/* * Copyright 2017 NXP * All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #ifndef _FSL_CLOCK_H_ #define _FSL_CLOCK_H_ #include "fsl_common.h" /*! @addtogroup clock */ /*! @{ */ /*! @file */ /******************************************************************************* * Configurations ******************************************************************************/ /*! @brief Configure whether driver controls clock * * When set to 0, peripheral drivers will enable clock in initialize function * and disable clock in de-initialize function. When set to 1, peripheral * driver will not control the clock, application could control the clock out of * the driver. * * @note All drivers share this feature switcher. If it is set to 1, application * should handle clock enable and disable for all drivers. */ #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)) #define FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL 0 #endif /******************************************************************************* * Definitions ******************************************************************************/ /*! @name Driver version */ /*@{*/ /*! @brief CLOCK driver version 2.1.5. */ #define FSL_CLOCK_DRIVER_VERSION (MAKE_VERSION(2, 1, 5)) /* analog pll definition */ #define CCM_ANALOG_PLL_BYPASS_SHIFT (16U) #define CCM_ANALOG_PLL_BYPASS_CLK_SRC_MASK (0xC000U) #define CCM_ANALOG_PLL_BYPASS_CLK_SRC_SHIFT (14U) /*@}*/ #define CCM_TUPLE(reg, shift, mask, busyShift) \ (int)((((uint32_t)(&((CCM_Type *)0U)->reg)) & 0xFFU) | ((shift) << 8U) | \ ((((mask) >> (shift)) & 0x1FFFU) << 13U) | ((busyShift) << 26U)) #define CCM_TUPLE_REG(base, tuple) (*((volatile uint32_t *)(((uint32_t)(base)) + ((tuple)&0xFFU)))) #define CCM_TUPLE_SHIFT(tuple) (((tuple) >> 8U) & 0x1FU) #define CCM_TUPLE_MASK(tuple) ((uint32_t)((((tuple) >> 13U) & 0x1FFFU) << ((((tuple) >> 8U) & 0x1FU)))) #define CCM_TUPLE_BUSY_SHIFT(tuple) (((tuple) >> 26U) & 0x3FU) #define CCM_NO_BUSY_WAIT (0x20U) /*! * @brief CCM ANALOG tuple macros to map corresponding registers and bit fields. */ #define CCM_ANALOG_TUPLE(reg, shift) ((((uint32_t)(&((CCM_ANALOG_Type *)0U)->reg) & 0xFFFU) << 16U) | (shift)) #define CCM_ANALOG_TUPLE_SHIFT(tuple) (((uint32_t)tuple) & 0x1FU) #define CCM_ANALOG_TUPLE_REG_OFF(base, tuple, off) \ (*((volatile uint32_t *)((uint32_t)base + (((uint32_t)tuple >> 16U) & 0xFFFU) + off))) #define CCM_ANALOG_TUPLE_REG(base, tuple) CCM_ANALOG_TUPLE_REG_OFF(base, tuple, 0U) /*! * @brief clock1PN frequency. */ #define CLKPN_FREQ 0U /*! @brief External XTAL (24M OSC/SYSOSC) clock frequency. * * The XTAL (24M OSC/SYSOSC) clock frequency in Hz, when the clock is setup, use the * function CLOCK_SetXtalFreq to set the value in to clock driver. For example, * if XTAL is 24MHz, * @code * CLOCK_InitExternalClk(false); // Setup the 24M OSC/SYSOSC * CLOCK_SetXtalFreq(240000000); // Set the XTAL value to clock driver. * @endcode */ extern volatile uint32_t g_xtalFreq; /*! @brief External RTC XTAL (32K OSC) clock frequency. * * The RTC XTAL (32K OSC) clock frequency in Hz, when the clock is setup, use the * function CLOCK_SetRtcXtalFreq to set the value in to clock driver. */ extern volatile uint32_t g_rtcXtalFreq; /* For compatible with other platforms */ #define CLOCK_SetXtal0Freq CLOCK_SetXtalFreq #define CLOCK_SetXtal32Freq CLOCK_SetRtcXtalFreq /*! @brief Clock ip name array for ADC. */ #define ADC_CLOCKS \ { \ kCLOCK_IpInvalid, kCLOCK_Adc1, kCLOCK_Adc2 \ } /*! @brief Clock ip name array for AOI. */ #define AOI_CLOCKS \ { \ kCLOCK_IpInvalid, kCLOCK_Aoi1, kCLOCK_Aoi2 \ } /*! @brief Clock ip name array for BEE. */ #define BEE_CLOCKS \ { \ kCLOCK_Bee \ } /*! @brief Clock ip name array for CMP. */ #define CMP_CLOCKS \ { \ kCLOCK_IpInvalid, kCLOCK_Acmp1, kCLOCK_Acmp2, kCLOCK_Acmp3, kCLOCK_Acmp4 \ } /*! @brief Clock ip name array for CSI. */ #define CSI_CLOCKS \ { \ kCLOCK_Csi \ } /*! @brief Clock ip name array for DCDC. */ #define DCDC_CLOCKS \ { \ kCLOCK_Dcdc \ } /*! @brief Clock ip name array for DCP. */ #define DCP_CLOCKS \ { \ kCLOCK_Dcp \ } /*! @brief Clock ip name array for DMAMUX_CLOCKS. */ #define DMAMUX_CLOCKS \ { \ kCLOCK_Dma \ } /*! @brief Clock ip name array for DMA. */ #define EDMA_CLOCKS \ { \ kCLOCK_Dma \ } /*! @brief Clock ip name array for ENC. */ #define ENC_CLOCKS \ { \ kCLOCK_IpInvalid, kCLOCK_Enc1, kCLOCK_Enc2, kCLOCK_Enc3, kCLOCK_Enc4 \ } /*! @brief Clock ip name array for ENET. */ #define ENET_CLOCKS \ { \ kCLOCK_Enet \ } /*! @brief Clock ip name array for EWM. */ #define EWM_CLOCKS \ { \ kCLOCK_Ewm0 \ } /*! @brief Clock ip name array for FLEXCAN. */ #define FLEXCAN_CLOCKS \ { \ kCLOCK_IpInvalid, kCLOCK_Can1, kCLOCK_Can2 \ } /*! @brief Clock ip name array for FLEXCAN Peripheral clock. */ #define FLEXCAN_PERIPH_CLOCKS \ { \ kCLOCK_IpInvalid, kCLOCK_Can1S, kCLOCK_Can2S \ } /*! @brief Clock ip name array for FLEXIO. */ #define FLEXIO_CLOCKS \ { \ kCLOCK_IpInvalid, kCLOCK_Flexio1, kCLOCK_Flexio2 \ } /*! @brief Clock ip name array for FLEXRAM. */ #define FLEXRAM_CLOCKS \ { \ kCLOCK_FlexRam \ } /*! @brief Clock ip name array for FLEXSPI. */ #define FLEXSPI_CLOCKS \ { \ kCLOCK_FlexSpi \ } /*! @brief Clock ip name array for FLEXSPI EXSC. */ #define FLEXSPI_EXSC_CLOCKS \ { \ kCLOCK_FlexSpiExsc \ } /*! @brief Clock ip name array for GPIO. */ #define GPIO_CLOCKS \ { \ kCLOCK_IpInvalid, kCLOCK_Gpio1, kCLOCK_Gpio2, kCLOCK_Gpio3, kCLOCK_Gpio4, kCLOCK_Gpio5 \ } /*! @brief Clock ip name array for GPT. */ #define GPT_CLOCKS \ { \ kCLOCK_IpInvalid, kCLOCK_Gpt1, kCLOCK_Gpt2 \ } /*! @brief Clock ip name array for KPP. */ #define KPP_CLOCKS \ { \ kCLOCK_Kpp \ } /*! @brief Clock ip name array for LCDIF. */ #define LCDIF_CLOCKS \ { \ kCLOCK_Lcd \ } /*! @brief Clock ip name array for LCDIF PIXEL. */ #define LCDIF_PERIPH_CLOCKS \ { \ kCLOCK_LcdPixel \ } /*! @brief Clock ip name array for LPI2C. */ #define LPI2C_CLOCKS \ { \ kCLOCK_IpInvalid, kCLOCK_Lpi2c1, kCLOCK_Lpi2c2, kCLOCK_Lpi2c3, kCLOCK_Lpi2c4 \ } /*! @brief Clock ip name array for LPSPI. */ #define LPSPI_CLOCKS \ { \ kCLOCK_IpInvalid, kCLOCK_Lpspi1, kCLOCK_Lpspi2, kCLOCK_Lpspi3, kCLOCK_Lpspi4 \ } /*! @brief Clock ip name array for LPUART. */ #define LPUART_CLOCKS \ { \ kCLOCK_IpInvalid, kCLOCK_Lpuart1, kCLOCK_Lpuart2, kCLOCK_Lpuart3, kCLOCK_Lpuart4, kCLOCK_Lpuart5, \ kCLOCK_Lpuart6, kCLOCK_Lpuart7, kCLOCK_Lpuart8 \ } /*! @brief Clock ip name array for MQS. */ #define MQS_CLOCKS \ { \ kCLOCK_Mqs \ } /*! @brief Clock ip name array for OCRAM EXSC. */ #define OCRAM_EXSC_CLOCKS \ { \ kCLOCK_OcramExsc \ } /*! @brief Clock ip name array for PIT. */ #define PIT_CLOCKS \ { \ kCLOCK_Pit \ } /*! @brief Clock ip name array for PWM. */ #define PWM_CLOCKS \ { \ { \ kCLOCK_IpInvalid, kCLOCK_IpInvalid, kCLOCK_IpInvalid, kCLOCK_IpInvalid \ } \ , {kCLOCK_Pwm1, kCLOCK_Pwm1, kCLOCK_Pwm1, kCLOCK_Pwm1}, {kCLOCK_Pwm2, kCLOCK_Pwm2, kCLOCK_Pwm2, kCLOCK_Pwm2}, \ {kCLOCK_Pwm3, kCLOCK_Pwm3, kCLOCK_Pwm3, kCLOCK_Pwm3}, \ { \ kCLOCK_Pwm4, kCLOCK_Pwm4, kCLOCK_Pwm4, kCLOCK_Pwm4 \ } \ } /*! @brief Clock ip name array for PXP. */ #define PXP_CLOCKS \ { \ kCLOCK_Pxp \ } /*! @brief Clock ip name array for RTWDOG. */ #define RTWDOG_CLOCKS \ { \ kCLOCK_Wdog3 \ } /*! @brief Clock ip name array for SAI. */ #define SAI_CLOCKS \ { \ kCLOCK_IpInvalid, kCLOCK_Sai1, kCLOCK_Sai2, kCLOCK_Sai3 \ } /*! @brief Clock ip name array for SEMC. */ #define SEMC_CLOCKS \ { \ kCLOCK_Semc \ } /*! @brief Clock ip name array for SEMC EXSC. */ #define SEMC_EXSC_CLOCKS \ { \ kCLOCK_SemcExsc \ } /*! @brief Clock ip name array for QTIMER. */ #define TMR_CLOCKS \ { \ kCLOCK_IpInvalid, kCLOCK_Timer1, kCLOCK_Timer2, kCLOCK_Timer3, kCLOCK_Timer4 \ } /*! @brief Clock ip name array for TRNG. */ #define TRNG_CLOCKS \ { \ kCLOCK_Trng \ } /*! @brief Clock ip name array for TSC. */ #define TSC_CLOCKS \ { \ kCLOCK_Tsc \ } /*! @brief Clock ip name array for WDOG. */ #define WDOG_CLOCKS \ { \ kCLOCK_IpInvalid, kCLOCK_Wdog1, kCLOCK_Wdog2 \ } /*! @brief Clock ip name array for USDHC. */ #define USDHC_CLOCKS \ { \ kCLOCK_IpInvalid, kCLOCK_Usdhc1, kCLOCK_Usdhc2 \ } /*! @brief Clock ip name array for SPDIF. */ #define SPDIF_CLOCKS \ { \ kCLOCK_Spdif \ } /*! @brief Clock ip name array for XBARA. */ #define XBARA_CLOCKS \ { \ kCLOCK_Xbar1 \ } /*! @brief Clock ip name array for XBARB. */ #define XBARB_CLOCKS \ { \ kCLOCK_IpInvalid, kCLOCK_IpInvalid, kCLOCK_Xbar2, kCLOCK_Xbar3 \ } /*! @brief Clock name used to get clock frequency. */ typedef enum _clock_name { kCLOCK_CpuClk = 0x0U, /*!< CPU clock */ kCLOCK_AhbClk = 0x1U, /*!< AHB clock */ kCLOCK_SemcClk = 0x2U, /*!< SEMC clock */ kCLOCK_IpgClk = 0x3U, /*!< IPG clock */ kCLOCK_PerClk = 0x4U, /*!< PER clock */ kCLOCK_OscClk = 0x5U, /*!< OSC clock selected by PMU_LOWPWR_CTRL[OSC_SEL]. */ kCLOCK_RtcClk = 0x6U, /*!< RTC clock. (RTCCLK) */ kCLOCK_ArmPllClk = 0x7U, /*!< ARMPLLCLK. */ kCLOCK_Usb1PllClk = 0x8U, /*!< USB1PLLCLK. */ kCLOCK_Usb1PllPfd0Clk = 0x9U, /*!< USB1PLLPDF0CLK. */ kCLOCK_Usb1PllPfd1Clk = 0xAU, /*!< USB1PLLPFD1CLK. */ kCLOCK_Usb1PllPfd2Clk = 0xBU, /*!< USB1PLLPFD2CLK. */ kCLOCK_Usb1PllPfd3Clk = 0xCU, /*!< USB1PLLPFD3CLK. */ kCLOCK_Usb2PllClk = 0xDU, /*!< USB2PLLCLK. */ kCLOCK_SysPllClk = 0xEU, /*!< SYSPLLCLK. */ kCLOCK_SysPllPfd0Clk = 0xFU, /*!< SYSPLLPDF0CLK. */ kCLOCK_SysPllPfd1Clk = 0x10U, /*!< SYSPLLPFD1CLK. */ kCLOCK_SysPllPfd2Clk = 0x11U, /*!< SYSPLLPFD2CLK. */ kCLOCK_SysPllPfd3Clk = 0x12U, /*!< SYSPLLPFD3CLK. */ kCLOCK_EnetPll0Clk = 0x13U, /*!< Enet PLLCLK ref_enetpll0. */ kCLOCK_EnetPll1Clk = 0x14U, /*!< Enet PLLCLK ref_enetpll1. */ kCLOCK_AudioPllClk = 0x15U, /*!< Audio PLLCLK. */ kCLOCK_VideoPllClk = 0x16U, /*!< Video PLLCLK. */ } clock_name_t; #define kCLOCK_CoreSysClk kCLOCK_CpuClk /*!< For compatible with other platforms without CCM. */ #define CLOCK_GetCoreSysClkFreq CLOCK_GetCpuClkFreq /*!< For compatible with other platforms without CCM. */ /*! * @brief CCM CCGR gate control for each module independently. */ typedef enum _clock_ip_name { kCLOCK_IpInvalid = -1, /* CCM CCGR0 */ kCLOCK_Aips_tz1 = (0U << 8U) | CCM_CCGR0_CG0_SHIFT, /*!< CCGR0, CG0 */ kCLOCK_Aips_tz2 = (0U << 8U) | CCM_CCGR0_CG1_SHIFT, /*!< CCGR0, CG1 */ kCLOCK_Mqs = (0U << 8U) | CCM_CCGR0_CG2_SHIFT, /*!< CCGR0, CG2 */ kCLOCK_FlexSpiExsc = (0U << 8U) | CCM_CCGR0_CG3_SHIFT, /*!< CCGR0, CG3 */ kCLOCK_Sim_M_Main = (0U << 8U) | CCM_CCGR0_CG4_SHIFT, /*!< CCGR0, CG4 */ kCLOCK_Dcp = (0U << 8U) | CCM_CCGR0_CG5_SHIFT, /*!< CCGR0, CG5 */ kCLOCK_Lpuart3 = (0U << 8U) | CCM_CCGR0_CG6_SHIFT, /*!< CCGR0, CG6 */ kCLOCK_Can1 = (0U << 8U) | CCM_CCGR0_CG7_SHIFT, /*!< CCGR0, CG7 */ kCLOCK_Can1S = (0U << 8U) | CCM_CCGR0_CG8_SHIFT, /*!< CCGR0, CG8 */ kCLOCK_Can2 = (0U << 8U) | CCM_CCGR0_CG9_SHIFT, /*!< CCGR0, CG9 */ kCLOCK_Can2S = (0U << 8U) | CCM_CCGR0_CG10_SHIFT, /*!< CCGR0, CG10 */ kCLOCK_Trace = (0U << 8U) | CCM_CCGR0_CG11_SHIFT, /*!< CCGR0, CG11 */ kCLOCK_Gpt2 = (0U << 8U) | CCM_CCGR0_CG12_SHIFT, /*!< CCGR0, CG12 */ kCLOCK_Gpt2S = (0U << 8U) | CCM_CCGR0_CG13_SHIFT, /*!< CCGR0, CG13 */ kCLOCK_Lpuart2 = (0U << 8U) | CCM_CCGR0_CG14_SHIFT, /*!< CCGR0, CG14 */ kCLOCK_Gpio2 = (0U << 8U) | CCM_CCGR0_CG15_SHIFT, /*!< CCGR0, CG15 */ /* CCM CCGR1 */ kCLOCK_Lpspi1 = (1U << 8U) | CCM_CCGR1_CG0_SHIFT, /*!< CCGR1, CG0 */ kCLOCK_Lpspi2 = (1U << 8U) | CCM_CCGR1_CG1_SHIFT, /*!< CCGR1, CG1 */ kCLOCK_Lpspi3 = (1U << 8U) | CCM_CCGR1_CG2_SHIFT, /*!< CCGR1, CG2 */ kCLOCK_Lpspi4 = (1U << 8U) | CCM_CCGR1_CG3_SHIFT, /*!< CCGR1, CG3 */ kCLOCK_Adc2 = (1U << 8U) | CCM_CCGR1_CG4_SHIFT, /*!< CCGR1, CG4 */ kCLOCK_Enet = (1U << 8U) | CCM_CCGR1_CG5_SHIFT, /*!< CCGR1, CG5 */ kCLOCK_Pit = (1U << 8U) | CCM_CCGR1_CG6_SHIFT, /*!< CCGR1, CG6 */ kCLOCK_Aoi2 = (1U << 8U) | CCM_CCGR1_CG7_SHIFT, /*!< CCGR1, CG7 */ kCLOCK_Adc1 = (1U << 8U) | CCM_CCGR1_CG8_SHIFT, /*!< CCGR1, CG8 */ kCLOCK_SemcExsc = (1U << 8U) | CCM_CCGR1_CG9_SHIFT, /*!< CCGR1, CG9 */ kCLOCK_Gpt1 = (1U << 8U) | CCM_CCGR1_CG10_SHIFT, /*!