/**
  ******************************************************************************
  * @file               ft32f0xx_rcc.c
  * @author             FMD AE
  * @brief              This file provides firmware functions to manage the following
  *                     functionalities of the Reset and clock control (RCC) peripheral:
  *                     + Internal/external clocks, PLL, CSS and MCO configuration
  *                     + System, AHB and APB busses clocks configuration
  *                 + Peripheral clocks configuration
  *                 + Interrupts and flags management
  * @version            V1.0.0
  * @data                   2021-07-01
    ******************************************************************************
  */


/* Includes ------------------------------------------------------------------*/
#include "ft32f0xx_rcc.h"


/* ---------------------- RCC registers mask -------------------------------- */
/* RCC Flag Mask */
#define FLAG_MASK                 ((uint8_t)0x1F)

/* CR register byte 2 (Bits[23:16]) base address */
#define CR_BYTE2_ADDRESS          ((uint32_t)0x40021002)

/* CFGR register byte 3 (Bits[31:23]) base address */
#define CFGR_BYTE3_ADDRESS        ((uint32_t)0x40021007)

/* CIR register byte 1 (Bits[15:8]) base address */
#define CIR_BYTE1_ADDRESS         ((uint32_t)0x40021009)

/* CIR register byte 2 (Bits[23:16]) base address */
#define CIR_BYTE2_ADDRESS         ((uint32_t)0x4002100A)

static __I uint8_t APBAHBPrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9};

/**
  * @brief  Resets the RCC clock configuration to the default reset state.
  * @note   The default reset state of the clock configuration is given below:
  * @note      HSI ON and used as system clock source
  * @note      HSI14, HSE and PLL OFF
  * @note      AHB, APB prescaler set to 1.
  * @note      CSS and MCO OFF
  * @note      All interrupts disabled
  * @note   However, this function doesn't modify the configuration of the
  * @note      Peripheral clocks
  * @note      LSI, LSE and RTC clocks
  * @param  None
  * @retval None
  */
void RCC_DeInit(void)
{
  /* Set HSION bit */
  RCC->CR |= (uint32_t)0x00000001;

  /* Reset SW[1:0], HPRE[3:0], PPRE[2:0], ADCPRE, MCOSEL[2:0], MCOPRE[2:0] and PLLNODIV bits */
  RCC->CFGR &= (uint32_t)0x08FFB80C;

  /* Reset HSEON, CSSON and PLLON bits */
  RCC->CR &= (uint32_t)0xFEF6FFFF;

  /* Reset HSEBYP bit */
  RCC->CR &= (uint32_t)0xFFFBFFFF;

  /* Reset PLLSRC, PLLXTPRE and PLLMUL[3:0] bits */
  RCC->CFGR &= (uint32_t)0xFFC0FFFF;

  /* Reset PREDIV1[3:0] bits */
  RCC->CFGR2 &= (uint32_t)0xFFFFFFF0;

  /* Reset USARTSW[1:0], I2CSW, CECSW and ADCSW bits */
  RCC->CFGR3 &= (uint32_t)0xFFF0FEAC;

  /* Reset HSI14 bit */
  RCC->CR2 &= (uint32_t)0xFFFFFFFE;

  /* Disable all interrupts */
  RCC->CIR = 0x00000000;
}

/**
  * @brief  Configures the External High Speed oscillator (HSE).
  * @note   After enabling the HSE (RCC_HSE_ON or RCC_HSE_Bypass), the application
  *         software should wait on HSERDY flag to be set indicating that HSE clock
  *         is stable and can be used to clock the PLL and/or system clock.
  * @note   HSE state can not be changed if it is used directly or through the
  *         PLL as system clock. In this case, you have to select another source
  *         of the system clock then change the HSE state (ex. disable it).
  * @note   The HSE is stopped by hardware when entering STOP and STANDBY modes.
  * @note   This function resets the CSSON bit, so if the Clock security system(CSS)
  *         was previously enabled you have to enable it again after calling this
  *         function.
  * @param  RCC_HSE: specifies the new state of the HSE.
  *          This parameter can be one of the following values:
  *            @arg RCC_HSE_OFF: turn OFF the HSE oscillator, HSERDY flag goes low after
  *                              6 HSE oscillator clock cycles.
  *            @arg RCC_HSE_ON: turn ON the HSE oscillator
  *            @arg RCC_HSE_Bypass: HSE oscillator bypassed with external clock
  * @retval None
  */
void RCC_HSEConfig(uint8_t RCC_HSE)
{
  /* Check the parameters */
  assert_param(IS_RCC_HSE(RCC_HSE));

