/* * The Clear BSD License * Copyright (c) 2016, Freescale Semiconductor, Inc. * Copyright 2016-2017 NXP * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted (subject to the limitations in the disclaimer below) provided * that the following conditions are met: * * o Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * o Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * o Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "fsl_ctimer.h" /* Component ID definition, used by tools. */ #ifndef FSL_COMPONENT_ID #define FSL_COMPONENT_ID "platform.drivers.ctimer" #endif /******************************************************************************* * Prototypes ******************************************************************************/ /*! * @brief Gets the instance from the base address * * @param base Ctimer peripheral base address * * @return The Timer instance */ static uint32_t CTIMER_GetInstance(CTIMER_Type *base); /******************************************************************************* * Variables ******************************************************************************/ /*! @brief Pointers to Timer bases for each instance. */ static CTIMER_Type *const s_ctimerBases[] = CTIMER_BASE_PTRS; #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /*! @brief Pointers to Timer clocks for each instance. */ static const clock_ip_name_t s_ctimerClocks[] = CTIMER_CLOCKS; #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ #if defined(FSL_FEATURE_CTIMER_WRITE_ZERO_ASSERT_RESET) && FSL_FEATURE_CTIMER_WRITE_ZERO_ASSERT_RESET /*! @brief Pointers to Timer resets for each instance, writing a zero asserts the reset */ static const reset_ip_name_t s_ctimerResets[] = CTIMER_RSTS_N; #else /*! @brief Pointers to Timer resets for each instance, writing a one asserts the reset */ static const reset_ip_name_t s_ctimerResets[] = CTIMER_RSTS; #endif /*! @brief Pointers real ISRs installed by drivers for each instance. */ static ctimer_callback_t *s_ctimerCallback[FSL_FEATURE_SOC_CTIMER_COUNT] = {0}; /*! @brief Callback type installed by drivers for each instance. */ static ctimer_callback_type_t ctimerCallbackType[FSL_FEATURE_SOC_CTIMER_COUNT] = {kCTIMER_SingleCallback}; /*! @brief Array to map timer instance to IRQ number. */ static const IRQn_Type s_ctimerIRQ[] = CTIMER_IRQS; /******************************************************************************* * Code ******************************************************************************/ static uint32_t CTIMER_GetInstance(CTIMER_Type *base) { uint32_t instance; uint32_t ctimerArrayCount = (sizeof(s_ctimerBases) / sizeof(s_ctimerBases[0])); /* Find the instance index from base address mappings. */ for (instance = 0; instance < ctimerArrayCount; instance++) { if (s_ctimerBases[instance] == base) { break; } } assert(instance < ctimerArrayCount); return instance; } void CTIMER_Init(CTIMER_Type *base, const ctimer_config_t *config) { assert(config); #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /* Enable the timer clock*/ CLOCK_EnableClock(s_ctimerClocks[CTIMER_GetInstance(base)]); #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ /* Reset the module */ RESET_PeripheralReset(s_ctimerResets[CTIMER_GetInstance(base)]); /* Setup the cimer mode and count select */ base->CTCR = CTIMER_CTCR_CTMODE(config->mode) | CTIMER_CTCR_CINSEL(config->input); /* Setup the timer prescale value */ base->PR = CTIMER_PR_PRVAL(config->prescale); } void CTIMER_Deinit(CTIMER_Type *base) { uint32_t index = CTIMER_GetInstance(base); /* Stop the timer */ base->TCR &= ~CTIMER_TCR_CEN_MASK; #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /* Disable the timer clock*/ CLOCK_DisableClock(s_ctimerClocks[index]); #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ /* Disable IRQ at NVIC Level */ DisableIRQ(s_ctimerIRQ[index]); } void