS); DUMP_REG(RMON_T_BC_PKT); DUMP_REG(RMON_T_MC_PKT); DUMP_REG(RMON_T_CRC_ALIGN); DUMP_REG(RMON_T_UNDERSIZE); DUMP_REG(RMON_T_OVERSIZE); DUMP_REG(RMON_T_FRAG); DUMP_REG(RMON_T_JAB); DUMP_REG(RMON_T_COL); DUMP_REG(RMON_T_P64); DUMP_REG(RMON_T_P65TO127); DUMP_REG(RMON_T_P128TO255); DUMP_REG(RMON_T_P256TO511); DUMP_REG(RMON_T_P512TO1023); DUMP_REG(RMON_T_P1024TO2047); DUMP_REG(RMON_T_P_GTE2048); DUMP_REG(RMON_T_OCTETS); DUMP_REG(IEEE_T_DROP); DUMP_REG(IEEE_T_FRAME_OK); DUMP_REG(IEEE_T_1COL); DUMP_REG(IEEE_T_MCOL); DUMP_REG(IEEE_T_DEF); DUMP_REG(IEEE_T_LCOL); DUMP_REG(IEEE_T_EXCOL); DUMP_REG(IEEE_T_MACERR); DUMP_REG(IEEE_T_CSERR); DUMP_REG(IEEE_T_SQE); DUMP_REG(IEEE_T_FDXFC); DUMP_REG(IEEE_T_OCTETS_OK); DUMP_REG(RMON_R_PACKETS); DUMP_REG(RMON_R_BC_PKT); DUMP_REG(RMON_R_MC_PKT); DUMP_REG(RMON_R_CRC_ALIGN); DUMP_REG(RMON_R_UNDERSIZE); DUMP_REG(RMON_R_OVERSIZE); DUMP_REG(RMON_R_FRAG); DUMP_REG(RMON_R_JAB); DUMP_REG(RMON_R_RESVD_0); DUMP_REG(RMON_R_P64); DUMP_REG(RMON_R_P65TO127); DUMP_REG(RMON_R_P128TO255); DUMP_REG(RMON_R_P256TO511); DUMP_REG(RMON_R_P512TO1023); DUMP_REG(RMON_R_P1024TO2047); DUMP_REG(RMON_R_P_GTE2048); DUMP_REG(RMON_R_OCTETS); DUMP_REG(IEEE_R_DROP); DUMP_REG(IEEE_R_FRAME_OK); DUMP_REG(IEEE_R_CRC); DUMP_REG(IEEE_R_ALIGN); DUMP_REG(IEEE_R_MACERR); DUMP_REG(IEEE_R_FDXFC); DUMP_REG(IEEE_R_OCTETS_OK); DUMP_REG(ATCR); DUMP_REG(ATVR); DUMP_REG(ATOFF); DUMP_REG(ATPER); DUMP_REG(ATCOR); DUMP_REG(ATINC); DUMP_REG(ATSTMP); DUMP_REG(TGSR); } void enet_nvic_tog(void) { NVIC_SetPendingIRQ(ENET_IRQn); } void enet_rx_stat(void) { enet_data_error_stats_t *error_statistic = &imxrt_eth_device.error_statistic; #define DUMP_STAT(__VAR) \ rt_kprintf("%-25s: %08X\n", #__VAR, error_statistic->__VAR); DUMP_STAT(statsRxLenGreaterErr); DUMP_STAT(statsRxAlignErr); DUMP_STAT(statsRxFcsErr); DUMP_STAT(statsRxOverRunErr); DUMP_STAT(statsRxTruncateErr); #ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE DUMP_STAT(statsRxProtocolChecksumErr); DUMP_STAT(statsRxIpHeadChecksumErr); DUMP_STAT(statsRxMacErr); DUMP_STAT(statsRxPhyErr); DUMP_STAT(statsRxCollisionErr); DUMP_STAT(statsTxErr); DUMP_STAT(statsTxFrameErr); DUMP_STAT(statsTxOverFlowErr); DUMP_STAT(statsTxLateCollisionErr); DUMP_STAT(statsTxExcessCollisionErr); DUMP_STAT(statsTxUnderFlowErr); DUMP_STAT(statsTxTsErr); #endif } void enet_buf_info(void) { int i = 0; for (i = 0; i < ENET_RXBD_NUM; i++) { rt_kprintf("%d: length: %-8d, control: %04X, buffer:%p\n", i, g_rxBuffDescrip[i].length, g_rxBuffDescrip[i].control, g_rxBuffDescrip[i].buffer); } for (i = 0; i < ENET_TXBD_NUM; i++) { rt_kprintf("%d: length: %-8d, control: %04X, buffer:%p\n", i, g_txBuffDescrip[i].length, g_txBuffDescrip[i].control, g_txBuffDescrip[i].buffer); } } FINSH_FUNCTION_EXPORT(phy_read, read phy register); FINSH_FUNCTION_EXPORT(phy_write, write phy register); FINSH_FUNCTION_EXPORT(phy_dump, dump phy registers); FINSH_FUNCTION_EXPORT(enet_reg_dump, dump enet registers); FINSH_FUNCTION_EXPORT(enet_nvic_tog, toggle enet nvic pendding bit); FINSH_FUNCTION_EXPORT(enet_rx_stat, dump enet rx statistic); FINSH_FUNCTION_EXPORT(enet_buf_info, dump enet tx and tx buffer descripter); #endif