< CCGR1, CG10 */ kCLOCK_Gpt1S = (1U << 8U) | CCM_CCGR1_CG11_SHIFT, /*!< CCGR1, CG11 */ kCLOCK_Lpuart4 = (1U << 8U) | CCM_CCGR1_CG12_SHIFT, /*!< CCGR1, CG12 */ kCLOCK_Gpio1 = (1U << 8U) | CCM_CCGR1_CG13_SHIFT, /*!< CCGR1, CG13 */ kCLOCK_Csu = (1U << 8U) | CCM_CCGR1_CG14_SHIFT, /*!< CCGR1, CG14 */ kCLOCK_Gpio5 = (1U << 8U) | CCM_CCGR1_CG15_SHIFT, /*!< CCGR1, CG15 */ /* CCM CCGR2 */ kCLOCK_OcramExsc = (2U << 8U) | CCM_CCGR2_CG0_SHIFT, /*!< CCGR2, CG0 */ kCLOCK_Csi = (2U << 8U) | CCM_CCGR2_CG1_SHIFT, /*!< CCGR2, CG1 */ kCLOCK_IomuxcSnvs = (2U << 8U) | CCM_CCGR2_CG2_SHIFT, /*!< CCGR2, CG2 */ kCLOCK_Lpi2c1 = (2U << 8U) | CCM_CCGR2_CG3_SHIFT, /*!< CCGR2, CG3 */ kCLOCK_Lpi2c2 = (2U << 8U) | CCM_CCGR2_CG4_SHIFT, /*!< CCGR2, CG4 */ kCLOCK_Lpi2c3 = (2U << 8U) | CCM_CCGR2_CG5_SHIFT, /*!< CCGR2, CG5 */ kCLOCK_Ocotp = (2U << 8U) | CCM_CCGR2_CG6_SHIFT, /*!< CCGR2, CG6 */ kCLOCK_Xbar3 = (2U << 8U) | CCM_CCGR2_CG7_SHIFT, /*!< CCGR2, CG7 */ kCLOCK_Ipmux1 = (2U << 8U) | CCM_CCGR2_CG8_SHIFT, /*!< CCGR2, CG8 */ kCLOCK_Ipmux2 = (2U << 8U) | CCM_CCGR2_CG9_SHIFT, /*!< CCGR2, CG9 */ kCLOCK_Ipmux3 = (2U << 8U) | CCM_CCGR2_CG10_SHIFT, /*!< CCGR2, CG10 */ kCLOCK_Xbar1 = (2U << 8U) | CCM_CCGR2_CG11_SHIFT, /*!< CCGR2, CG11 */ kCLOCK_Xbar2 = (2U << 8U) | CCM_CCGR2_CG12_SHIFT, /*!< CCGR2, CG12 */ kCLOCK_Gpio3 = (2U << 8U) | CCM_CCGR2_CG13_SHIFT, /*!< CCGR2, CG13 */ kCLOCK_Lcd = (2U << 8U) | CCM_CCGR2_CG14_SHIFT, /*!< CCGR2, CG14 */ kCLOCK_Pxp = (2U << 8U) | CCM_CCGR2_CG15_SHIFT, /*!< CCGR2, CG15 */ /* CCM CCGR3 */ kCLOCK_Flexio2 = (3U << 8U) | CCM_CCGR3_CG0_SHIFT, /*!< CCGR3, CG0 */ kCLOCK_Lpuart5 = (3U << 8U) | CCM_CCGR3_CG1_SHIFT, /*!< CCGR3, CG1 */ kCLOCK_Semc = (3U << 8U) | CCM_CCGR3_CG2_SHIFT, /*!< CCGR3, CG2 */ kCLOCK_Lpuart6 = (3U << 8U) | CCM_CCGR3_CG3_SHIFT, /*!< CCGR3, CG3 */ kCLOCK_Aoi1 = (3U << 8U) | CCM_CCGR3_CG4_SHIFT, /*!< CCGR3, CG4 */ kCLOCK_LcdPixel = (3U << 8U) | CCM_CCGR3_CG5_SHIFT, /*!< CCGR3, CG5 */ kCLOCK_Gpio4 = (3U << 8U) | CCM_CCGR3_CG6_SHIFT, /*!< CCGR3, CG6 */ kCLOCK_Ewm0 = (3U << 8U) | CCM_CCGR3_CG7_SHIFT, /*!< CCGR3, CG7 */ kCLOCK_Wdog1 = (3U << 8U) | CCM_CCGR3_CG8_SHIFT, /*!< CCGR3, CG8 */ kCLOCK_FlexRam = (3U << 8U) | CCM_CCGR3_CG9_SHIFT, /*!< CCGR3, CG9 */ kCLOCK_Acmp1 = (3U << 8U) | CCM_CCGR3_CG10_SHIFT, /*!< CCGR3, CG10 */ kCLOCK_Acmp2 = (3U << 8U) | CCM_CCGR3_CG11_SHIFT, /*!< CCGR3, CG11 */ kCLOCK_Acmp3 = (3U << 8U) | CCM_CCGR3_CG12_SHIFT, /*!< CCGR3, CG12 */ kCLOCK_Acmp4 = (3U << 8U) | CCM_CCGR3_CG13_SHIFT, /*!< CCGR3, CG13 */ kCLOCK_Ocram = (3U << 8U) | CCM_CCGR3_CG14_SHIFT, /*!< CCGR3, CG14 */ kCLOCK_IomuxcSnvsGpr = (3U << 8U) | CCM_CCGR3_CG15_SHIFT, /*!< CCGR3, CG15 */ /* CCM CCGR4 */ kCLOCK_Iomuxc = (4U << 8U) | CCM_CCGR4_CG1_SHIFT, /*!< CCGR4, CG1 */ kCLOCK_IomuxcGpr = (4U << 8U) | CCM_CCGR4_CG2_SHIFT, /*!< CCGR4, CG2 */ kCLOCK_Bee = (4U << 8U) | CCM_CCGR4_CG3_SHIFT, /*!< CCGR4, CG3 */ kCLOCK_SimM7 = (4U << 8U) | CCM_CCGR4_CG4_SHIFT, /*!< CCGR4, CG4 */ kCLOCK_Tsc = (4U << 8U) | CCM_CCGR4_CG5_SHIFT, /*!< CCGR4, CG5 */ kCLOCK_SimM = (4U << 8U) | CCM_CCGR4_CG6_SHIFT, /*!< CCGR4, CG6 */ kCLOCK_SimEms = (4U << 8U) | CCM_CCGR4_CG7_SHIFT, /*!< CCGR4, CG7 */ kCLOCK_Pwm1 = (4U << 8U) | CCM_CCGR4_CG8_SHIFT, /*!< CCGR4, CG8 */ kCLOCK_Pwm2 = (4U << 8U) | CCM_CCGR4_CG9_SHIFT, /*!< CCGR4, CG9 */ kCLOCK_Pwm3 = (4U << 8U) | CCM_CCGR4_CG10_SHIFT, /*!< CCGR4, CG10 */ kCLOCK_Pwm4 = (4U << 8U) | CCM_CCGR4_CG11_SHIFT, /*!< CCGR4, CG11 */ kCLOCK_Enc1 = (4U << 8U) | CCM_CCGR4_CG12_SHIFT, /*!< CCGR4, CG12 */ kCLOCK_Enc2 = (4U << 8U) | CCM_CCGR4_CG13_SHIFT, /*!< CCGR4, CG13 */ kCLOCK_Enc3 = (4U << 8U) | CCM_CCGR4_CG14_SHIFT, /*!< CCGR4, CG14 */ kCLOCK_Enc4 = (4U << 8U) | CCM_CCGR4_CG15_SHIFT, /*!< CCGR4, CG15 */ /* CCM CCGR5 */ kCLOCK_Rom = (5U << 8U) | CCM_CCGR5_CG0_SHIFT, /*!< CCGR5, CG0 */ kCLOCK_Flexio1 = (5U << 8U) | CCM_CCGR5_CG1_SHIFT, /*!< CCGR5, CG1 */ kCLOCK_Wdog3 = (5U << 8U) | CCM_CCGR5_CG2_SHIFT, /*!< CCGR5, CG2 */ kCLOCK_Dma = (5U << 8U) | CCM_CCGR5_CG3_SHIFT, /*!< CCGR5, CG3 */ kCLOCK_Kpp = (5U << 8U) | CCM_CCGR5_CG4_SHIFT, /*!< CCGR5, CG4 */ kCLOCK_Wdog2 = (5U << 8U) | CCM_CCGR5_CG5_SHIFT, /*!< CCGR5, CG5 */ kCLOCK_Aips_tz4 = (5U << 8U) | CCM_CCGR5_CG6_SHIFT, /*!< CCGR5, CG6 */ kCLOCK_Spdif = (5U << 8U) | CCM_CCGR5_CG7_SHIFT, /*!< CCGR5, CG7 */ kCLOCK_SimMain = (5U << 8U) | CCM_CCGR5_CG8_SHIFT, /*!< CCGR5, CG8 */ kCLOCK_Sai1 = (5U << 8U) | CCM_CCGR5_CG9_SHIFT, /*!< CCGR5, CG9 */ kCLOCK_Sai2 = (5U << 8U) | CCM_CCGR5_CG10_SHIFT, /*!< CCGR5, CG10 */ kCLOCK_Sai3 = (5U << 8U) | CCM_CCGR5_CG11_SHIFT, /*!< CCGR5, CG11 */ kCLOCK_Lpuart1 = (5U << 8U) | CCM_CCGR5_CG12_SHIFT, /*!< CCGR5, CG12 */ kCLOCK_Lpuart7 = (5U << 8U) | CCM_CCGR5_CG13_SHIFT, /*!< CCGR5, CG13 */ kCLOCK_SnvsHp = (5U << 8U) | CCM_CCGR5_CG14_SHIFT, /*!< CCGR5, CG14 */ kCLOCK_SnvsLp = (5U << 8U) | CCM_CCGR5_CG15_SHIFT, /*!< CCGR5, CG15 */ /* CCM CCGR6 */ kCLOCK_UsbOh3 = (6U << 8U) | CCM_CCGR6_CG0_SHIFT, /*!< CCGR6, CG0 */ kCLOCK_Usdhc1 = (6U << 8U) | CCM_CCGR6_CG1_SHIFT, /*!< CCGR6, CG1 */ kCLOCK_Usdhc2 = (6U << 8U) | CCM_CCGR6_CG2_SHIFT, /*!< CCGR6, CG2 */ kCLOCK_Dcdc = (6U << 8U) | CCM_CCGR6_CG3_SHIFT, /*!< CCGR6, CG3 */ kCLOCK_Ipmux4 = (6U << 8U) | CCM_CCGR6_CG4_SHIFT, /*!< CCGR6, CG4 */ kCLOCK_FlexSpi = (6U << 8U) | CCM_CCGR6_CG5_SHIFT, /*!< CCGR6, CG5 */ kCLOCK_Trng = (6U << 8U) | CCM_CCGR6_CG6_SHIFT, /*!< CCGR6, CG6 */ kCLOCK_Lpuart8 = (6U << 8U) | CCM_CCGR6_CG7_SHIFT, /*!< CCGR6, CG7 */ kCLOCK_Timer4 = (6U << 8U) | CCM_CCGR6_CG8_SHIFT, /*!< CCGR6, CG8 */ kCLOCK_Aips_tz3 = (6U << 8U) | CCM_CCGR6_CG9_SHIFT, /*!< CCGR6, CG9 */ kCLOCK_SimPer = (6U << 8U) | CCM_CCGR6_CG10_SHIFT, /*!< CCGR6, CG10 */ kCLOCK_Anadig = (6U << 8U) | CCM_CCGR6_CG11_SHIFT, /*!< CCGR6, CG11 */ kCLOCK_Lpi2c4 = (6U << 8U) | CCM_CCGR6_CG12_SHIFT, /*!< CCGR6, CG12 */ kCLOCK_Timer1 = (6U << 8U) | CCM_CCGR6_CG13_SHIFT, /*!< CCGR6, CG13 */ kCLOCK_Timer2 = (6U << 8U) | CCM_CCGR6_CG14_SHIFT, /*!< CCGR6, CG14 */ kCLOCK_Timer3 = (6U << 8U) | CCM_CCGR6_CG15_SHIFT, /*!