  /* Reset HSEON and HSEBYP bits before configuring the HSE ------------------*/
  *(__IO uint8_t *) CR_BYTE2_ADDRESS = RCC_HSE_OFF;

  /* Set the new HSE configuration -------------------------------------------*/
  *(__IO uint8_t *) CR_BYTE2_ADDRESS = RCC_HSE;

}

/**
  * @brief  Waits for HSE start-up.
  * @note   This function waits on HSERDY flag to be set and return SUCCESS if
  *         this flag is set, otherwise returns ERROR if the timeout is reached
  *         and this flag is not set. The timeout value is defined by the constant
  *         HSE_STARTUP_TIMEOUT in ft32f0xx.h file. You can tailor it depending
  *         on the HSE crystal used in your application.
  * @note   The HSE is stopped by hardware when entering STOP and STANDBY modes.
  * @param  None
  * @retval An ErrorStatus enumeration value:
  *          - SUCCESS: HSE oscillator is stable and ready to use
  *          - ERROR: HSE oscillator not yet ready
  */
ErrorStatus RCC_WaitForHSEStartUp(void)
{
  __IO uint32_t StartUpCounter = 0;
  ErrorStatus status = ERROR;
  FlagStatus HSEStatus = RESET;

  /* Wait till HSE is ready and if timeout is reached exit */
  do
  {
    HSEStatus = RCC_GetFlagStatus(RCC_FLAG_HSERDY);
    StartUpCounter++;
  } while((StartUpCounter != HSE_STARTUP_TIMEOUT) && (HSEStatus == RESET));

  if (RCC_GetFlagStatus(RCC_FLAG_HSERDY) != RESET)
  {
    status = SUCCESS;
  }
  else
  {
    status = ERROR;
  }
  return (status);
}

/**
  * @brief  Adjusts the Internal High Speed oscillator (HSI) calibration value.
  * @note   The calibration is used to compensate for the variations in voltage
  *         and temperature that influence the frequency of the internal HSI RC.
  *         Refer to the Application Note AN4067 for more details on how to
  *         calibrate the HSI.
  * @param  HSICalibrationValue: specifies the HSI calibration trimming value.
  *          This parameter must be a number between 0 and 0x1F.
  * @retval None
  */
void RCC_AdjustHSICalibrationValue(uint8_t HSICalibrationValue)
{
  uint32_t tmpreg = 0;

  /* Check the parameters */
  assert_param(IS_RCC_HSI_CALIBRATION_VALUE(HSICalibrationValue));

  tmpreg = RCC->CR;

  /* Clear HSITRIM[4:0] bits */
  tmpreg &= ~RCC_CR_HSITRIM;

  /* Set the HSITRIM[4:0] bits according to HSICalibrationValue value */
  tmpreg |= (uint32_t)HSICalibrationValue << 3;

  /* Store the new value */
  RCC->CR = tmpreg;
}

/**
  * @brief  Enables or disables the Internal High Speed oscillator (HSI).
  * @note   After enabling the HSI, the application software should wait on
  *         HSIRDY flag to be set indicating that HSI clock is stable and can
  *         be used to clock the PLL and/or system clock.
  * @note   HSI can not be stopped if it is used directly or through the PLL
  *         as system clock. In this case, you have to select another source
  *         of the system clock then stop the HSI.
  * @note   The HSI is stopped by hardware when entering STOP and STANDBY modes.
  * @param  NewState: new state of the HSI.
  *          This parameter can be: ENABLE or DISABLE.
  * @note   When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator
  *         clock cycles.
  * @retval None
  */
void RCC_HSICmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->CR |= RCC_CR_HSION;
  }
  else
  {
    RCC->CR &= ~RCC_CR_HSION;
  }
}

