/***************************************************************************//** * @file * @brief Low Energy Sensor (LESENSE) Peripheral API * @author Energy Micro AS * @version 3.0.0 ******************************************************************************* * @section License * (C) Copyright 2012 Energy Micro AS, http://www.energymicro.com ******************************************************************************* * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. * * DISCLAIMER OF WARRANTY/LIMITATION OF REMEDIES: Energy Micro AS has no * obligation to support this Software. Energy Micro AS is providing the * Software "AS IS", with no express or implied warranties of any kind, * including, but not limited to, any implied warranties of merchantability * or fitness for any particular purpose or warranties against infringement * of any proprietary rights of a third party. * * Energy Micro AS will not be liable for any consequential, incidental, or * special damages, or any other relief, or for any claim by any third party, * arising from your use of this Software. * ******************************************************************************/ #include "em_lesense.h" #if defined(LESENSE_COUNT) && (LESENSE_COUNT > 0) #include "em_assert.h" #include "em_bitband.h" #include "em_cmu.h" /***************************************************************************//** * @addtogroup EM_Library * @{ ******************************************************************************/ /***************************************************************************//** * @addtogroup LESENSE * @brief Low Energy Sensor (LESENSE) Peripheral API * @{ ******************************************************************************/ /******************************************************************************* ************************** LOCAL FUNCTIONS ******************************** ******************************************************************************/ /******************************************************************************* ************************** GLOBAL FUNCTIONS ******************************* ******************************************************************************/ /***************************************************************************//** * @brief * Initialize the LESENSE module. * * @details * This function configures the main parameters of the LESENSE interface. * Please refer to the initialization parameter type definition * (LESENSE_Init_TypeDef) for more details. * * @note * LESENSE_Init() has been designed for initializing LESENSE once in an * operation cycle. Be aware of the effects of reconfiguration if using this * function from multiple sources in your code. This function has not been * designed to be re-entrant. * Requesting reset by setting @p reqReset to true is required in each reset * or power-on cycle in order to configure the default values of the RAM * mapped LESENSE registers. * Notice that GPIO pins used by the LESENSE module must be properly * configured by the user explicitly, in order for the LESENSE to work as * intended. * (When configuring pins, one should remember to consider the sequence of * configuration, in order to avoid unintended pulses/glitches on output * pins.) * * @param[in] init * LESENSE initialization structure. * * @param[in] reqReset * Request to call LESENSE_Reset() first in order to initialize all LESENSE * registers with the default value. ******************************************************************************/ void LESENSE_Init(LESENSE_Init_TypeDef const *init, bool const reqReset) { /* Sanity check of initialization values */ EFM_ASSERT((uint32_t)init->timeCtrl.startDelay < 4U); EFM_ASSERT((uint32_t)init->perCtrl.dacPresc < 32U); /* Reset LESENSE registers if requested. */ if (reqReset) { LESENSE_Reset(); } /* Set sensor start delay for each channel. */ LESENSE_StartDelaySet((uint32_t)init->timeCtrl.startDelay); /* LESENSE core control configuration. * Set PRS source, SCANCONF register usage strategy, interrupt and * DMA trigger level condition, DMA wakeup condition, bias mode, * enable/disable to sample both ACMPs simultaneously, enable/disable to store * SCANRES in CNT_RES after each scan, enable/disable to always write to the * result buffer, even if it is full, enable/disable LESENSE running in debug * mode. */ LESENSE->CTRL = ((uint32_t)init->coreCtrl.prsSel << _LESENSE_CTRL_PRSSEL_SHIFT) | (uint32_t)init->coreCtrl.scanConfSel | (uint32_t)init->coreCtrl.bufTrigLevel | (uint32_t)init->coreCtrl.wakeupOnDMA | ((uint32_t)init->coreCtrl.invACMP0 << _LESENSE_CTRL_ACMP0INV_SHIFT) | ((uint32_t)init->coreCtrl.invACMP1 << _LESENSE_CTRL_ACMP1INV_SHIFT) | ((uint32_t)init->coreCtrl.dualSample << _LESENSE_CTRL_DUALSAMPLE_SHIFT) | ((uint32_t)init->coreCtrl.storeScanRes << _LESENSE_CTRL_STRSCANRES_SHIFT) | ((uint32_t)init->coreCtrl.bufOverWr << _LESENSE_CTRL_BUFOW_SHIFT) | ((uint32_t)init->coreCtrl.debugRun << _LESENSE_CTRL_DEBUGRUN_SHIFT); /* Set scan mode in the CTRL register using the provided function, don't * start scanning immediately. */ LESENSE_ScanModeSet((LESENSE_ScanMode_TypeDef)init->coreCtrl.scanStart, false); /* LESENSE peripheral control configuration. * Set DAC0 and DAC1 data source, conversion mode, output mode. Set DAC * prescaler and reference. Set ACMP0 and ACMP1 control mode. Set ACMP and DAC * duty cycle (warm up) mode. */ LESENSE->PERCTRL = ((uint32_t)init->perCtrl.dacCh0Data << _LESENSE_PERCTRL_DACCH0DATA_SHIFT) | ((uint32_t)init->perCtrl.dacCh0ConvMode << _LESENSE_PERCTRL_DACCH0CONV_SHIFT) | ((uint32_t)init->perCtrl.dacCh0OutMode << _LESENSE_PERCTRL_DACCH0OUT_SHIFT) | ((uint32_t)init->perCtrl.dacCh1Data << _LESENSE_PERCTRL_DACCH1DATA_SHIFT) | ((uint32_t)init->perCtrl.dacCh1ConvMode << _LESENSE_PERCTRL_DACCH1CONV_SHIFT) | ((uint32_t)init->perCtrl.dacCh1OutMode << _LESENSE_PERCTRL_DACCH1OUT_SHIFT) | ((uint32_t)init->perCtrl.dacPresc << _LESENSE_PERCTRL_DACPRESC_SHIFT) | (uint32_t)init->perCtrl.dacRef | ((uint32_t)init->perCtrl.acmp0Mode << _LESENSE_PERCTRL_ACMP0MODE_SHIFT) | ((uint32_t)init->perCtrl.acmp1Mode << _LESENSE_PERCTRL_ACMP1MODE_SHIFT) | (uint32_t)init->perCtrl.warmupMode; /* LESENSE decoder general control configuration. * Set decoder input source, select PRS input for decoder bits. * Enable/disable the decoder to check the present state. * Enable/disable decoder to channel interrupt mapping. * Enable/disable decoder hysteresis on PRS output. * Enable/disable decoder hysteresis on count events. * Enable/disable decoder hysteresis on interrupt requests. * Enable/disable count mode on LESPRS0 and LESPRS1. */ LESENSE->DECCTRL = (uint32_t)init->decCtrl.decInput | ((uint32_t)init->decCtrl.prsChSel0 << _LESENSE_DECCTRL_PRSSEL0_SHIFT) | ((uint32_t)init->decCtrl.prsChSel1 << _LESENSE_DECCTRL_PRSSEL1_SHIFT) | ((uint32_t)init->decCtrl.prsChSel2 << _LESENSE_DECCTRL_PRSSEL2_SHIFT) | ((uint32_t)init->decCtrl.prsChSel3 << _LESENSE_DECCTRL_PRSSEL3_SHIFT) | ((uint32_t)init->decCtrl.chkState << _LESENSE_DECCTRL_ERRCHK_SHIFT) | ((uint32_t)init->decCtrl.intMap << _LESENSE_DECCTRL_INTMAP_SHIFT) | ((uint32_t)init->decCtrl.hystPRS0 << _LESENSE_DECCTRL_HYSTPRS0_SHIFT) | ((uint32_t)init->decCtrl.hystPRS1 << _LESENSE_DECCTRL_HYSTPRS1_SHIFT) | ((uint32_t)init->decCtrl.hystPRS2 << _LESENSE_DECCTRL_HYSTPRS2_SHIFT) | ((uint32_t)init->decCtrl.hystIRQ << _LESENSE_DECCTRL_HYSTIRQ_SHIFT) | ((uint32_t)init->decCtrl.prsCount << _LESENSE_DECCTRL_PRSCNT_SHIFT); /* Set initial LESENSE decoder state. */ LESENSE_DecoderStateSet((uint32_t)init->decCtrl.initState); /* LESENSE bias control configuration. */ LESENSE->BIASCTRL = (uint32_t)init->coreCtrl.biasMode; } /***************************************************************************//** * @brief * Set scan frequency for periodic scanning. * * @details * This function only applies to LESENSE if period counter is being used as * a trigger for scan start. * The calculation is based on the following formula: * Fscan = LFACLKles / ((1+PCTOP)*2^PCPRESC) * * @note * Note that the calculation does not necessarily result in the requested * scan frequency due to integer division. Check the return value for the * resulted scan frequency. * * @param[in] refFreq * Select reference LFACLK clock frequency in Hz. If set to 0, the current * clock frequency is being used as a reference. * * @param[in] scanFreq * Set the desired scan frequency in Hz. * * @return * Frequency in Hz calculated and set by this function. Users can use this to * compare the requested and set values. ******************************************************************************/ uint32_t LESENSE_ScanFreqSet(uint32_t refFreq, uint32_t const scanFreq) { uint32_t tmp; uint32_t pcPresc = 0UL; /* Period counter prescaler. */ uint32_t clkDiv = 1UL; /* Clock divisor value (2^pcPresc). */ uint32_t pcTop = 63UL; /* Period counter top