CTIMER_GetDefaultConfig(ctimer_config_t *config) { assert(config); /* Run as a timer */ config->mode = kCTIMER_TimerMode; /* This field is ignored when mode is timer */ config->input = kCTIMER_Capture_0; /* Timer counter is incremented on every APB bus clock */ config->prescale = 0; } status_t CTIMER_SetupPwm(CTIMER_Type *base, ctimer_match_t matchChannel, uint8_t dutyCyclePercent, uint32_t pwmFreq_Hz, uint32_t srcClock_Hz, bool enableInt) { assert(pwmFreq_Hz > 0); uint32_t reg; uint32_t period, pulsePeriod = 0; uint32_t timerClock = srcClock_Hz / (base->PR + 1); uint32_t index = CTIMER_GetInstance(base); if (matchChannel == kCTIMER_Match_3) { return kStatus_Fail; } /* Enable PWM mode on the channel */ base->PWMC |= (1U << matchChannel); /* Clear the stop, reset and interrupt bits for this channel */ reg = base->MCR; reg &= ~((CTIMER_MCR_MR0R_MASK | CTIMER_MCR_MR0S_MASK | CTIMER_MCR_MR0I_MASK) << (matchChannel * 3)); /* If call back function is valid then enable match interrupt for the channel */ if (enableInt) { reg |= (CTIMER_MCR_MR0I_MASK << (CTIMER_MCR_MR0I_SHIFT + (matchChannel * 3))); } /* Reset the counter when match on channel 3 */ reg |= CTIMER_MCR_MR3R_MASK; base->MCR = reg; /* Calculate PWM period match value */ period = (timerClock / pwmFreq_Hz) - 1; /* Calculate pulse width match value */ if (dutyCyclePercent == 0) { pulsePeriod = period + 1; } else { pulsePeriod = (period * (100 - dutyCyclePercent)) / 100; } /* Match on channel 3 will define the PWM period */ base->MR[kCTIMER_Match_3] = period; /* This will define the PWM pulse period */ base->MR[matchChannel] = pulsePeriod; /* Clear status flags */ CTIMER_ClearStatusFlags(base, CTIMER_IR_MR0INT_MASK << matchChannel); /* If call back function is valid then enable interrupt and update the call back function */ if (enableInt) { EnableIRQ(s_ctimerIRQ[index]); } return kStatus_Success; } status_t CTIMER_SetupPwmPeriod(CTIMER_Type *base, ctimer_match_t matchChannel, uint32_t pwmPeriod, uint32_t pulsePeriod, bool enableInt) { uint32_t reg; uint32_t index = CTIMER_GetInstance(base); if (matchChannel == kCTIMER_Match_3) { return kStatus_Fail; } /* Enable PWM mode on the channel */ base->PWMC |= (1U << matchChannel); /* Clear the stop, reset and interrupt bits for this channel */ reg = base->MCR; reg &= ~((CTIMER_MCR_MR0R_MASK | CTIMER_MCR_MR0S_MASK | CTIMER_MCR_MR0I_MASK) << (matchChannel * 3)); /* If call back function is valid then enable match interrupt for the channel */ if (enableInt) { reg |= (CTIMER_MCR_MR0I_MASK << (CTIMER_MCR_MR0I_SHIFT + (matchChannel * 3))); } /* Reset the counter when match on channel 3 */ reg |= CTIMER_MCR_MR3R_MASK; base->MCR = reg; /* Match on channel 3 will define the PWM period */ base->MR[kCTIMER_Match_3] = pwmPeriod; /* This will define the PWM pulse period */ base->MR[matchChannel] = pulsePeriod; /* Clear status flags */ CTIMER_ClearStatusFlags(base, CTIMER_IR_MR0INT_MASK << matchChannel); /* If call back function is valid then enable interrupt and update the call back function */ if (enableInt) { EnableIRQ(s_ctimerIRQ[index]); } return kStatus_Success; } void CTIMER_UpdatePwmDutycycle(CTIMER_Type *base, ctimer_match_t matchChannel, uint8_t dutyCyclePercent) { uint32_t pulsePeriod = 0, period; /* Match channel 3 defines the PWM period */ period = base->MR[kCTIMER_Match_3]; /* Calculate pulse width match value */ pulsePeriod = (period * dutyCyclePercent) / 100; /* For 0% dutycyle, make pulse period greater than period so the event will never occur */ if (dutyCyclePercent == 0) { pulsePeriod = period + 1; } else { pulsePeriod = (period * (100 - dutyCyclePercent)) / 100; } /* Update dutycycle */ base->MR[matchChannel] = pulsePeriod; } void CTIMER_SetupMatch(CTIMER_Type *base, ctimer_match_t matchChannel, const ctimer_match_config_t *config) { uint32_t reg; uint32_t index = CTIMER_GetInstance(base); /* Set the counter