/**
  * @brief  Adjusts the Internal High Speed oscillator for ADC (HSI14)
  *         calibration value.
  * @note   The calibration is used to compensate for the variations in voltage
  *         and temperature that influence the frequency of the internal HSI RC.
  *         Refer to the Application Note AN4067  for more details on how to
  *         calibrate the HSI14.
  * @param  HSI14CalibrationValue: specifies the HSI14 calibration trimming value.
  *          This parameter must be a number between 0 and 0x1F.
  * @retval None
  */
void RCC_AdjustHSI14CalibrationValue(uint8_t HSI14CalibrationValue)
{
  uint32_t tmpreg = 0;

  /* Check the parameters */
  assert_param(IS_RCC_HSI14_CALIBRATION_VALUE(HSI14CalibrationValue));

  tmpreg = RCC->CR2;

  /* Clear HSI14TRIM[4:0] bits */
  tmpreg &= ~RCC_CR2_HSI14TRIM;

  /* Set the HSITRIM14[4:0] bits according to HSI14CalibrationValue value */
  tmpreg |= (uint32_t)HSI14CalibrationValue << 3;

  /* Store the new value */
  RCC->CR2 = tmpreg;
}

/**
  * @brief  Enables or disables the Internal High Speed oscillator for ADC (HSI14).
  * @note   After enabling the HSI14, the application software should wait on
  *         HSIRDY flag to be set indicating that HSI clock is stable and can
  *         be used to clock the ADC.
  * @note   The HSI14 is stopped by hardware when entering STOP and STANDBY modes.
  * @param  NewState: new state of the HSI14.
  *          This parameter can be: ENABLE or DISABLE.
  * @note   When the HSI14 is stopped, HSI14RDY flag goes low after 6 HSI14 oscillator
  *         clock cycles.
  * @retval None
  */
void RCC_HSI14Cmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->CR2 |= RCC_CR2_HSI14ON;
  }
  else
  {
    RCC->CR2 &= ~RCC_CR2_HSI14ON;
  }
}

/**
  * @brief  Enables or disables the Internal High Speed oscillator request from ADC.
  * @param  NewState: new state of the HSI14 ADC request.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_HSI14ADCRequestCmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->CR2 &= ~RCC_CR2_HSI14DIS;
  }
  else
  {
    RCC->CR2 |= RCC_CR2_HSI14DIS;
  }
}

/**
  * @brief  Configures the External Low Speed oscillator (LSE).
  * @note   As the LSE is in the Backup domain and write access is denied to this
  *         domain after reset, you have to enable write access using
  *         PWR_BackupAccessCmd(ENABLE) function before to configure the LSE
  *         (to be done once after reset).
  * @note   After enabling the LSE (RCC_LSE_ON or RCC_LSE_Bypass), the application
  *         software should wait on LSERDY flag to be set indicating that LSE clock
  *         is stable and can be used to clock the RTC.
  * @param  RCC_LSE: specifies the new state of the LSE.
  *          This parameter can be one of the following values:
  *            @arg RCC_LSE_OFF: turn OFF the LSE oscillator, LSERDY flag goes low after
  *                              6 LSE oscillator clock cycles.
  *            @arg RCC_LSE_ON: turn ON the LSE oscillator
  *            @arg RCC_LSE_Bypass: LSE oscillator bypassed with external clock
  * @retval None
  */
void RCC_LSEConfig(uint32_t RCC_LSE)
{
  /* Check the parameters */
  assert_param(IS_RCC_LSE(RCC_LSE));

  /* Reset LSEON and LSEBYP bits before configuring the LSE ------------------*/
  /* Reset LSEON bit */
  RCC->BDCR &= ~(RCC_BDCR_LSEON);

  /* Reset LSEBYP bit */
  RCC->BDCR &= ~(RCC_BDCR_LSEBYP);

  /* Configure LSE */
  RCC->BDCR |= RCC_LSE;
}

/**
  * @brief  Configures the External Low Speed oscillator (LSE) drive capability.
  * @param  RCC_LSEDrive: specifies the new state of the LSE drive capability.
  *          This parameter can be one of the following values:
  *            @arg RCC_LSEDrive_Low: LSE oscillator low drive capability.
  *            @arg RCC_LSEDrive_MediumLow: LSE oscillator medium low drive capability.
  *            @arg RCC_LSEDrive_MediumHigh: LSE oscillator medium high drive capability.
  *            @arg RCC_LSEDrive_High: LSE oscillator high drive capability.
  * @retval None
  */
void RCC_LSEDriveConfig(uint32_t RCC_LSEDrive)
{
  /* Check the parameters */
  assert_param(IS_RCC_LSE_DRIVE(RCC_LSEDrive));