value (max. 63). */ uint32_t calcScanFreq; /* Variable for testing the calculation algorithm. */ /* If refFreq is set to 0, the currently configured reference clock is * assumed. */ if (!refFreq) { refFreq = CMU_ClockFreqGet(cmuClock_LESENSE); } /* Max. value of pcPresc is 128, thus using reference frequency less than * 33554431Hz (33.554431MHz), the frequency calculation in the while loop * below will not overflow. */ EFM_ASSERT(refFreq < ((uint32_t)UINT32_MAX / 128UL)); /* Sanity check of scan frequency value. */ EFM_ASSERT((scanFreq > 0U) && (scanFreq <= refFreq)); /* Calculate the minimum necessary prescaler value in order to provide the * biggest possible resolution for setting scan frequency. * Maximum number of calculation cycles is 7 (value of lesenseClkDiv_128). */ while ((refFreq / ((uint32_t)scanFreq * clkDiv) > (pcTop + 1UL)) && (pcPresc < lesenseClkDiv_128)) { ++pcPresc; clkDiv = (uint32_t)1UL << pcPresc; } /* Calculate pcTop value. */ pcTop = ((uint32_t)refFreq / ((uint32_t)scanFreq * clkDiv)) - 1UL; /* Clear current PCPRESC and PCTOP settings. Be aware of the effect of * non-atomic Read-Modify-Write on LESENSE->TIMCRTL. */ tmp = LESENSE->TIMCTRL & (~(_LESENSE_TIMCTRL_PCPRESC_MASK)& ~(_LESENSE_TIMCTRL_PCTOP_MASK)); /* Set new values in tmp while reserving other settings. */ tmp |= ((uint32_t)pcPresc << _LESENSE_TIMCTRL_PCPRESC_SHIFT) | ((uint32_t)pcTop << _LESENSE_TIMCTRL_PCTOP_SHIFT); /* Set values in LESENSE_TIMCTRL register. */ LESENSE->TIMCTRL = tmp; /* For testing the calculation algorithm. */ calcScanFreq = ((uint32_t)refFreq / ((uint32_t)(1UL + pcTop) * clkDiv)); return calcScanFreq; } /***************************************************************************//** * @brief * Set scan mode of the LESENSE channels. * * @details * This function configures how the scan start is being triggered. It can be * used for re-configuring the scan mode while running the application but it * is also used by LESENSE_Init() for initialization. * * @note * Users can configure the scan mode by LESENSE_Init() function, but only with * a significant overhead. This simple function serves the purpose of * controlling this parameter after the channel has been configured. * Please be aware the effects of the non-atomic Read-Modify-Write cycle! * * @param[in] scanMode * Select where to map LESENSE alternate excitation channels. * @li lesenseScanStartPeriodic - New scan is started each time the period * counter overflows. * @li lesenseScanStartOneShot - Single scan is performed when * LESENSE_ScanStart() is called. * @li lesenseScanStartPRS - New scan is triggered by pulse on PRS channel. * * @param[in] start * If true, LESENSE_ScanStart() is immediately issued after configuration. ******************************************************************************/ void LESENSE_ScanModeSet(LESENSE_ScanMode_TypeDef const scanMode, bool const start) { uint32_t tmp; /* temporary storage of the CTRL register value */ /* Save the CTRL register value to tmp. * Please be aware the effects of the non-atomic Read-Modify-Write cycle! */ tmp = LESENSE->CTRL & ~(_LESENSE_CTRL_SCANMODE_MASK); /* Setting the requested scanMode to the CTRL register. Casting signed int * (enum) to unsigned long (uint32_t). */ tmp |= (uint32_t)scanMode; /* Write the new value to the CTRL register. */ LESENSE->CTRL = tmp; /* Start sensor scanning if requested. */ if (start) { LESENSE_ScanStart(); } } /***************************************************************************//** * @brief * Set start delay of sensor interaction on each channel. * * @details * This function sets start delay of sensor interaction on each channel. * It can be used for adjusting the start delay while running the application * but it is also used by LESENSE_Init() for initialization. * * @note * Users can configure the start delay by LESENSE_Init() function, but only * with a significant overhead. This simple function serves the purpose of * controlling this parameter after the channel has been configured. * Please be aware the effects of the non-atomic Read-Modify-Write cycle! * * @param[in] startDelay * Number of LFACLK cycles to delay. Valid range: 0-3 (2 bit). ******************************************************************************/ void LESENSE_StartDelaySet(uint8_t const startDelay) { uint32_t tmp; /* temporary storage of the TIMCTRL register value */ /* Sanity check of startDelay. */ EFM_ASSERT(startDelay < 4U); /* Save the TIMCTRL register value to tmp. * Please be aware the effects of the non-atomic Read-Modify-Write cycle! */ tmp = LESENSE->TIMCTRL & ~(_LESENSE_TIMCTRL_STARTDLY_MASK); /* Setting the requested startDelay to the TIMCTRL register. */ tmp |= (uint32_t)startDelay << _LESENSE_TIMCTRL_STARTDLY_SHIFT; /* Write the new value to the TIMCTRL register. */ LESENSE->TIMCTRL = tmp; } /***************************************************************************//** * @brief * Set clock division for LESENSE timers. * * @details * Use this function to configure the clock division for the LESENSE timers * used for excitation timing. * The division setting is global, but the clock source can be selected for * each channel using LESENSE_ChannelConfig() function, please refer to the * documentation of it for more details. * * @note * If AUXHFRCO is used for excitation timing, LFACLK can not exceed 500kHz. * LFACLK can not exceed 50kHz if the ACMP threshold level (ACMPTHRES) is not * equal for all channels. * * @param[in] clk * Select clock to prescale. * @li lesenseClkHF - set AUXHFRCO clock divisor for HF timer. * @li lesenseClkLF - set LFACLKles clock divisor for LF timer. * * @param[in] clkDiv * Clock divisor value. Valid range depends on the @p clk value. ******************************************************************************/ void LESENSE_ClkDivSet(LESENSE_ChClk_TypeDef const clk, LESENSE_ClkPresc_TypeDef const clkDiv) { uint32_t tmp; /* Select clock to prescale */ switch (clk) { case lesenseClkHF: { /* Sanity check of clock divisor for HF clock. */ EFM_ASSERT((uint32_t)clkDiv <= lesenseClkDiv_8); /* Clear current AUXPRESC settings. */ tmp = LESENSE->TIMCTRL & ~(_LESENSE_TIMCTRL_AUXPRESC_MASK); /* Set new values in tmp while reserving other settings. */ tmp |= ((uint32_t)clkDiv << _LESENSE_TIMCTRL_AUXPRESC_SHIFT); /* Set values in LESENSE_TIMCTRL register. */ LESENSE->TIMCTRL = tmp; } break; case lesenseClkLF: { /* Clear current LFPRESC settings. */ tmp = LESENSE->TIMCTRL & ~(_LESENSE_TIMCTRL_LFPRESC_MASK); /* Set new values in tmp while reserving other settings. */ tmp |= ((uint32_t)clkDiv << _LESENSE_TIMCTRL_LFPRESC_SHIFT); /* Set values in LESENSE_TIMCTRL register. */ LESENSE->TIMCTRL = tmp; } break; default: { EFM_ASSERT(0); } break; } } /***************************************************************************//** * @brief * Configure all (16) LESENSE sensor channels. * * @details * This function configures all the sensor channels of LESENSE interface. * Please refer to the configuration parameter type definition * (LESENSE_ChAll_TypeDef) for more details. * * @note * Channels can be configured individually using LESENSE_ChannelConfig() * function. * Notice that pins used by the LESENSE module must be properly configured * by the user explicitly, in order for the LESENSE to work as intended. * (When configuring pins, one should remember to consider the sequence of * configuration, in order to avoid unintended pulses/glitches on output * pins.) * * @param[in] confChAll * Configuration structure for all (16) LESENSE sensor channels. ******************************************************************************/ void LESENSE_ChannelAllConfig(LESENSE_ChAll_TypeDef const *confChAll) { uint32_t i; /* Iterate through all the 16 channels */ for (i = 0U; i < 16U; ++i) { /* Configure scan channels. */ LESENSE_ChannelConfig(&confChAll->Ch[i], i); } } /***************************************************************************//** * @brief * Configure a single LESENSE sensor channel. * * @details * This function configures a single sensor channel of the LESENSE interface. * Please refer to the configuration parameter type definition * (LESENSE_ChDesc_TypeDef) for more details. * * @note * This function has been designed to minimize the effects of sensor channel * reconfiguration while LESENSE is in operation, however one shall be aware * of these effects and the right timing of calling this function. * Parameter @p useAltEx must be true in the channel configuration in order to * use alternate excitation pins. * * @param[in] confCh * Configuration structure for a single LESENSE sensor channel. * * @param[in] chIdx * Channel index to configure (0-15). ******************************************************************************/ void LESENSE_ChannelConfig(LESENSE_ChDesc_TypeDef const *confCh, uint32_t const chIdx) { uint32_t tmp; /* Service variable. */ /* Sanity check of configuration parameters */ EFM_ASSERT(chIdx < 16U); EFM_ASSERT(confCh->exTime < 64U); EFM_ASSERT(confCh->sampleDelay < 128U); EFM_ASSERT(confCh->measDelay < 128U); /* Not a complete assert, as the max. value of acmpThres depends on other * configuration parameters, check the parameter description of acmpThres for * for more details! */ EFM_ASSERT(confCh->acmpThres < 4096U); EFM_ASSERT(!