/* * Copyright (c) 2006-2024 RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2022-3-08 GuEe-GUI the first version */ /* Define pll mode */ #define RKCLK_PLL_MODE_SLOW 0 #define RKCLK_PLL_MODE_NORMAL 1 #define RKCLK_PLL_MODE_DEEP 2 /* Only support RK3036 type CLK */ #define PLLCON0_FBDIV_MASK 0xfff #define PLLCON0_FBDIV_SHIFT 0 #define PLLCON0_POSTDIV1_MASK (0x7 << 12) #define PLLCON0_POSTDIV1_SHIFT 12 #define PLLCON1_LOCK_STATUS (1 << 10) #define PLLCON1_REFDIV_MASK 0x3f #define PLLCON1_REFDIV_SHIFT 0 #define PLLCON1_POSTDIV2_MASK (0x7 << 6) #define PLLCON1_POSTDIV2_SHIFT 6 #define PLLCON1_DSMPD_MASK (0x1 << 12) #define PLLCON1_DSMPD_SHIFT 12 #define PLLCON2_FRAC_MASK 0xffffff #define PLLCON2_FRAC_SHIFT 0 #define PLLCON1_PWRDOWN_SHIT 13 #define PLLCON1_PWRDOWN (1 << PLLCON1_PWRDOWN_SHIT) #define MIN_FOUTVCO_FREQ (800 * MHZ) #define MAX_FOUTVCO_FREQ (2000 * MHZ) static struct rk_pll_rate_table auto_table; static int gcd(int m, int n) { while (m > 0) { if (n > m) { int t = m; m = n; n = t; } m -= n; } return n; } /* * rational_best_approximation(31415, 10000, * (1 << 8) - 1, (1 << 5) - 1, &n, &d); * * you may look at given_numerator as a fixed point number, * with the fractional part size described in given_denominator. * * for theoretical background, see: * http://en.wikipedia.org/wiki/Continued_fraction */ static void rational_best_approximation(rt_ubase_t given_numerator, rt_ubase_t given_denominator, rt_ubase_t max_numerator, rt_ubase_t max_denominator, rt_ubase_t *best_numerator, rt_ubase_t *best_denominator) { rt_ubase_t n, d, n0, d0, n1, d1; n = given_numerator; d = given_denominator; n0 = 0; d1 = 0; n1 = 1; d0 = 1; for (;;) { rt_ubase_t t, a; if (n1 > max_numerator || d1 > max_denominator) { n1 = n0; d1 = d0; break; } if (d == 0) { break; } t = d; a = n / d; d = n % d; n = t; t = n0 + a * n1; n0 = n1; n1 = t; t = d0 + a * d1; d0 = d1; d1 = t; } *best_numerator = n1; *best_denominator = d1; } /* * How to calculate the PLL(from TRM V0.3 Part 1 Page 63): * Formulas also embedded within the Fractional PLL Verilog model: * If DSMPD = 1 (DSM is disabled, "integer mode") * FOUTVCO = FREF / REFDIV * FBDIV * FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2 * Where: * FOUTVCO = Fractional PLL non-divided output frequency * FOUTPOSTDIV = Fractional PLL divided output frequency * (output of second post divider) * FREF = Fractional PLL input reference frequency, (the OSC_HZ 24MHz input) * REFDIV = Fractional PLL input reference clock divider * FBDIV = Integer value programmed into feedback divide */ static int rk_pll_clk_set_postdiv(rt_ubase_t fout_hz, rt_uint32_t *postdiv1, rt_uint32_t *postdiv2, rt_uint32_t *foutvco) { rt_ubase_t freq; if (fout_hz < MIN_FOUTVCO_FREQ) { for (*postdiv1 = 1; *postdiv1 <= 7; ++(*postdiv1)) { for (*postdiv2 = 1; *postdiv2 <= 7; ++(*postdiv2)) { freq = fout_hz * (*postdiv1) * (*postdiv2); if (freq >= MIN_FOUTVCO_FREQ && freq <= MAX_FOUTVCO_FREQ) { *foutvco = freq; return 0; } } } } else { *postdiv1 = 1; *postdiv2 = 1; } return 0; } static struct rk_pll_rate_table *rk_pll_clk_set_by_auto(rt_ubase_t fin_hz, rt_ubase_t fout_hz) { struct rk_pll_rate_table *rate_table = &auto_table; rt_uint32_t foutvco = fout_hz; rt_ubase_t fin_64, frac_64; rt_uint32_t f_frac, postdiv1, postdiv2; rt_ubase_t clk_gcd = 0; if (fin_hz == 0 || fout_hz == 0 || fout_hz == fin_hz) { return RT_NULL; } rk_pll_clk_set_postdiv(fout_hz, &postdiv1, &postdiv2, &foutvco); rate_table->postdiv1 = postdiv1; rate_table->postdiv2 = postdiv2; rate_table->dsmpd = 1; if (fin_hz / MHZ * MHZ == fin_hz && fout_hz / MHZ * MHZ == fout_hz) { fin_hz /= MHZ; foutvco /= MHZ; clk_gcd = gcd(fin_hz, foutvco); rate_table->refdiv = fin_hz / clk_gcd; rate_table->fbdiv = foutvco / clk_gcd; rate_table->frac = 0; } else { clk_gcd = gcd(fin_hz / MHZ, foutvco / MHZ); rate_table->refdiv = fin_hz / MHZ / clk_gcd; rate_table->fbdiv = foutvco / MHZ / clk_gcd; rate_table->frac = 0; f_frac = (foutvco % MHZ); fin_64 = fin_hz; fin_64 = fin_64 / rate_table->refdiv; frac_64 = f_frac << 24; frac_64 = frac_64 / fin_64; rate_table->frac = frac_64; if (rate_table->frac > 0) { rate_table->dsmpd = 0; } } return rate_table; } static const struct rk_pll_rate_table *rk_get_pll_settings(struct rk_pll_clock *pll, rt_ubase_t rate) { struct rk_pll_rate_table *rate_table = pll->rate_table; while (rate_table->rate) { if (rate_table->rate == rate) { break; } ++rate_table; } if (rate_table->rate != rate) { return rk_pll_clk_set_by_auto(24 * MHZ, rate); } else { return rate_table; } } static rt_ubase_t rk_pll_get_rate(struct rk_pll_clock *pll, void *base); static int rk_pll_set_rate(struct rk_pll_clock *pll, void *base, rt_ubase_t drate) { const struct rk_pll_rate_table *rate; if (rk_pll_get_rate(pll, base) == drate) { return 0; } pll->mode_mask = PLL_MODE_MASK; rate = rk_get_pll_settings(pll, drate); if (!rate) { return -RT_ERROR; } /* * When power on or changing PLL setting, we must force PLL into slow mode * to ensure output stable clock. */ rk_clrsetreg(base + pll->mode_offset, pll->mode_mask << pll->mode_shift, RKCLK_PLL_MODE_SLOW << pll->mode_shift); /* Power down */ rk_setreg(base + pll->con_offset + 0x4, 1 << PLLCON1_PWRDOWN_SHIT); rk_clrsetreg(base + pll->con_offset, (PLLCON0_POSTDIV1_MASK | PLLCON0_FBDIV_MASK), (rate->postdiv1 << PLLCON0_POSTDIV1_SHIFT) |rate->fbdiv); rk_clrsetreg(base + pll->con_offset + 0x4, (PLLCON1_POSTDIV2_MASK | PLLCON1_REFDIV_MASK), (rate->postdiv2 << PLLCON1_POSTDIV2_SHIFT | rate->refdiv << PLLCON1_REFDIV_SHIFT)); if (!rate->dsmpd) { rt_uint32_t val; rk_clrsetreg(base + pll->con_offset + 0x4, PLLCON1_DSMPD_MASK, rate->dsmpd << PLLCON1_DSMPD_SHIFT); val = HWREG32(base + pll->con_offset + 0x8) & (~PLLCON2_FRAC_MASK); HWREG32(base + pll->con_offset + 0x8) = val | (rate->frac << PLLCON2_FRAC_SHIFT); } /* Power Up */ rk_clrreg(base + pll->con_offset + 0x4, 1 << PLLCON1_PWRDOWN_SHIT); /* Waiting for pll lock */ while (!