/**************************************************************************//** * * @copyright (C) 2019 Nuvoton Technology Corp. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2020-1-16 Wayne First version * ******************************************************************************/ #include #include #if defined(BOARD_USING_STORAGE_SPIFLASH) #if defined(RT_USING_SFUD) #include "spi_flash.h" #include "spi_flash_sfud.h" #endif #include "drv_qspi.h" #define W25X_REG_READSTATUS (0x05) #define W25X_REG_READSTATUS2 (0x35) #define W25X_REG_WRITEENABLE (0x06) #define W25X_REG_WRITESTATUS (0x01) #define W25X_REG_QUADENABLE (0x02) static rt_uint8_t SpiFlash_ReadStatusReg(struct rt_qspi_device *qspi_device) { rt_uint8_t u8Val; rt_err_t result = RT_EOK; rt_uint8_t w25x_txCMD1 = W25X_REG_READSTATUS; result = rt_qspi_send_then_recv(qspi_device, &w25x_txCMD1, 1, &u8Val, 1); RT_ASSERT(result > 0); return u8Val; } static rt_uint8_t SpiFlash_ReadStatusReg2(struct rt_qspi_device *qspi_device) { rt_uint8_t u8Val; rt_err_t result = RT_EOK; rt_uint8_t w25x_txCMD1 = W25X_REG_READSTATUS2; result = rt_qspi_send_then_recv(qspi_device, &w25x_txCMD1, 1, &u8Val, 1); RT_ASSERT(result > 0); return u8Val; } static rt_err_t SpiFlash_WriteStatusReg(struct rt_qspi_device *qspi_device, uint8_t u8Value1, uint8_t u8Value2) { rt_uint8_t w25x_txCMD1; rt_uint8_t au8Val[2]; rt_err_t result; struct rt_qspi_message qspi_message = {0}; /* Enable WE */ w25x_txCMD1 = W25X_REG_WRITEENABLE; result = rt_qspi_send(qspi_device, &w25x_txCMD1, sizeof(w25x_txCMD1)); if (result != sizeof(w25x_txCMD1)) goto exit_SpiFlash_WriteStatusReg; /* Prepare status-1, 2 data */ au8Val[0] = u8Value1; au8Val[1] = u8Value2; /* 1-bit mode: Instruction+payload */ qspi_message.instruction.content = W25X_REG_WRITESTATUS; qspi_message.instruction.qspi_lines = 1; qspi_message.qspi_data_lines = 1; qspi_message.parent.cs_take = 1; qspi_message.parent.cs_release = 1; qspi_message.parent.send_buf = &au8Val[0]; qspi_message.parent.length = sizeof(au8Val); qspi_message.parent.next = RT_NULL; if (rt_qspi_transfer_message(qspi_device, &qspi_message) != sizeof(au8Val)) { result = -RT_ERROR; } result = RT_EOK; exit_SpiFlash_WriteStatusReg: return result; } static void SpiFlash_WaitReady(struct rt_qspi_device *qspi_device) { volatile uint8_t u8ReturnValue; do { u8ReturnValue = SpiFlash_ReadStatusReg(qspi_device); u8ReturnValue = u8ReturnValue & 1; } while (u8ReturnValue != 0); // check the BUSY bit } static void SpiFlash_EnterQspiMode(struct rt_qspi_device *qspi_device) { rt_err_t result = RT_EOK; uint8_t u8Status1 = SpiFlash_ReadStatusReg(qspi_device); uint8_t u8Status2 = SpiFlash_ReadStatusReg2(qspi_device); u8Status2 |= W25X_REG_QUADENABLE; result = SpiFlash_WriteStatusReg(qspi_device, u8Status1, u8Status2); RT_ASSERT(result == RT_EOK); SpiFlash_WaitReady(qspi_device); } static void SpiFlash_ExitQspiMode(struct rt_qspi_device *qspi_device) { rt_err_t result = RT_EOK; uint8_t u8Status1 = SpiFlash_ReadStatusReg(qspi_device); uint8_t u8Status2 = SpiFlash_ReadStatusReg2(qspi_device); u8Status2 &= ~W25X_REG_QUADENABLE; result = SpiFlash_WriteStatusReg(qspi_device, u8Status1, u8Status2); RT_ASSERT(result == RT_EOK); SpiFlash_WaitReady(qspi_device); } static int rt_hw_spiflash_init(void) { /* Here, we use Dual I/O to drive the SPI flash by default. */ /* If you want to use Quad I/O, you can modify to 4 from 2 and crossover D2/D3 pin of SPI flash. */ if (nu_qspi_bus_attach_device("qspi0", "qspi01", 2, SpiFlash_EnterQspiMode, SpiFlash_ExitQspiMode) != RT_EOK) return -1; #if defined(RT_USING_SFUD) if (rt_sfud_flash_probe("flash0", "qspi01") == RT_NULL) { return -(RT_ERROR); } #endif return 0; } INIT_COMPONENT_EXPORT(rt_hw_spiflash_init); #endif /* BOARD_USING_STORAGE_SPIFLASH */ #if defined(BOARD_USING_MAX31875) #include int rt_hw_max31875_port(void) { struct rt_sensor_config cfg; cfg.intf.dev_name = "i2c1"; cfg.intf.user_data = (void *)MAX31875_I2C_SLAVE_ADR_R0; cfg.irq_pin.pin = PIN_IRQ_PIN_NONE; rt_hw_max31875_init("max31875", &cfg); return 0; } INIT_APP_EXPORT(rt_hw_max31875_port); #endif /* BOARD_USING_MAX31875 */ #if defined(BOARD_USING_BMX055) #include int rt_hw_bmx055_port(void) { struct rt_sensor_config cfg; cfg.intf.dev_name = "i2c2"; cfg.intf.user_data = (void *)0; cfg.irq_pin.pin = PIN_IRQ_PIN_NONE; rt_hw_bmx055_init("bmx055", &cfg); return 0; } INIT_APP_EXPORT(rt_hw_bmx055_port); #endif /* BOARD_USING_BMX055 */ #if defined(BOARD_USING_ESP8266) static int rt_hw_esp8266_port(void) { rt_base_t esp_rst_pin = NU_GET_PININDEX(NU_PH, 3); /* ESP8266 reset pin PH.3 */ rt_pin_mode(esp_rst_pin, PIN_MODE_OUTPUT); rt_pin_write(esp_rst_pin, 1); return 0; } INIT_APP_EXPORT(rt_hw_esp8266_port); #endif /* BOARD_USING_ESP8266 */ #if defined(BOARD_USING_LCD_ILI9341) && defined(NU_PKG_USING_ILI9341_SPI) #if defined(NU_PKG_USING_ADC_TOUCH_SW) #include "adc_touch.h" #include "touch_sw.h" #include "NuMicro.h" #define NU_MFP_POS(PIN) ((PIN % 8) * 4) #define NU_MFP_MSK(PIN) (0xful << NU_MFP_POS(PIN)) S_CALIBRATION_MATRIX g_sCalMat = { 97, 6214, -3216652, 4844, -30, -2333200, 65536 }; static void nu_pin_func(rt_base_t pin, int data) { uint32_t pin_index = NU_GET_PINS(pin); uint32_t port_index = NU_GET_PORT(pin); __IO uint32_t *GPx_MFPx = ((__IO uint32_t *) &SYS->GPA_MFPL) + port_index * 2 + (pin_index / 8); uint32_t MFP_Msk = NU_MFP_MSK(pin_index); *GPx_MFPx = (*GPx_MFPx & (~MFP_Msk)) | data; } static void tp_switch_to_analog(rt_base_t pin) { GPIO_T *port = (GPIO_T *)(GPIOA_BASE + (0x40) * NU_GET_PORT(pin)); if (pin == NU_GET_PININDEX(NU_PB, 6)) nu_pin_func(pin, SYS_GPB_MFPL_PB6MFP_EADC0_CH6); else if (pin == NU_GET_PININDEX(NU_PB, 9)) nu_pin_func(pin, SYS_GPB_MFPH_PB9MFP_EADC0_CH9); GPIO_DISABLE_DIGITAL_PATH(port, NU_GET_PIN_MASK(NU_GET_PINS(pin))); } static void tp_switch_to_digital(rt_base_t pin) { GPIO_T *port = (GPIO_T *)(GPIOA_BASE + (0x40) * NU_GET_PORT(pin)); nu_pin_func(pin, 0); /* Enable digital path on these EADC pins */ GPIO_ENABLE_DIGITAL_PATH(port, NU_GET_PIN_MASK(NU_GET_PINS(pin))); } static S_TOUCH_SW sADCTP = { .adc_name = "eadc0", .i32ADCChnYU = 6, .i32ADCChnXR = 9, .pin = { NU_GET_PININDEX(NU_PB, 7), // XL NU_GET_PININDEX(NU_PB, 6), // YU NU_GET_PININDEX(NU_PB, 9), // XR NU_GET_PININDEX(NU_PB, 8), // YD }, .switch_to_analog = tp_switch_to_analog, .switch_to_digital = tp_switch_to_digital, }; #endif #include #if defined(PKG_USING_GUIENGINE) #include #endif int rt_hw_ili9341_port(void) { if (rt_hw_lcd_ili9341_spi_init("spi2", RT_NULL) != RT_EOK) return -1; rt_hw_lcd_ili9341_init(); #if defined(PKG_USING_GUIENGINE) rt_device_t lcd_ili9341; lcd_ili9341 = rt_device_find("lcd"); if (lcd_ili9341) { rtgui_graphic_set_device(lcd_ili9341); } #endif #if defined(NU_PKG_USING_ADC_TOUCH_SW) nu_adc_touch_sw_register(&sADCTP); #endif return 0; } INIT_COMPONENT_EXPORT(rt_hw_ili9341_port); #endif /* BOARD_USING_LCD_ILI9341 */ #if defined(BOARD_USING_NAU88L25) && defined(NU_PKG_USING_NAU88L25) #include S_NU_NAU88L25_CONFIG sCodecConfig = { .i2c_bus_name = "i2c2", .i2s_bus_name = "sound0", .pin_phonejack_en = NU_GET_PININDEX(NU_PE, 13), .pin_phonejack_det = 0, }; int rt_hw_nau88l25_port(void) { if (nu_hw_nau88l25_init(&sCodecConfig) != RT_EOK) return -1; return 0; } INIT_COMPONENT_EXPORT(rt_hw_nau88l25_port); #endif /* BOARD_USING_NAU88L25 */