< CCGR6, CG15 */ } clock_ip_name_t; /*! @brief OSC 24M sorce select */ typedef enum _clock_osc { kCLOCK_RcOsc = 0U, /*!< On chip OSC. */ kCLOCK_XtalOsc = 1U, /*!< 24M Xtal OSC */ } clock_osc_t; /*! @brief Clock gate value */ typedef enum _clock_gate_value { kCLOCK_ClockNotNeeded = 0U, /*!< Clock is off during all modes. */ kCLOCK_ClockNeededRun = 1U, /*!< Clock is on in run mode, but off in WAIT and STOP modes */ kCLOCK_ClockNeededRunWait = 3U, /*!< Clock is on during all modes, except STOP mode */ } clock_gate_value_t; /*! @brief System clock mode */ typedef enum _clock_mode_t { kCLOCK_ModeRun = 0U, /*!< Remain in run mode. */ kCLOCK_ModeWait = 1U, /*!< Transfer to wait mode. */ kCLOCK_ModeStop = 2U, /*!< Transfer to stop mode. */ } clock_mode_t; /*! * @brief MUX control names for clock mux setting. * * These constants define the mux control names for clock mux setting.\n * - 0:7: REG offset to CCM_BASE in bytes. * - 8:15: Root clock setting bit field shift. * - 16:31: Root clock setting bit field width. */ typedef enum _clock_mux { kCLOCK_Pll3SwMux = CCM_TUPLE(CCSR, CCM_CCSR_PLL3_SW_CLK_SEL_SHIFT, CCM_CCSR_PLL3_SW_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< pll3_sw_clk mux name */ kCLOCK_PeriphMux = CCM_TUPLE(CBCDR, CCM_CBCDR_PERIPH_CLK_SEL_SHIFT, CCM_CBCDR_PERIPH_CLK_SEL_MASK, CCM_CDHIPR_PERIPH_CLK_SEL_BUSY_SHIFT), /*!< periph mux name */ kCLOCK_SemcAltMux = CCM_TUPLE(CBCDR, CCM_CBCDR_SEMC_ALT_CLK_SEL_SHIFT, CCM_CBCDR_SEMC_ALT_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< semc mux name */ kCLOCK_SemcMux = CCM_TUPLE( CBCDR, CCM_CBCDR_SEMC_CLK_SEL_SHIFT, CCM_CBCDR_SEMC_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< semc mux name */ kCLOCK_PrePeriphMux = CCM_TUPLE(CBCMR, CCM_CBCMR_PRE_PERIPH_CLK_SEL_SHIFT, CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< pre-periph mux name */ kCLOCK_TraceMux = CCM_TUPLE( CBCMR, CCM_CBCMR_TRACE_CLK_SEL_SHIFT, CCM_CBCMR_TRACE_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< trace mux name */ kCLOCK_PeriphClk2Mux = CCM_TUPLE(CBCMR, CCM_CBCMR_PERIPH_CLK2_SEL_SHIFT, CCM_CBCMR_PERIPH_CLK2_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< periph clock2 mux name */ kCLOCK_LpspiMux = CCM_TUPLE( CBCMR, CCM_CBCMR_LPSPI_CLK_SEL_SHIFT, CCM_CBCMR_LPSPI_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< lpspi mux name */ kCLOCK_FlexspiMux = CCM_TUPLE(CSCMR1, CCM_CSCMR1_FLEXSPI_CLK_SEL_SHIFT, CCM_CSCMR1_FLEXSPI_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< flexspi mux name */ kCLOCK_Usdhc2Mux = CCM_TUPLE(CSCMR1, CCM_CSCMR1_USDHC2_CLK_SEL_SHIFT, CCM_CSCMR1_USDHC2_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< usdhc2 mux name */ kCLOCK_Usdhc1Mux = CCM_TUPLE(CSCMR1, CCM_CSCMR1_USDHC1_CLK_SEL_SHIFT, CCM_CSCMR1_USDHC1_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< usdhc1 mux name */ kCLOCK_Sai3Mux = CCM_TUPLE( CSCMR1, CCM_CSCMR1_SAI3_CLK_SEL_SHIFT, CCM_CSCMR1_SAI3_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< sai3 mux name */ kCLOCK_Sai2Mux = CCM_TUPLE( CSCMR1, CCM_CSCMR1_SAI2_CLK_SEL_SHIFT, CCM_CSCMR1_SAI2_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< sai2 mux name */ kCLOCK_Sai1Mux = CCM_TUPLE( CSCMR1, CCM_CSCMR1_SAI1_CLK_SEL_SHIFT, CCM_CSCMR1_SAI1_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< sai1 mux name */ kCLOCK_PerclkMux = CCM_TUPLE(CSCMR1, CCM_CSCMR1_PERCLK_CLK_SEL_SHIFT, CCM_CSCMR1_PERCLK_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< perclk mux name */ kCLOCK_Flexio2Mux = CCM_TUPLE(CSCMR2, CCM_CSCMR2_FLEXIO2_CLK_SEL_SHIFT, CCM_CSCMR2_FLEXIO2_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< flexio2 mux name */ kCLOCK_CanMux = CCM_TUPLE( CSCMR2, CCM_CSCMR2_CAN_CLK_SEL_SHIFT, CCM_CSCMR2_CAN_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< can mux name */ kCLOCK_UartMux = CCM_TUPLE( CSCDR1, CCM_CSCDR1_UART_CLK_SEL_SHIFT, CCM_CSCDR1_UART_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< uart mux name */ kCLOCK_SpdifMux = CCM_TUPLE( CDCDR, CCM_CDCDR_SPDIF0_CLK_SEL_SHIFT, CCM_CDCDR_SPDIF0_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< spdif mux name */ kCLOCK_Flexio1Mux = CCM_TUPLE(CDCDR, CCM_CDCDR_FLEXIO1_CLK_SEL_SHIFT, CCM_CDCDR_FLEXIO1_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< flexio1 mux name */ kCLOCK_Lpi2cMux = CCM_TUPLE( CSCDR2, CCM_CSCDR2_LPI2C_CLK_SEL_SHIFT, CCM_CSCDR2_LPI2C_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< lpi2c mux name */ kCLOCK_LcdifPreMux = CCM_TUPLE(CSCDR2, CCM_CSCDR2_LCDIF_PRE_CLK_SEL_SHIFT, CCM_CSCDR2_LCDIF_PRE_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< lcdif pre mux name */ kCLOCK_CsiMux = CCM_TUPLE( CSCDR3, CCM_CSCDR3_CSI_CLK_SEL_SHIFT, CCM_CSCDR3_CSI_CLK_SEL_MASK, CCM_NO_BUSY_WAIT), /*!< csi mux name */ } clock_mux_t; /*! * @brief DIV control names for clock div setting. * * These constants define div control names for clock div setting.\n * - 0:7: REG offset to CCM_BASE in bytes. * - 8:15: Root clock setting bit field shift. * - 16:31: Root clock setting bit field width. */ typedef enum _clock_div { kCLOCK_ArmDiv = CCM_TUPLE( CACRR, CCM_CACRR_ARM_PODF_SHIFT, CCM_CACRR_ARM_PODF_MASK, CCM_CDHIPR_ARM_PODF_BUSY_SHIFT), /*!< core div name */ kCLOCK_PeriphClk2Div = CCM_TUPLE(CBCDR, CCM_CBCDR_PERIPH_CLK2_PODF_SHIFT, CCM_CBCDR_PERIPH_CLK2_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< periph clock2 div name */ kCLOCK_SemcDiv = CCM_TUPLE(CBCDR, CCM_CBCDR_SEMC_PODF_SHIFT, CCM_CBCDR_SEMC_PODF_MASK, CCM_CDHIPR_SEMC_PODF_BUSY_SHIFT), /*!< semc div name */ kCLOCK_AhbDiv = CCM_TUPLE( CBCDR, CCM_CBCDR_AHB_PODF_SHIFT, CCM_CBCDR_AHB_PODF_MASK, CCM_CDHIPR_AHB_PODF_BUSY_SHIFT), /*!