(confCh->chPinExMode == lesenseChPinExDACOut && (chIdx != 2U) && (chIdx != 3U) && (chIdx != 4U) && (chIdx != 5U))); EFM_ASSERT(!(confCh->chPinIdleMode == lesenseChPinIdleDACCh1 && ((chIdx != 12U) && (chIdx != 13U) && (chIdx != 14U) && (chIdx != 15U)))); EFM_ASSERT(!(confCh->chPinIdleMode == lesenseChPinIdleDACCh0 && ((chIdx != 0U) && (chIdx != 1U) && (chIdx != 2U) && (chIdx != 3U)))); /* Configure chIdx setup in LESENSE idle phase. * Read-modify-write in order to support reconfiguration during LESENSE * operation. */ tmp = (LESENSE->IDLECONF & ~((uint32_t)0x3UL << (chIdx * 2UL))); tmp |= ((uint32_t)confCh->chPinIdleMode << (chIdx * 2UL)); LESENSE->IDLECONF = tmp; /* Channel specific timing configuration on scan channel chIdx. * Set excitation time, sampling delay, measurement delay. */ LESENSE_ChannelTimingSet(chIdx, (uint32_t)confCh->exTime, (uint32_t)confCh->sampleDelay, (uint32_t)confCh->measDelay); /* Channel specific configuration of clocks, sample mode, excitation pin mode * alternate excitation usage and interrupt mode on scan channel chIdx in * LESENSE_CHchIdx_INTERACT. */ LESENSE->CH[chIdx].INTERACT = ((uint32_t)confCh->exClk << _LESENSE_CH_INTERACT_EXCLK_SHIFT) | ((uint32_t)confCh->sampleClk << _LESENSE_CH_INTERACT_SAMPLECLK_SHIFT) | (uint32_t)confCh->sampleMode | (uint32_t)confCh->intMode | (uint32_t)confCh->chPinExMode | ((uint32_t)confCh->useAltEx << _LESENSE_CH_INTERACT_ALTEX_SHIFT); /* Configure channel specific counter comparison mode, optional result * forwarding to decoder, optional counter value storing and optional result * inverting on scan channel chIdx in LESENSE_CHchIdx_EVAL. */ LESENSE->CH[chIdx].EVAL = (uint32_t)confCh->compMode | ((uint32_t)confCh->shiftRes << _LESENSE_CH_EVAL_DECODE_SHIFT) | ((uint32_t)confCh->storeCntRes << _LESENSE_CH_EVAL_STRSAMPLE_SHIFT) | ((uint32_t)confCh->invRes << _LESENSE_CH_EVAL_SCANRESINV_SHIFT); /* Configure analog comparator (ACMP) threshold and decision threshold for * counter separately with the function provided for that. */ LESENSE_ChannelThresSet(chIdx, (uint32_t)confCh->acmpThres, (uint32_t)confCh->cntThres); /* Enable/disable interrupts on channel. * Note: BITBAND_Peripheral() function is used for setting/clearing single * bit peripheral register bitfields. Read the function description in * efm32_bitband.h for more details. */ BITBAND_Peripheral(&(LESENSE->IEN), (uint32_t)chIdx, (uint32_t)confCh->enaInt); /* Enable/disable CHchIdx pin. */ BITBAND_Peripheral(&(LESENSE->ROUTE), (uint32_t)chIdx, (uint32_t)confCh->enaPin); /* Enable/disable scan channel chIdx. */ BITBAND_Peripheral(&(LESENSE->CHEN), (uint32_t)chIdx, (uint32_t)confCh->enaScanCh); } /***************************************************************************//** * @brief * Configure the LESENSE alternate excitation pins. * * @details * This function configures the alternate excitation channels of the LESENSE * interface. Please refer to the configuration parameter type definition * (LESENSE_ConfAltEx_TypeDef) for more details. * * @note * Parameter @p useAltEx must be true in the channel configuration structrure * (LESENSE_ChDesc_TypeDef) in order to use alternate excitation pins on the * channel. * * @param[in] confAltEx * Configuration structure for LESENSE alternate excitation pins. ******************************************************************************/ void LESENSE_AltExConfig(LESENSE_ConfAltEx_TypeDef const *confAltEx) { uint32_t i; uint32_t tmp; /* Configure alternate excitation mapping. * Atomic read-modify-write using BITBAND_Peripheral function in order to * support reconfiguration during LESENSE operation. */ BITBAND_Peripheral(&(LESENSE->CTRL), _LESENSE_CTRL_ALTEXMAP_SHIFT, (uint32_t)confAltEx->altExMap); /* Iterate through all the 8 alternate excitation channels */ for (i = 0U; i < 8U; ++i) { /* Enable/disable alternate excitation pin i. * Atomic read-modify-write using BITBAND_Peripheral function in order to * support reconfiguration during LESENSE operation. */ BITBAND_Peripheral(&(LESENSE->ROUTE), (16UL + i), (uint32_t)confAltEx->AltEx[i].enablePin); /* Setup the idle phase state of alternate excitation pin i. * Read-modify-write in order to support reconfiguration during LESENSE * operation. */ tmp = (LESENSE->ALTEXCONF & ~((uint32_t)0x3UL << (i * 2UL))); tmp |= ((uint32_t)confAltEx->AltEx[i].idleConf << (i * 2UL)); LESENSE->ALTEXCONF = tmp; /* Enable/disable always excite on channel i */ BITBAND_Peripheral(&(LESENSE->ALTEXCONF), (16UL + i), (uint32_t)confAltEx->AltEx[i].alwaysEx); } } /***************************************************************************//** * @brief * Enable/disable LESENSE scan channel and the pin assigned to it. * * @details * Use this function to enable/disable a selected LESENSE scan channel and the * pin assigned to. * * @note * Users can enable/disable scan channels and the channel pin by * LESENSE_ChannelConfig() function, but only with a significant overhead. * This simple function serves the purpose of controlling these parameters * after the channel has been configured. * * @param[in] chIdx * Identifier of the scan channel. Valid range: 0-15. * * @param[in] enaScanCh * Enable/disable the selected scan channel by setting this parameter to * true/false respectively. * * @param[in] enaPin * Enable/disable the pin assigned to the channel selected by @p chIdx. ******************************************************************************/ void LESENSE_ChannelEnable(uint8_t const chIdx, bool const enaScanCh, bool const enaPin) { /* Enable/disable the assigned pin of scan channel chIdx. * Note: BITBAND_Peripheral() function is used for setting/clearing single * bit peripheral register bitfields. Read the function description in * efm32_bitband.h for more details. */ BITBAND_Peripheral(&(LESENSE->ROUTE), (uint32_t)chIdx, (uint32_t)enaPin); /* Enable/disable scan channel chIdx. */ BITBAND_Peripheral(&(LESENSE->CHEN), (uint32_t)chIdx, (uint32_t)enaScanCh); } /***************************************************************************//** * @brief * Enable/disable LESENSE scan channel and the pin assigned to it. * * @details * Use this function to enable/disable LESENSE scan channels and the pins * assigned to them using a mask. * * @note * Users can enable/disable scan channels and channel pins by using * LESENSE_ChannelAllConfig() function, but only with a significant overhead. * This simple function serves the purpose of controlling these parameters * after the channel has been configured. * * @param[in] chMask * Set the corresponding bit to 1 to enable, 0 to disable the selected scan * channel. * * @param[in] pinMask * Set the corresponding bit to 1 to enable, 0 to disable the pin on selected * channel. ******************************************************************************/ void LESENSE_ChannelEnableMask(uint16_t chMask, uint16_t pinMask) { /* Enable/disable all channels at once according to the mask. */ LESENSE->CHEN = chMask; /* Enable/disable all channel pins at once according to the mask. */ LESENSE->ROUTE = pinMask; } /***************************************************************************//** * @brief * Set LESENSE channel timing parameters. * * @details * Use this function to set timing parameters on a selected LESENSE channel. * * @note * Users can configure the channel timing parameters by * LESENSE_ChannelConfig() function, but only with a significant overhead. * This simple function serves the purpose of controlling these parameters * after the channel has been configured. * * @param[in] chIdx * Identifier of the scan channel. Valid range: 0-15. * * @param[in] exTime * Excitation time on chIdx. Excitation will last exTime+1 excitation clock * cycles. Valid range: 0-63 (6 bits). * * @param[in] sampleDelay * Sample delay on chIdx. Sampling will occur after sampleDelay+1 sample clock * cycles. Valid range: 0-127 (7 bits). * * @param[in] measDelay * Measure delay on chIdx. Sensor measuring is delayed for measDelay+1 * excitation clock cycles. Valid range: 0-127 (7 bits). ******************************************************************************/ void LESENSE_ChannelTimingSet(uint8_t const chIdx, uint8_t const exTime, uint8_t const sampleDelay, uint8_t const measDelay) { /* Sanity check of parameters. */ EFM_ASSERT(exTime < 64U); EFM_ASSERT(sampleDelay < 128U); EFM_ASSERT(measDelay < 128U); /* Channel specific timing configuration on scan channel chIdx. * Setting excitation time, sampling