#include "FM25Lx.h" #include "rtthread.h" #include "stm32f2xx_rcc.h" #include <stm32f2xx.h> #define FLASH_TRACE(...) //#define FLASH_TRACE rt_kprintf #define CS_LOW() GPIO_ResetBits(FM25_SPI_NSS_GPIO, FM25_SPI_NSS_PIN) #define CS_HIGH() GPIO_SetBits(FM25_SPI_NSS_GPIO, FM25_SPI_NSS_PIN) #define spi_config() rt_hw_spi2_baud_rate(SPI_BaudRatePrescaler_4);/* 72M/4=18M */ #define fram_lock() rt_sem_take(fram_lock, RT_WAITING_FOREVER); #define fram_unlock() rt_sem_release(fram_lock); static uint32_t spi_timeout_cnt = 0; rt_sem_t fram_lock; void rt_hw_spi2_baud_rate(uint16_t SPI_BaudRatePrescaler) { SPI2->CR1 &= ~SPI_BaudRatePrescaler_256; SPI2->CR1 |= SPI_BaudRatePrescaler; } /* FM25L256 using SPI2 */ void fm25_spi_cfg() { GPIO_InitTypeDef GPIO_InitStructure; SPI_InitTypeDef SPI_InitStructure; /* Enable SPI Periph clock */ RCC_AHB1PeriphClockCmd(FM25_SPI_NSS_GPIO_CLK | FM25_SPI_GPIO_CLK, ENABLE); RCC_APB1PeriphClockCmd(FM25_SPI_CLK, ENABLE); //enable SPI clock //Setup GPIO GPIO_InitStructure.GPIO_Pin = FM25_SPI_SCK | FM25_SPI_MISO | FM25_SPI_MOSI; /*Connect Pin to AF*/ GPIO_PinAFConfig(FM25_SPI_GPIO, GPIO_PinSource3, GPIO_AF_SPI3); GPIO_PinAFConfig(FM25_SPI_GPIO, GPIO_PinSource4, GPIO_AF_SPI3); GPIO_PinAFConfig(FM25_SPI_GPIO, GPIO_PinSource5, GPIO_AF_SPI3); GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_Init(FM25_SPI_GPIO, &GPIO_InitStructure); /* CS pin: PB12 */ GPIO_InitStructure.GPIO_Pin = FM25_SPI_NSS_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_Init(FM25_SPI_NSS_GPIO, &GPIO_InitStructure); CS_HIGH(); SPI_Cmd(FM25_SPI, DISABLE); /*------------------------ SPI configuration ------------------------*/ SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;//SPI_Direction_1Line_Tx; SPI_InitStructure.SPI_Mode = SPI_Mode_Master; SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b; SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low; SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge; SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4;/* 72M/64=1.125M */ SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; SPI_InitStructure.SPI_CRCPolynomial = 7; //SPI_I2S_DeInit(FM25_SPI); SPI_Init(FM25_SPI, &SPI_InitStructure); /* Enable SPI_MASTER */ SPI_Cmd(FM25_SPI, ENABLE); //SPI_CalculateCRC(FM25_SPI, DISABLE); fram_lock = rt_sem_create("framlock", 1, RT_IPC_FLAG_FIFO); } static uint8_t spi_readwrite(uint8_t data) { int32_t timeout = 0xFFFFF; //rt_kprintf("State 0x%X\n", SPI_I2S_GetFlagStatus(FM25_SPI, SPI_I2S_FLAG_TXE)); //Wait until the transmit buffer is empty while (SPI_I2S_GetFlagStatus(FM25_SPI, SPI_I2S_FLAG_TXE) == RESET && --timeout >0); if( timeout <= 0 ){ spi_timeout_cnt++; return 0;} // Send the byte SPI_I2S_SendData(FM25_SPI, data); timeout = 0xFFFFF; //Wait until a data is received while (SPI_I2S_GetFlagStatus(FM25_SPI, SPI_I2S_FLAG_RXNE) == RESET && --timeout >0); if( timeout <= 0 ){ spi_timeout_cnt++; return 0;} // Get the received data data = SPI_I2S_ReceiveData(FM25_SPI); // Return the shifted data return data; } static uint8_t fm25_read_status(void) { uint8_t tmp; CS_LOW(); spi_readwrite( FM25_RDSR ); tmp=spi_readwrite(0xFF); CS_HIGH(); return tmp; } rt_size_t fm25_read(rt_device_t dev, rt_off_t offset, void * buf, rt_size_t size) { uint32_t index; uint8_t *buffer = (uint8_t*) buf; fram_lock(); //spi_config(); //rt_kprintf("READ: %d, size=%d\n", offset, size); CS_LOW(); spi_readwrite( FM25_READ); spi_readwrite( (offset >> 8)&0xFF ); spi_readwrite( offset & 0xFF ); for(index=0; index<size; index++) { *buffer++ = spi_readwrite(0xFF); if( spi_timeout_cnt > 0 ) { fram_unlock(); spi_timeout_cnt = 0; rt_kprintf("Read time out\n"); return -1; } offset++; } CS_HIGH(); fram_unlock(); return size; } rt_size_t fm25_write(rt_device_t dev, rt_off_t offset, const void * buf, rt_size_t size) { uint32_t index = size; uint8_t *buffer = (uint8_t*) buf; fram_lock(); //spi_config(); //rt_kprintf("WRITE: %d, size=%d\n", offset, size); CS_LOW(); spi_readwrite( FM25_WREN ); CS_HIGH(); CS_LOW(); spi_readwrite( FM25_WRITE); spi_readwrite( (offset >> 8)&0xFF ); spi_readwrite( offset & 0xFF ); while( index > 0 ) { spi_readwrite( *buffer++ ); if( spi_timeout_cnt > 0 ) { fram_unlock(); rt_kprintf("Write time out\n"); spi_timeout_cnt = 0; return -1; } index--; offset++; } CS_HIGH(); //rt_thread_delay(100); fram_unlock(); return size; } static rt_err_t fm25_init(rt_device_t dev) { return RT_EOK; } static rt_err_t fm25_open(rt_device_t dev, rt_uint16_t oflag) { char i; SPI_Cmd(FM25_SPI, ENABLE); if( oflag != RT_DEVICE_FLAG_RDONLY ) { CS_LOW(); spi_readwrite( FM25_WRSR ); spi_readwrite( FM25_WPEN ); CS_HIGH(); //rt_kprintf("RDSR=0x%X\n", fm25_read_status()); } return RT_EOK; } static rt_err_t fm25_close(rt_device_t dev) { CS_LOW(); spi_readwrite( FM25_WRDI ); CS_HIGH(); SPI_Cmd(FM25_SPI, DISABLE); return RT_EOK; } static rt_err_t fm25_control(rt_device_t dev, rt_uint8_t cmd, void *args) { RT_ASSERT(dev != RT_NULL); if (cmd == RT_DEVICE_CTRL_BLK_GETGEOME) { struct rt_device_blk_geometry *geometry; geometry = (struct rt_device_blk_geometry *)args; if (geometry == RT_NULL) return -RT_ERROR; geometry->bytes_per_sector = 1; geometry->block_size = 1; geometry->sector_count = 8192; } return RT_EOK; } static struct rt_device spi_flash_device; void fm25_hw_init() { int i = 0xFFFFF; fm25_spi_cfg(); while(i--); //spi_config(); CS_LOW(); spi_readwrite( FM25_WRDI ); CS_HIGH(); spi_flash_device.type = RT_Device_Class_Block; spi_flash_device.init = fm25_init; spi_flash_device.open = fm25_open; spi_flash_device.close = fm25_close; spi_flash_device.read = fm25_read; spi_flash_device.write = fm25_write; spi_flash_device.control = fm25_control; /* no private */ spi_flash_device.user_data = RT_NULL; rt_device_register(&spi_flash_device, "fram0", RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE); } int fram_test(int x) { //rt_kprintf("SR=0x%X\nCR1=0x%X\nCR2=0x%X\n", FM25_SPI->SR, FM25_SPI->CR1,FM25_SPI->CR2); rt_device_t device = RT_NULL; char buf[256]; char read[256]; int i, j; for(i =0; i< 256; i++ ) { buf[i] = i; read[i] = 0; } // step 1:find device device = rt_device_find("fram0"); if( device == RT_NULL) { rt_kprintf("device %s: not found!\r\n"); return RT_ERROR; } device->open(device,RT_DEVICE_FLAG_RDWR); for( j = 0; j < FM25_MAXSIZE; j+= 256 ) //j = 256*x; { //rt_kprintf("RDSR=0x%X\n", fm25_read_status()); device->write(device,j, buf,256); device->read(device,j, read,256); for(i =0; i< 256; i++ ) { if( buf[i] != read[i] ) rt_kprintf("error at %d: %d!=%d\n", i, buf[i], read[i]); } } device->close(device); rt_kprintf("Finsh test\n"); } #ifdef RT_USING_FINSH #include <finsh.h> FINSH_FUNCTION_EXPORT(fram_test, test system); #endif