< ahb div name */ kCLOCK_IpgDiv = CCM_TUPLE(CBCDR, CCM_CBCDR_IPG_PODF_SHIFT, CCM_CBCDR_IPG_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< ipg div name */ kCLOCK_LpspiDiv = CCM_TUPLE( CBCMR, CCM_CBCMR_LPSPI_PODF_SHIFT, CCM_CBCMR_LPSPI_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< lpspi div name */ kCLOCK_LcdifDiv = CCM_TUPLE( CBCMR, CCM_CBCMR_LCDIF_PODF_SHIFT, CCM_CBCMR_LCDIF_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< lcdif div name */ kCLOCK_FlexspiDiv = CCM_TUPLE( CSCMR1, CCM_CSCMR1_FLEXSPI_PODF_SHIFT, CCM_CSCMR1_FLEXSPI_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< flexspi div name */ kCLOCK_PerclkDiv = CCM_TUPLE( CSCMR1, CCM_CSCMR1_PERCLK_PODF_SHIFT, CCM_CSCMR1_PERCLK_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< perclk div name */ kCLOCK_CanDiv = CCM_TUPLE( CSCMR2, CCM_CSCMR2_CAN_CLK_PODF_SHIFT, CCM_CSCMR2_CAN_CLK_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< can div name */ kCLOCK_TraceDiv = CCM_TUPLE( CSCDR1, CCM_CSCDR1_TRACE_PODF_SHIFT, CCM_CSCDR1_TRACE_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< trace div name */ kCLOCK_Usdhc2Div = CCM_TUPLE( CSCDR1, CCM_CSCDR1_USDHC2_PODF_SHIFT, CCM_CSCDR1_USDHC2_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< usdhc2 div name */ kCLOCK_Usdhc1Div = CCM_TUPLE( CSCDR1, CCM_CSCDR1_USDHC1_PODF_SHIFT, CCM_CSCDR1_USDHC1_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< usdhc1 div name */ kCLOCK_UartDiv = CCM_TUPLE( CSCDR1, CCM_CSCDR1_UART_CLK_PODF_SHIFT, CCM_CSCDR1_UART_CLK_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< uart div name */ kCLOCK_Flexio2Div = CCM_TUPLE(CS1CDR, CCM_CS1CDR_FLEXIO2_CLK_PODF_SHIFT, CCM_CS1CDR_FLEXIO2_CLK_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< flexio2 pre div name */ kCLOCK_Sai3PreDiv = CCM_TUPLE(CS1CDR, CCM_CS1CDR_SAI3_CLK_PRED_SHIFT, CCM_CS1CDR_SAI3_CLK_PRED_MASK, CCM_NO_BUSY_WAIT), /*!< sai3 pre div name */ kCLOCK_Sai3Div = CCM_TUPLE( CS1CDR, CCM_CS1CDR_SAI3_CLK_PODF_SHIFT, CCM_CS1CDR_SAI3_CLK_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< sai3 div name */ kCLOCK_Flexio2PreDiv = CCM_TUPLE(CS1CDR, CCM_CS1CDR_FLEXIO2_CLK_PRED_SHIFT, CCM_CS1CDR_FLEXIO2_CLK_PRED_MASK, CCM_NO_BUSY_WAIT), /*!< sai3 pre div name */ kCLOCK_Sai1PreDiv = CCM_TUPLE(CS1CDR, CCM_CS1CDR_SAI1_CLK_PRED_SHIFT, CCM_CS1CDR_SAI1_CLK_PRED_MASK, CCM_NO_BUSY_WAIT), /*!< sai1 pre div name */ kCLOCK_Sai1Div = CCM_TUPLE( CS1CDR, CCM_CS1CDR_SAI1_CLK_PODF_SHIFT, CCM_CS1CDR_SAI1_CLK_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< sai1 div name */ kCLOCK_Sai2PreDiv = CCM_TUPLE(CS2CDR, CCM_CS2CDR_SAI2_CLK_PRED_SHIFT, CCM_CS2CDR_SAI2_CLK_PRED_MASK, CCM_NO_BUSY_WAIT), /*!< sai2 pre div name */ kCLOCK_Sai2Div = CCM_TUPLE( CS2CDR, CCM_CS2CDR_SAI2_CLK_PODF_SHIFT, CCM_CS2CDR_SAI2_CLK_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< sai2 div name */ kCLOCK_Spdif0PreDiv = CCM_TUPLE(CDCDR, CCM_CDCDR_SPDIF0_CLK_PRED_SHIFT, CCM_CDCDR_SPDIF0_CLK_PRED_MASK, CCM_NO_BUSY_WAIT), /*!< spdif pre div name */ kCLOCK_Spdif0Div = CCM_TUPLE(CDCDR, CCM_CDCDR_SPDIF0_CLK_PODF_SHIFT, CCM_CDCDR_SPDIF0_CLK_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< spdif div name */ kCLOCK_Flexio1PreDiv = CCM_TUPLE(CDCDR, CCM_CDCDR_FLEXIO1_CLK_PRED_SHIFT, CCM_CDCDR_FLEXIO1_CLK_PRED_MASK, CCM_NO_BUSY_WAIT), /*!< flexio1 pre div name */ kCLOCK_Flexio1Div = CCM_TUPLE(CDCDR, CCM_CDCDR_FLEXIO1_CLK_PODF_SHIFT, CCM_CDCDR_FLEXIO1_CLK_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< flexio1 div name */ kCLOCK_Lpi2cDiv = CCM_TUPLE(CSCDR2, CCM_CSCDR2_LPI2C_CLK_PODF_SHIFT, CCM_CSCDR2_LPI2C_CLK_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< lpi2c div name */ kCLOCK_LcdifPreDiv = CCM_TUPLE( CSCDR2, CCM_CSCDR2_LCDIF_PRED_SHIFT, CCM_CSCDR2_LCDIF_PRED_MASK, CCM_NO_BUSY_WAIT), /*!< lcdif pre div name */ kCLOCK_CsiDiv = CCM_TUPLE(CSCDR3, CCM_CSCDR3_CSI_PODF_SHIFT, CCM_CSCDR3_CSI_PODF_MASK, CCM_NO_BUSY_WAIT), /*!< csi div name */ } clock_div_t; /*! @brief USB clock source definition. */ typedef enum _clock_usb_src { kCLOCK_Usb480M = 0, /*!< Use 480M. */ kCLOCK_UsbSrcUnused = (int)0xFFFFFFFFU, /*!< Used when the function does not care the clock source. */ } clock_usb_src_t; /*! @brief Source of the USB HS PHY. */ typedef enum _clock_usb_phy_src { kCLOCK_Usbphy480M = 0, /*!< Use 480M. */ } clock_usb_phy_src_t; /*!@brief PLL clock source, bypass cloco source also */ enum _clock_pll_clk_src { kCLOCK_PllClkSrc24M = 0U, /*!< Pll clock source 24M */ kCLOCK_PllSrcClkPN = 1U, /*!< Pll clock source CLK1_P and CLK1_N */ }; /*! @brief PLL configuration for ARM */ typedef struct _clock_arm_pll_config { uint32_t loopDivider; /*!< PLL loop divider. Valid range for divider value: 54-108. Fout=Fin*loopDivider/2. */ uint8_t src; /*!< Pll clock source, reference _clock_pll_clk_src */ } clock_arm_pll_config_t; /*! @brief PLL configuration for USB */ typedef struct _clock_usb_pll_config { uint8_t loopDivider; /*!< PLL loop divider. 0 - Fout=Fref*20; 1 - Fout=Fref*22 */ uint8_t src; /*!< Pll clock source, reference _clock_pll_clk_src */ } clock_usb_pll_config_t; /*! @brief PLL configuration for System */ typedef struct _clock_sys_pll_config { uint8_t loopDivider; /*!< PLL loop divider. Intended to be 1 (528M). 0 - Fout=Fref*20; 1 - Fout=Fref*22 */ uint32_t numerator; /*!< 30 bit numerator of fractional loop divider.*/ uint32_t denominator; /*!< 30 bit denominator of fractional loop divider */ uint8_t src; /*!< Pll clock source, reference _clock_pll_clk_src */ uint16_t ss_stop; /*!< Stop value to get frequency change. */ uint8_t ss_enable; /*!< Enable spread spectrum modulation */ uint16_t ss_step; /*!< Step value to get frequency change step. */ } clock_sys_pll_config_t; /*! @brief PLL configuration for AUDIO and VIDEO */ typedef struct _clock_audio_pll_config { uint8_t loopDivider; /*!< PLL loop divider. Valid range for DIV_SELECT divider value: 27~54. */ uint8_t postDivider; /*!< Divider after the PLL, should only be 1, 2, 4, 8, 16. */ uint32_t numerator; /*!< 30 bit numerator of fractional loop divider.*/ uint32_t denominator; /*!< 30 bit denominator of fractional loop divider */ uint8_t src; /*!< Pll clock source, reference _clock_pll_clk_src */ } clock_audio_pll_config_t; /*! @brief PLL configuration for AUDIO and VIDEO */ typedef struct _clock_video_pll_config { uint8_t loopDivider; /*!