delay, measurement delay. */ LESENSE->CH[chIdx].TIMING = ((uint32_t)exTime << _LESENSE_CH_TIMING_EXTIME_SHIFT) | ((uint32_t)sampleDelay << _LESENSE_CH_TIMING_SAMPLEDLY_SHIFT) | ((uint32_t)measDelay << _LESENSE_CH_TIMING_MEASUREDLY_SHIFT); } /***************************************************************************//** * @brief * Set LESENSE channel threshold parameters. * * @details * Use this function to set threshold parameters on a selected LESENSE * channel. * * @note * Users can configure the channel threshold parameters by * LESENSE_ChannelConfig() function, but only with a significant overhead. * This simple function serves the purpose of controlling these parameters * after the channel has been configured. * * @param[in] chIdx * Identifier of the scan channel. Valid range: 0-15. * * @param[in] acmpThres * ACMP threshold. * @li If perCtrl.dacCh0Data or perCtrl.dacCh1Data is set to * #lesenseDACIfData, acmpThres defines the 12-bit DAC data in the * corresponding data register of the DAC interface (DACn_CH0DATA and * DACn_CH1DATA). In this case, the valid range is: 0-4095 (12 bits). * * @li If perCtrl.dacCh0Data or perCtrl.dacCh1Data is set to * #lesenseACMPThres, acmpThres defines the 6-bit Vdd scaling factor of ACMP * negative input (VDDLEVEL in ACMP_INPUTSEL register). In this case, the * valid range is: 0-63 (6 bits). * * @param[in] cntThres * Decision threshold for counter comparison. * Valid range: 0-65535 (16 bits). ******************************************************************************/ void LESENSE_ChannelThresSet(uint8_t const chIdx, uint16_t const acmpThres, uint16_t const cntThres) { uint32_t tmp; /* temporary storage */ /* Sanity check for acmpThres only, cntThres is 16bit value. */ EFM_ASSERT(acmpThres < 4096U); /* Sanity check for LESENSE channel id. */ EFM_ASSERT(chIdx < 16); /* Save the INTERACT register value of channel chIdx to tmp. * Please be aware the effects of the non-atomic Read-Modify-Write cycle! */ tmp = LESENSE->CH[chIdx].INTERACT & ~(_LESENSE_CH_INTERACT_ACMPTHRES_MASK); /* Set the ACMP threshold value to the INTERACT register of channel chIdx. */ tmp |= (uint32_t)acmpThres << _LESENSE_CH_INTERACT_ACMPTHRES_SHIFT; /* Write the new value to the INTERACT register. */ LESENSE->CH[chIdx].INTERACT = tmp; /* Save the EVAL register value of channel chIdx to tmp. * Please be aware the effects of the non-atomic Read-Modify-Write cycle! */ tmp = LESENSE->CH[chIdx].EVAL & ~(_LESENSE_CH_EVAL_COMPTHRES_MASK); /* Set the counter threshold value to the INTERACT register of channel chIdx. */ tmp |= (uint32_t)cntThres << _LESENSE_CH_EVAL_COMPTHRES_SHIFT; /* Write the new value to the EVAL register. */ LESENSE->CH[chIdx].EVAL = tmp; } /***************************************************************************//** * @brief * Configure all LESENSE decoder states. * * @details * This function configures all the decoder states of the LESENSE interface. * Please refer to the configuration parameter type definition * (LESENSE_DecStAll_TypeDef) for more details. * * @note * Decoder states can be configured individually using * LESENSE_DecoderStateConfig() function. * * @param[in] confDecStAll * Configuration structure for all (16) LESENSE decoder states. ******************************************************************************/ void LESENSE_DecoderStateAllConfig(LESENSE_DecStAll_TypeDef const *confDecStAll) { uint32_t i; /* Iterate through all the 16 decoder states. */ for (i = 0U; i < 16U; ++i) { /* Configure decoder state i. */ LESENSE_DecoderStateConfig(&confDecStAll->St[i], i); } } /***************************************************************************//** * @brief * Configure a single LESENSE decoder state. * * @details * This function configures a single decoder state of the LESENSE interface. * Please refer to the configuration parameter type definition * (LESENSE_DecStDesc_TypeDef) for more details. * * @param[in] confDecSt * Configuration structure for a single LESENSE decoder state. * * @param[in] decSt * Decoder state index to configure (0-15). ******************************************************************************/ void LESENSE_DecoderStateConfig(LESENSE_DecStDesc_TypeDef const *confDecSt, uint32_t const decSt) { /* Sanity check of configuration parameters */ EFM_ASSERT(decSt < 16U); EFM_ASSERT((uint32_t)confDecSt->confA.compMask < 16U); EFM_ASSERT((uint32_t)confDecSt->confA.compVal < 