#include #include "board.h" #define LED_NUM 3 struct led_ctrl { uint32_t num; uint32_t port; }; struct lpc_led { /* inherit from rt_device */ struct rt_device parent; struct led_ctrl ctrl[LED_NUM]; }; static struct lpc_led led; static rt_err_t rt_led_init(rt_device_t dev) { /*led2 Blue:P0.31 ,led1 Green:P0.30 ,led0 Red:P0_29 P38,P32*/ LPC_SYSCON->AHBCLKCTRLSET[0] = (1UL << 14); /* enable GPIO0 clock*/ LPC_SYSCON->PRESETCTRLSET[0] = (1UL << 14); /* Resets a GPIO0 peripheral */ LPC_SYSCON->PRESETCTRLCLR[0] = (1UL << 14); /* set P0.31, P0.30, P0.29 output. */ LPC_GPIO->DIR[0] |= 0x07UL << 29; /* turn off all the led */ LPC_GPIO->SET[0] = 0x07UL << 29; led.ctrl[0].num = 29; led.ctrl[0].port = 0; led.ctrl[1].num = 30; led.ctrl[1].port = 0; led.ctrl[2].num = 31; led.ctrl[2].port = 0; return RT_EOK; } static rt_err_t rt_led_open(rt_device_t dev, rt_uint16_t oflag) { return RT_EOK; } static rt_err_t rt_led_close(rt_device_t dev) { return RT_EOK; } static rt_size_t rt_led_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size) { rt_ubase_t index = 0; rt_ubase_t nr = size; rt_uint8_t *value = buffer; RT_ASSERT(dev == &led.parent); RT_ASSERT((pos + size) <= LED_NUM); for (index = 0; index < nr; index++) { if ((LPC_GPIO->B[0][led.ctrl[pos + index].num])) { *value = 0; } else { *value = 1; } value++; } return index; } static rt_size_t rt_led_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size) { rt_ubase_t index = 0; rt_ubase_t nw = size; const rt_uint8_t *value = buffer; RT_ASSERT(dev == &led.parent); RT_ASSERT((pos + size) <= LED_NUM); for (index = 0; index < nw; index++) { if (*value > 0) { //LPC_GPIO->CLR[led.ctrl[pos + index].port] |= (1 << led.ctrl[pos + index].num); LPC_GPIO->CLR[0] |= (1 << led.ctrl[pos + index].num); } else { //LPC_GPIO->SET[led.ctrl[pos + index].port] |= (1 << led.ctrl[pos + index].num); LPC_GPIO->SET[0] |= (1 << led.ctrl[pos + index].num); } } return index; } static rt_err_t rt_led_control(rt_device_t dev, int cmd, void *args) { return RT_EOK; } int rt_led_hw_init(void) { led.parent.type = RT_Device_Class_Char; led.parent.rx_indicate = RT_NULL; led.parent.tx_complete = RT_NULL; led.parent.init = rt_led_init; led.parent.open = rt_led_open; led.parent.close = rt_led_close; led.parent.read = rt_led_read; led.parent.write = rt_led_write; led.parent.control = rt_led_control; led.parent.user_data = RT_NULL; /* register a character device */ rt_device_register(&led.parent, "led", RT_DEVICE_FLAG_RDWR); /* init led device */ rt_led_init(&led.parent); return 0; } void Led_Control(rt_uint32_t Set_led, rt_uint32_t value) { if ( Set_led == 0 ) { /* set led status */ switch (value) { case 0: /* Light off */ LPC_GPIO->B[0][led.ctrl[Set_led].num] = 1UL; break; case 1: /* Lights on */ LPC_GPIO->B[0][led.ctrl[Set_led].num] = 0UL; break; default: break; } } if ( Set_led == 1 ) { /* set led status */ switch (value) { case 0: /* Light off */ LPC_GPIO->B[0][led.ctrl[Set_led].num] = 1UL; break; case 1: /* Lights on */ LPC_GPIO->B[0][led.ctrl[Set_led].num] = 0UL; break; default: break; } } if ( Set_led == 2 ) { /* set led status */ switch (value) { case 0: /* Lights off */ LPC_GPIO->B[0][led.ctrl[Set_led].num] = 1UL; break; case 1: /* Lights on */ LPC_GPIO->B[0][led.ctrl[Set_led].num] = 0UL; break; default: break; } } } INIT_DEVICE_EXPORT(rt_led_hw_init); #ifdef RT_USING_FINSH #include void led_test(rt_uint32_t led_num, rt_uint32_t value) { rt_uint8_t led_value = value; rt_led_write(&led.parent, led_num, &led_value, 1); } FINSH_FUNCTION_EXPORT(led_test, e.g: led_test(0, 100).) #endif