< PLL loop divider. Valid range for DIV_SELECT divider value: 27~54. */ uint8_t postDivider; /*!< Divider after the PLL, should only be 1, 2, 4, 8, 16. */ uint32_t numerator; /*!< 30 bit numerator of fractional loop divider.*/ uint32_t denominator; /*!< 30 bit denominator of fractional loop divider */ uint8_t src; /*!< Pll clock source, reference _clock_pll_clk_src */ } clock_video_pll_config_t; /*! @brief PLL configuration for ENET */ typedef struct _clock_enet_pll_config { bool enableClkOutput; /*!< Power on and enable PLL clock output for ENET0 (ref_enetpll0). */ bool enableClkOutput25M; /*!< Power on and enable PLL clock output for ENET1 (ref_enetpll1). */ uint8_t loopDivider; /*!< Controls the frequency of the ENET0 reference clock. b00 25MHz b01 50MHz b10 100MHz (not 50% duty cycle) b11 125MHz */ uint8_t src; /*!< Pll clock source, reference _clock_pll_clk_src */ } clock_enet_pll_config_t; /*! @brief PLL name */ typedef enum _clock_pll { kCLOCK_PllArm = CCM_ANALOG_TUPLE(PLL_ARM, CCM_ANALOG_PLL_ARM_ENABLE_SHIFT), /*!< PLL ARM */ kCLOCK_PllSys = CCM_ANALOG_TUPLE(PLL_SYS, CCM_ANALOG_PLL_SYS_ENABLE_SHIFT), /*!< PLL SYS */ kCLOCK_PllUsb1 = CCM_ANALOG_TUPLE(PLL_USB1, CCM_ANALOG_PLL_USB1_ENABLE_SHIFT), /*!< PLL USB1 */ kCLOCK_PllAudio = CCM_ANALOG_TUPLE(PLL_AUDIO, CCM_ANALOG_PLL_AUDIO_ENABLE_SHIFT), /*!< PLL Audio */ kCLOCK_PllVideo = CCM_ANALOG_TUPLE(PLL_VIDEO, CCM_ANALOG_PLL_VIDEO_ENABLE_SHIFT), /*!< PLL Video */ kCLOCK_PllEnet = CCM_ANALOG_TUPLE(PLL_ENET, CCM_ANALOG_PLL_ENET_ENABLE_SHIFT), /*!< PLL Enet0 */ kCLOCK_PllEnet25M = CCM_ANALOG_TUPLE(PLL_ENET, CCM_ANALOG_PLL_ENET_ENET_25M_REF_EN_SHIFT), /*!< PLL Enet1 */ kCLOCK_PllUsb2 = CCM_ANALOG_TUPLE(PLL_USB2, CCM_ANALOG_PLL_USB2_ENABLE_SHIFT), /*!< PLL USB2 */ } clock_pll_t; /*! @brief PLL PFD name */ typedef enum _clock_pfd { kCLOCK_Pfd0 = 0U, /*!< PLL PFD0 */ kCLOCK_Pfd1 = 1U, /*!< PLL PFD1 */ kCLOCK_Pfd2 = 2U, /*!< PLL PFD2 */ kCLOCK_Pfd3 = 3U, /*!< PLL PFD3 */ } clock_pfd_t; /******************************************************************************* * API ******************************************************************************/ #if defined(__cplusplus) extern "C" { #endif /* __cplusplus */ /*! * @brief Set CCM MUX node to certain value. * * @param mux Which mux node to set, see \ref clock_mux_t. * @param value Clock mux value to set, different mux has different value range. */ static inline void CLOCK_SetMux(clock_mux_t mux, uint32_t value) { uint32_t busyShift; busyShift = CCM_TUPLE_BUSY_SHIFT(mux); CCM_TUPLE_REG(CCM, mux) = (CCM_TUPLE_REG(CCM, mux) & (~CCM_TUPLE_MASK(mux))) | (((uint32_t)((value) << CCM_TUPLE_SHIFT(mux))) & CCM_TUPLE_MASK(mux)); assert(busyShift <= CCM_NO_BUSY_WAIT); /* Clock switch need Handshake? */ if (CCM_NO_BUSY_WAIT != busyShift) { /* Wait until CCM internal handshake finish. */ while (CCM->CDHIPR & (1U << busyShift)) { } } } /*! * @brief Get CCM MUX value. * * @param mux Which mux node to get, see \ref clock_mux_t. * @return Clock mux value. */ static inline uint32_t CLOCK_GetMux(clock_mux_t mux) { return (CCM_TUPLE_REG(CCM, mux) & CCM_TUPLE_MASK(mux)) >> CCM_TUPLE_SHIFT(mux); } /*! * @brief Set CCM DIV node to certain value. * * @param divider Which div node to set, see \ref clock_div_t. * @param value Clock div value to set, different divider has different value range. */ static inline void CLOCK_SetDiv(clock_div_t divider, uint32_t value) { uint32_t busyShift; busyShift = CCM_TUPLE_BUSY_SHIFT(divider); CCM_TUPLE_REG(CCM, divider) = (CCM_TUPLE_REG(CCM, divider) & (~CCM_TUPLE_MASK(divider))) | (((uint32_t)((value) << CCM_TUPLE_SHIFT(divider))) & CCM_TUPLE_MASK(divider)); assert(busyShift <= CCM_NO_BUSY_WAIT); /* Clock switch need Handshake? */ if (CCM_NO_BUSY_WAIT != busyShift) { /* Wait until CCM internal handshake finish. */ while (CCM->CDHIPR & (1U << busyShift)) { } } } /*! * @brief Get CCM DIV node value. * * @param divider Which div node to get, see \ref clock_div_t. */ static inline uint32_t CLOCK_GetDiv(clock_div_t divider) { return ((CCM_TUPLE_REG(CCM, divider) & CCM_TUPLE_MASK(divider)) >> CCM_TUPLE_SHIFT(divider)); } /*! * @brief Control the clock gate for specific IP. * * @param name Which clock to enable, see \ref clock_ip_name_t. * @param value Clock gate value to set, see \ref clock_gate_value_t. */ static inline void CLOCK_ControlGate(clock_ip_name_t name, clock_gate_value_t value) { uint32_t index = ((uint32_t)name) >> 8U; uint32_t shift = ((uint32_t)name) & 0x1FU; volatile uint32_t *reg; assert(index <= 6); reg = ((volatile uint32_t *)&CCM->CCGR0) + index; *reg = ((*reg) & ~(3U << shift)) | (((uint32_t)value) << shift); } /*! * @brief Enable the clock for specific IP. * * @param name Which clock to enable, see \ref clock_ip_name_t. */ static inline void CLOCK_EnableClock(clock_ip_name_t name) { CLOCK_ControlGate(name, kCLOCK_ClockNeededRunWait); } /*! * @brief Disable the clock for specific IP. * * @param name Which clock to disable, see \ref clock_ip_name_t. */ static inline void CLOCK_DisableClock(clock_ip_name_t name) { CLOCK_ControlGate(name, kCLOCK_ClockNotNeeded); } /*! * @brief Setting the low power mode that system will enter on next assertion of dsm_request signal. * * @param mode Which mode to enter, see \ref clock_mode_t. */ static inline void CLOCK_SetMode(clock_mode_t mode) { CCM->CLPCR = (CCM->CLPCR & ~CCM_CLPCR_LPM_MASK) | CCM_CLPCR_LPM((uint32_t)mode); } /*! * @brief Gets the OSC clock frequency. * * This function will return the external XTAL OSC frequency if it is selected as the source of OSC, * otherwise internal 24MHz RC OSC frequency will be returned. * * @param osc OSC type to get frequency. * * @return Clock frequency; If the clock is invalid, returns 0. */ static inline uint32_t CLOCK_GetOscFreq(void) { return (XTALOSC24M->LOWPWR_CTRL & XTALOSC24M_LOWPWR_CTRL_OSC_SEL_MASK) ? 