operation when a match on this channel occurs */ reg = base->MCR; reg &= ~((CTIMER_MCR_MR0R_MASK | CTIMER_MCR_MR0S_MASK | CTIMER_MCR_MR0I_MASK) << (matchChannel * 3)); reg |= (uint32_t)((uint32_t)(config->enableCounterReset) << (CTIMER_MCR_MR0R_SHIFT + (matchChannel * 3))); reg |= (uint32_t)((uint32_t)(config->enableCounterStop) << (CTIMER_MCR_MR0S_SHIFT + (matchChannel * 3))); reg |= (uint32_t)((uint32_t)(config->enableInterrupt) << (CTIMER_MCR_MR0I_SHIFT + (matchChannel * 3))); base->MCR = reg; reg = base->EMR; /* Set the match output operation when a match on this channel occurs */ reg &= ~(CTIMER_EMR_EMC0_MASK << (matchChannel * 2)); reg |= (uint32_t)config->outControl << (CTIMER_EMR_EMC0_SHIFT + (matchChannel * 2)); /* Set the initial state of the EM bit/output */ reg &= ~(CTIMER_EMR_EM0_MASK << matchChannel); reg |= (uint32_t)config->outPinInitState << matchChannel; base->EMR = reg; /* Set the match value */ base->MR[matchChannel] = config->matchValue; /* Clear status flags */ CTIMER_ClearStatusFlags(base, CTIMER_IR_MR0INT_MASK << matchChannel); /* If interrupt is enabled then enable interrupt and update the call back function */ if (config->enableInterrupt) { EnableIRQ(s_ctimerIRQ[index]); } } void CTIMER_SetupCapture(CTIMER_Type *base, ctimer_capture_channel_t capture, ctimer_capture_edge_t edge, bool enableInt) { uint32_t reg = base->CCR; uint32_t index = CTIMER_GetInstance(base); /* Set the capture edge */ reg &= ~((CTIMER_CCR_CAP0RE_MASK | CTIMER_CCR_CAP0FE_MASK | CTIMER_CCR_CAP0I_MASK) << (capture * 3)); reg |= (uint32_t)edge << (CTIMER_CCR_CAP0RE_SHIFT + (capture * 3)); /* Clear status flags */ CTIMER_ClearStatusFlags(base, (kCTIMER_Capture0Flag << capture)); /* If call back function is valid then enable capture interrupt for the channel and update the call back function */ if (enableInt) { reg |= CTIMER_CCR_CAP0I_MASK << (capture * 3); EnableIRQ(s_ctimerIRQ[index]); } base->CCR = reg; } void CTIMER_RegisterCallBack(CTIMER_Type *base, ctimer_callback_t *cb_func, ctimer_callback_type_t cb_type) { uint32_t index = CTIMER_GetInstance(base); s_ctimerCallback[index] = cb_func; ctimerCallbackType[index] = cb_type; } void CTIMER_GenericIRQHandler(uint32_t index) { uint32_t int_stat, i, mask; /* Get Interrupt status flags */ int_stat = CTIMER_GetStatusFlags(s_ctimerBases[index]); /* Clear the status flags that were set */ CTIMER_ClearStatusFlags(s_ctimerBases[index], int_stat); if (ctimerCallbackType[index] == kCTIMER_SingleCallback) { if (s_ctimerCallback[index][0]) { s_ctimerCallback[index][0](int_stat); } } else { #if defined(FSL_FEATURE_CTIMER_HAS_IR_CR3INT) && FSL_FEATURE_CTIMER_HAS_IR_CR3INT for (i = 0; i <= CTIMER_IR_CR3INT_SHIFT; i++) #else for (i = 0; i <= CTIMER_IR_CR2INT_SHIFT; i++) #endif /* FSL_FEATURE_CTIMER_HAS_IR_CR3INT */ { mask = 0x01 << i; /* For each status flag bit that was set call the callback function if it is valid */ if ((int_stat & mask) && (s_ctimerCallback[index][i])) { s_ctimerCallback[index][i](int_stat); } } } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } /* IRQ handler functions overloading weak symbols in the startup */ #if defined(CTIMER0) void CTIMER0_DriverIRQHandler(void) { CTIMER_GenericIRQHandler(0); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } #endif #if defined(CTIMER1) void CTIMER1_DriverIRQHandler(void) { CTIMER_GenericIRQHandler(1); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } #endif #if defined(CTIMER2) void CTIMER2_DriverIRQHandler(void) { CTIMER_GenericIRQHandler(2); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } #endif #if defined(CTIMER3) void CTIMER3_DriverIRQHandler(void) { CTIMER_GenericIRQHandler(3); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } #endif #if defined(CTIMER4) void CTIMER4_DriverIRQHandler(void) { CTIMER_GenericIRQHandler(4); /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } #endif