(HWREG32(base + pll->con_offset + 0x4) & (1 << pll->lock_shift))) { } rk_clrsetreg(base + pll->mode_offset, pll->mode_mask << pll->mode_shift, RKCLK_PLL_MODE_NORMAL << pll->mode_shift); return 0; } static rt_ubase_t rk_pll_get_rate(struct rk_pll_clock *pll, void *base) { rt_uint32_t refdiv, fbdiv, postdiv1, postdiv2, dsmpd, frac; rt_uint32_t con = 0, shift, mask; rt_ubase_t rate; pll->mode_mask = PLL_MODE_MASK; con = HWREG32(base + pll->mode_offset); shift = pll->mode_shift; mask = pll->mode_mask << shift; switch ((con & mask) >> shift) { case RKCLK_PLL_MODE_SLOW: return OSC_HZ; case RKCLK_PLL_MODE_NORMAL: /* normal mode */ con = HWREG32(base + pll->con_offset); postdiv1 = (con & PLLCON0_POSTDIV1_MASK) >> PLLCON0_POSTDIV1_SHIFT; fbdiv = (con & PLLCON0_FBDIV_MASK) >> PLLCON0_FBDIV_SHIFT; con = HWREG32(base + pll->con_offset + 0x4); postdiv2 = (con & PLLCON1_POSTDIV2_MASK) >> PLLCON1_POSTDIV2_SHIFT; refdiv = (con & PLLCON1_REFDIV_MASK) >> PLLCON1_REFDIV_SHIFT; dsmpd = (con & PLLCON1_DSMPD_MASK) >> PLLCON1_DSMPD_SHIFT; con = HWREG32(base + pll->con_offset + 0x8); frac = (con & PLLCON2_FRAC_MASK) >> PLLCON2_FRAC_SHIFT; rate = (24 * fbdiv / (refdiv * postdiv1 * postdiv2)) * 1000000; if (dsmpd == 0) { rt_uint64_t frac_rate = OSC_HZ * (rt_uint64_t)frac; rt_do_div(frac_rate, refdiv); frac_rate >>= 24; rt_do_div(frac_rate, postdiv1); rt_do_div(frac_rate, postdiv1); rate += frac_rate; } return rate; case RKCLK_PLL_MODE_DEEP: default: return 32768; } } static const struct rk_cpu_rate_table *rk_get_cpu_settings(struct rk_cpu_rate_table *cpu_table, rt_ubase_t rate) { struct rk_cpu_rate_table *ps = cpu_table; while (ps->rate) { if (ps->rate == rate) { break; } ++ps; } if (ps->rate != rate) { return RT_NULL; } else { return ps; } } static rt_base_t rk_clk_pll_round_rate(const struct rk_pll_rate_table *pll_rates, rt_size_t rate_count, rt_ubase_t drate, rt_ubase_t *prate) { int i; /* Assumming rate_table is in descending order */ for (i = 0; i < rate_count; i++) { if (drate >= pll_rates[i].rate) { return pll_rates[i].rate; } } /* return minimum supported value */ return pll_rates[i - 1].rate; } static void rk_clk_set_default_rates(struct rt_clk *clk, rt_err_t (*clk_set_rate)(struct rt_clk *, rt_ubase_t, rt_ubase_t), int id) { rt_uint32_t rate; struct rt_ofw_cell_args clk_args; struct rt_ofw_node *np = clk->fw_node; const char *rate_propname = "assigned-clock-rates"; if (!rt_ofw_prop_read_bool(np, rate_propname)) { return; } for (int i = 0; ; ++i) { if (rt_ofw_parse_phandle_cells(np, "assigned-clocks", "#clock-cells", i, &clk_args)) { break; } rt_ofw_node_put(clk_args.data); if (clk_args.args[0] != id) { continue; } if (!rt_ofw_prop_read_u32_index(np, rate_propname, i, &rate)) { clk_set_rate(clk, rate, 0); } break; } }