24000000UL : g_xtalFreq; } /*! * @brief Gets the AHB clock frequency. * * @return The AHB clock frequency value in hertz. */ uint32_t CLOCK_GetAhbFreq(void); /*! * @brief Gets the SEMC clock frequency. * * @return The SEMC clock frequency value in hertz. */ uint32_t CLOCK_GetSemcFreq(void); /*! * @brief Gets the IPG clock frequency. * * @return The IPG clock frequency value in hertz. */ uint32_t CLOCK_GetIpgFreq(void); /*! * @brief Gets the PER clock frequency. * * @return The PER clock frequency value in hertz. */ uint32_t CLOCK_GetPerClkFreq(void); /*! * @brief Gets the clock frequency for a specific clock name. * * This function checks the current clock configurations and then calculates * the clock frequency for a specific clock name defined in clock_name_t. * * @param clockName Clock names defined in clock_name_t * @return Clock frequency value in hertz */ uint32_t CLOCK_GetFreq(clock_name_t name); /*! * @brief Get the CCM CPU/core/system frequency. * * @return Clock frequency; If the clock is invalid, returns 0. */ static inline uint32_t CLOCK_GetCpuClkFreq(void) { return CLOCK_GetFreq(kCLOCK_CpuClk); } /*! * @name OSC operations * @{ */ /*! * @brief Initialize the external 24MHz clock. * * This function supports two modes: * 1. Use external crystal oscillator. * 2. Bypass the external crystal oscillator, using input source clock directly. * * After this function, please call @ref CLOCK_SetXtal0Freq to inform clock driver * the external clock frequency. * * @param bypassXtalOsc Pass in true to bypass the external crystal oscillator. * @note This device does not support bypass external crystal oscillator, so * the input parameter should always be false. */ void CLOCK_InitExternalClk(bool bypassXtalOsc); /*! * @brief Deinitialize the external 24MHz clock. * * This function disables the external 24MHz clock. * * After this function, please call @ref CLOCK_SetXtal0Freq to set external clock * frequency to 0. */ void CLOCK_DeinitExternalClk(void); /*! * @brief Switch the OSC. * * This function switches the OSC source for SoC. * * @param osc OSC source to switch to. */ void CLOCK_SwitchOsc(clock_osc_t osc); /*! * @brief Gets the RTC clock frequency. * * @return Clock frequency; If the clock is invalid, returns 0. */ static inline uint32_t CLOCK_GetRtcFreq(void) { return 32768U; } /*! * @brief Set the XTAL (24M OSC) frequency based on board setting. * * @param freq The XTAL input clock frequency in Hz. */ static inline void CLOCK_SetXtalFreq(uint32_t freq) { g_xtalFreq = freq; } /*! * @brief Set the RTC XTAL (32K OSC) frequency based on board setting. * * @param freq The RTC XTAL input clock frequency in Hz. */ static inline void CLOCK_SetRtcXtalFreq(uint32_t freq) { g_rtcXtalFreq = freq; } /*! * @brief Initialize the RC oscillator 24MHz clock. */ void CLOCK_InitRcOsc24M(void); /*! * @brief Power down the RCOSC 24M clock. */ void CLOCK_DeinitRcOsc24M(void); /* @} */ /*! @brief Enable USB HS clock. * * This function only enables the access to USB HS prepheral, upper layer * should first call the @ref CLOCK_EnableUsbhs0PhyPllClock to enable the PHY * clock to use USB HS. * * @param src USB HS does not care about the clock source, here must be @ref kCLOCK_UsbSrcUnused. * @param freq USB HS does not care about the clock source, so this parameter is ignored. * @retval true The clock is set successfully. * @retval false The clock source is invalid to get proper USB HS clock. */ bool CLOCK_EnableUsbhs0Clock(clock_usb_src_t src, uint32_t freq); /*! @brief Enable USB HS clock. * * This function only enables the access to USB HS prepheral, upper layer * should first call the @ref CLOCK_EnableUsbhs0PhyPllClock to enable the PHY * clock to use USB HS. * * @param src USB HS does not care about the clock source, here must be @ref kCLOCK_UsbSrcUnused. * @param freq USB HS does not care about the clock source, so this parameter is ignored. * @retval true The clock is set successfully. * @retval false The clock source is invalid to get proper USB HS clock. */ bool CLOCK_EnableUsbhs1Clock(clock_usb_src_t src, uint32_t freq); /*! @brief Disable USB HS PHY PLL clock. * * This function disables USB HS PHY PLL clock. */ void CLOCK_DisableUsbhs1PhyPllClock(void); /* @} */ /*! * @name PLL/PFD operations * @{ */ /*! * @brief PLL bypass setting * * @param base CCM_ANALOG base pointer. * @param pll PLL control name (see @ref ccm_analog_pll_control_t enumeration) * @param bypass Bypass the PLL. * - true: Bypass the PLL. * - false:Not bypass the PLL. */ static inline void CLOCK_SetPllBypass(CCM_ANALOG_Type *base, clock_pll_t pll, bool bypass) { if (bypass) { CCM_ANALOG_TUPLE_REG_OFF(base, pll, 4U) = 1U << CCM_ANALOG_PLL_BYPASS_SHIFT; } else { CCM_ANALOG_TUPLE_REG_OFF(base, pll, 8U) = 1U << CCM_ANALOG_PLL_BYPASS_SHIFT; } } /*! * @brief Check if PLL is bypassed * * @param base CCM_ANALOG base pointer. * @param pll PLL control name (see @ref ccm_analog_pll_control_t enumeration) * @return PLL bypass status. * - true: The PLL is bypassed. * - false: The PLL is not bypassed. */ static inline bool CLOCK_IsPllBypassed(CCM_ANALOG_Type *base, clock_pll_t pll) { return (bool)(CCM_ANALOG_TUPLE_REG(base, pll) & (1U << CCM_ANALOG_PLL_BYPASS_SHIFT)); } /*! * @brief Check if PLL is enabled * * @param base CCM_ANALOG base pointer. * @param pll PLL control name (see @ref ccm_analog_pll_control_t enumeration) * @return PLL bypass status. * - true: The PLL is enabled. * - false: The PLL is not enabled. */ static inline bool CLOCK_IsPllEnabled(CCM_ANALOG_Type *base, clock_pll_t pll) { return (bool)(CCM_ANALOG_TUPLE_REG(base, pll) & (1U << CCM_ANALOG_TUPLE_SHIFT(pll))); } /*! * @brief PLL bypass clock source setting. * Note: change the bypass clock source also change the pll reference clock source. * * @param base CCM_ANALOG base pointer. * @param pll PLL control name (see @ref ccm_analog_pll_control_t enumeration) * @param src Bypass clock source, reference _clock_pll_bypass_clk_src. */ static inline void CLOCK_SetPllBypassRefClkSrc(CCM_ANALOG_Type *base, clock_pll_t pll, uint32_t