16U); EFM_ASSERT((uint32_t)confDecSt->confA.nextState < 16U); EFM_ASSERT((uint32_t)confDecSt->confB.compMask < 16U); EFM_ASSERT((uint32_t)confDecSt->confB.compVal < 16U); EFM_ASSERT((uint32_t)confDecSt->confB.nextState < 16U); /* Configure state descriptor A (LESENSE_STi_TCONFA) for decoder state i. * Setting sensor compare value, sensor mask, next state index, * transition action, interrupt flag option and state descriptor chaining * configurations. */ LESENSE->ST[decSt].TCONFA = (uint32_t)confDecSt->confA.prsAct | ((uint32_t)confDecSt->confA.compMask << _LESENSE_ST_TCONFA_MASK_SHIFT) | ((uint32_t)confDecSt->confA.compVal << _LESENSE_ST_TCONFA_COMP_SHIFT) | ((uint32_t)confDecSt->confA.nextState << _LESENSE_ST_TCONFA_NEXTSTATE_SHIFT) | ((uint32_t)confDecSt->confA.setInt << _LESENSE_ST_TCONFA_SETIF_SHIFT) | ((uint32_t)confDecSt->chainDesc << _LESENSE_ST_TCONFA_CHAIN_SHIFT); /* Configure state descriptor Bi (LESENSE_STi_TCONFB). * Setting sensor compare value, sensor mask, next state index, transition * action and interrupt flag option configurations. */ LESENSE->ST[decSt].TCONFB = (uint32_t)confDecSt->confB.prsAct | ((uint32_t)confDecSt->confB.compMask << _LESENSE_ST_TCONFB_MASK_SHIFT) | ((uint32_t)confDecSt->confB.compVal << _LESENSE_ST_TCONFB_COMP_SHIFT) | ((uint32_t)confDecSt->confB.nextState << _LESENSE_ST_TCONFB_NEXTSTATE_SHIFT) | ((uint32_t)confDecSt->confB.setInt << _LESENSE_ST_TCONFB_SETIF_SHIFT); } /***************************************************************************//** * @brief * Set LESENSE decoder state. * * @details * This function can be used for setting the initial state of the LESENSE * decoder. * * @note * Make sure the LESENSE decoder state is initialized by this function before * enabling the decoder! * * @param[in] decSt * Decoder state to set as current state. Valid range: 0-15 ******************************************************************************/ void LESENSE_DecoderStateSet(uint32_t decSt) { EFM_ASSERT(decSt < 16U); LESENSE->DECSTATE = decSt & _LESENSE_DECSTATE_DECSTATE_MASK; } /***************************************************************************//** * @brief * Get the current state of the LESENSE decoder. * * @return * This function returns the value of LESENSE_DECSTATE register that * represents the current state of the LESENSE decoder. ******************************************************************************/ uint32_t LESENSE_DecoderStateGet(void) { return LESENSE->DECSTATE & _LESENSE_DECSTATE_DECSTATE_MASK; } /***************************************************************************//** * @brief * Reset the LESENSE module. * * @details * Use this function to reset the LESENSE registers. * * @note * Resetting LESENSE registers is required in each reset or power-on cycle in * order to configure the default values of the RAM mapped LESENSE registers. * LESENSE_Reset() can be called on initialization by setting the @p reqReset * parameter to true in LESENSE_Init(). ******************************************************************************/ void LESENSE_Reset(void) { uint32_t i; /* Disable all LESENSE interrupts first */ LESENSE->IEN = _LESENSE_IEN_RESETVALUE; /* Clear all pending LESENSE interrupts */ LESENSE->IFC = _LESENSE_IFC_MASK; /* Stop the decoder */ LESENSE->DECCTRL |= LESENSE_DECCTRL_DISABLE; /* Stop sensor scan and clear result buffer */ LESENSE->CMD = (LESENSE_CMD_STOP | LESENSE_CMD_CLEARBUF); /* Reset LESENSE configuration registers */ LESENSE->CTRL = _LESENSE_CTRL_RESETVALUE; LESENSE->PERCTRL = _LESENSE_PERCTRL_RESETVALUE; LESENSE->DECCTRL = _LESENSE_DECCTRL_RESETVALUE; LESENSE->BIASCTRL = _LESENSE_BIASCTRL_RESETVALUE; LESENSE->CHEN = _LESENSE_CHEN_RESETVALUE; LESENSE->IDLECONF = _LESENSE_IDLECONF_RESETVALUE; LESENSE->ALTEXCONF = _LESENSE_ALTEXCONF_RESETVALUE; /* Disable LESENSE to control GPIO pins */ LESENSE->ROUTE = _LESENSE_ROUTE_RESETVALUE; /* Reset all channel configuration registers */ for (i = 0U; i < 16U; ++i) { LESENSE->CH[i].TIMING = _LESENSE_CH_TIMING_RESETVALUE; LESENSE->CH[i].INTERACT = _LESENSE_CH_INTERACT_RESETVALUE; LESENSE->CH[i].EVAL = _LESENSE_CH_EVAL_RESETVALUE; } /* Reset all decoder state configuration registers */ for (i = 0U; i < 16U; ++i) { LESENSE->ST[i].TCONFA = _LESENSE_ST_TCONFA_RESETVALUE; LESENSE->ST[i].TCONFB = _LESENSE_ST_TCONFB_RESETVALUE; } } /** @} (end addtogroup LESENSE) */ /** @} (end addtogroup EM_Library) */ #endif /* defined(LESENSE_COUNT) && (LESENSE_COUNT > 0) */