src) { CCM_ANALOG_TUPLE_REG(base, pll) |= (CCM_ANALOG_TUPLE_REG(base, pll) & (~CCM_ANALOG_PLL_BYPASS_CLK_SRC_MASK)) | src; } /*! * @brief Get PLL bypass clock value, it is PLL reference clock actually. * If CLOCK1_P,CLOCK1_N is choose as the pll bypass clock source, please implement the CLKPN_FREQ define, otherwise 0 * will be returned. * @param base CCM_ANALOG base pointer. * @param pll PLL control name (see @ref ccm_analog_pll_control_t enumeration) * @retval bypass reference clock frequency value. */ static inline uint32_t CLOCK_GetPllBypassRefClk(CCM_ANALOG_Type *base, clock_pll_t pll) { return (((CCM_ANALOG_TUPLE_REG(base, pll) & CCM_ANALOG_PLL_BYPASS_CLK_SRC_MASK) >> CCM_ANALOG_PLL_BYPASS_CLK_SRC_SHIFT) == kCLOCK_PllClkSrc24M) ? CLOCK_GetOscFreq() : CLKPN_FREQ; } /*! * @brief Initialize the ARM PLL. * * This function initialize the ARM PLL with specific settings * * @param config configuration to set to PLL. */ void CLOCK_InitArmPll(const clock_arm_pll_config_t *config); /*! * @brief De-initialize the ARM PLL. */ void CLOCK_DeinitArmPll(void); /*! * @brief Initialize the System PLL. * * This function initializes the System PLL with specific settings * * @param config Configuration to set to PLL. */ void CLOCK_InitSysPll(const clock_sys_pll_config_t *config); /*! * @brief De-initialize the System PLL. */ void CLOCK_DeinitSysPll(void); /*! * @brief Initialize the USB1 PLL. * * This function initializes the USB1 PLL with specific settings * * @param config Configuration to set to PLL. */ void CLOCK_InitUsb1Pll(const clock_usb_pll_config_t *config); /*! * @brief Deinitialize the USB1 PLL. */ void CLOCK_DeinitUsb1Pll(void); /*! * @brief Initialize the USB2 PLL. * * This function initializes the USB2 PLL with specific settings * * @param config Configuration to set to PLL. */ void CLOCK_InitUsb2Pll(const clock_usb_pll_config_t *config); /*! * @brief Deinitialize the USB2 PLL. */ void CLOCK_DeinitUsb2Pll(void); /*! * @brief Initializes the Audio PLL. * * This function initializes the Audio PLL with specific settings * * @param config Configuration to set to PLL. */ void CLOCK_InitAudioPll(const clock_audio_pll_config_t *config); /*! * @brief De-initialize the Audio PLL. */ void CLOCK_DeinitAudioPll(void); /*! * @brief Initialize the video PLL. * * This function configures the Video PLL with specific settings * * @param config configuration to set to PLL. */ void CLOCK_InitVideoPll(const clock_video_pll_config_t *config); /*! * @brief De-initialize the Video PLL. */ void CLOCK_DeinitVideoPll(void); /*! * @brief Initialize the ENET PLL. * * This function initializes the ENET PLL with specific settings. * * @param config Configuration to set to PLL. */ void CLOCK_InitEnetPll(const clock_enet_pll_config_t *config); /*! * @brief Deinitialize the ENET PLL. * * This function disables the ENET PLL. */ void CLOCK_DeinitEnetPll(void); /*! * @brief Get current PLL output frequency. * * This function get current output frequency of specific PLL * * @param pll pll name to get frequency. * @return The PLL output frequency in hertz. */ uint32_t CLOCK_GetPllFreq(clock_pll_t pll); /*! * @brief Initialize the System PLL PFD. * * This function initializes the System PLL PFD. During new value setting, * the clock output is disabled to prevent glitch. * * @param pfd Which PFD clock to enable. * @param pfdFrac The PFD FRAC value. * @note It is recommended that PFD settings are kept between 12-35. */ void CLOCK_InitSysPfd(clock_pfd_t pfd, uint8_t pfdFrac); /*! * @brief De-initialize the System PLL PFD. * * This function disables the System PLL PFD. * * @param pfd Which PFD clock to disable. */ void CLOCK_DeinitSysPfd(clock_pfd_t pfd); /*! * @brief Initialize the USB1 PLL PFD. * * This function initializes the USB1 PLL PFD. During new value setting, * the clock output is disabled to prevent glitch. * * @param pfd Which PFD clock to enable. * @param pfdFrac The PFD FRAC value. * @note It is recommended that PFD settings are kept between 12-35. */ void CLOCK_InitUsb1Pfd(clock_pfd_t pfd, uint8_t pfdFrac); /*! * @brief De-initialize the USB1 PLL PFD. * * This function disables the USB1 PLL PFD. * * @param pfd Which PFD clock to disable. */ void CLOCK_DeinitUsb1Pfd(clock_pfd_t pfd); /*! * @brief Get current System PLL PFD output frequency. * * This function get current output frequency of specific System PLL PFD * * @param pfd pfd name to get frequency. * @return The PFD output frequency in hertz. */ uint32_t CLOCK_GetSysPfdFreq(clock_pfd_t pfd); /*! * @brief Get current USB1 PLL PFD output frequency. * * This function get current output frequency of specific USB1 PLL PFD * * @param pfd pfd name to get frequency. * @return The PFD output frequency in hertz. */ uint32_t CLOCK_GetUsb1PfdFreq(clock_pfd_t pfd); /*! @brief Enable USB HS PHY PLL clock. * * This function enables the internal 480MHz USB PHY PLL clock. * * @param src USB HS PHY PLL clock source. * @param freq The frequency specified by src. * @retval true The clock is set successfully. * @retval false The clock source is invalid to get proper USB HS clock. */ bool CLOCK_EnableUsbhs0PhyPllClock(clock_usb_phy_src_t src, uint32_t freq); /*! @brief Disable USB HS PHY PLL clock. * * This function disables USB HS PHY PLL clock. */ void CLOCK_DisableUsbhs0PhyPllClock(void); /*! @brief Enable USB HS PHY PLL clock. * * This function enables the internal 480MHz USB PHY PLL clock. * * @param src USB HS PHY PLL clock source. * @param freq The frequency specified by src. * @retval true The clock is set successfully. * @retval false The clock source is invalid to get proper USB HS clock. */ bool CLOCK_EnableUsbhs1PhyPllClock(clock_usb_phy_src_t src, uint32_t freq); /*! @brief Disable USB HS PHY PLL clock. * * This function disables USB HS PHY PLL clock. */ void CLOCK_DisableUsbhs1PhyPllClock(void); /* @} */ #if defined(__cplusplus) } #endif /* __cplusplus */ /*! @} */ #endif /* _FSL_CLOCK_H_ */