  /* Clear LSEDRV[1:0] bits */
  RCC->BDCR &= ~(RCC_BDCR_LSEDRV);

  /* Set the LSE Drive */
  RCC->BDCR |= RCC_LSEDrive;
}

/**
  * @brief  Enables or disables the Internal Low Speed oscillator (LSI).
  * @note   After enabling the LSI, the application software should wait on
  *         LSIRDY flag to be set indicating that LSI clock is stable and can
  *         be used to clock the IWDG and/or the RTC.
  * @note   LSI can not be disabled if the IWDG is running.
  * @param  NewState: new state of the LSI.
  *          This parameter can be: ENABLE or DISABLE.
  * @note   When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator
  *         clock cycles.
  * @retval None
  */
void RCC_LSICmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->CSR |= RCC_CSR_LSION;
  }
  else
  {
    RCC->CSR &= ~RCC_CSR_LSION;
  }
}

/**
  * @brief  Configures the PLL clock source and multiplication factor.
  * @note   This function must be used only when the PLL is disabled.
  *
  * @param  RCC_PLLSource: specifies the PLL entry clock source.
  *          This parameter can be one of the following values:
  *            @arg RCC_PLLSource_HSI_Div2: HSI oscillator clock selected as PLL clock source
  *            @arg RCC_PLLSource_PREDIV1: PREDIV1 clock selected as PLL clock entry
  *            @arg RCC_PLLSource_HSI48 HSI48 oscillator clock selected as PLL clock source,
  *            @arg RCC_PLLSource_HSI: HSI clock selected as PLL clock entry
  * @note   The minimum input clock frequency for PLL is 2 MHz (when using HSE as
  *         PLL source).
  *
  * @param  RCC_PLLMul: specifies the PLL multiplication factor, which drive the PLLVCO clock
  *          This parameter can be RCC_PLLMul_x where x:[2,16]
  *
  * @retval None
  */
void RCC_PLLConfig(uint32_t RCC_PLLSource, uint32_t RCC_PLLMul)
{
  /* Check the parameters */
  assert_param(IS_RCC_PLL_SOURCE(RCC_PLLSource));
  assert_param(IS_RCC_PLL_MUL(RCC_PLLMul));

  /* Clear PLL Source [16] and Multiplier [21:18] bits */
  RCC->CFGR &= ~(RCC_CFGR_PLLMULL | RCC_CFGR_PLLSRC);

  /* Set the PLL Source and Multiplier */
  RCC->CFGR |= (uint32_t)(RCC_PLLSource | RCC_PLLMul);
}

/**
  * @brief  Enables or disables the PLL.
  * @note   After enabling the PLL, the application software should wait on
  *         PLLRDY flag to be set indicating that PLL clock is stable and can
  *         be used as system clock source.
  * @note   The PLL can not be disabled if it is used as system clock source
  * @note   The PLL is disabled by hardware when entering STOP and STANDBY modes.
  * @param  NewState: new state of the PLL.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_PLLCmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->CR |= RCC_CR_PLLON;
  }
  else
  {
    RCC->CR &= ~RCC_CR_PLLON;
  }
}

/**
  * @brief  Enables or disables the Internal High Speed oscillator for USB (HSI48).
  * @note   After enabling the HSI48, the application software should wait on
  *         HSI48RDY flag to be set indicating that HSI48 clock is stable and can
  *         be used to clock the USB.
  * @note   The HSI48 is stopped by hardware when entering STOP and STANDBY modes.
  * @param  NewState: new state of the HSI48.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_HSI48Cmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->CR2 |= RCC_CR2_HSI48ON;
  }
  else
  {
    RCC->CR2 &= ~RCC_CR2_HSI48ON;
  }
}

/**
  * @brief  Configures the PREDIV1 division factor.
  * @note   This function must be used only when the PLL is disabled.
  * @param  RCC_PREDIV1_Div: specifies the PREDIV1 clock division factor.
  *          This parameter can be RCC_PREDIV1_Divx where x:[1,16]
  * @retval None
  */
void RCC_PREDIV1Config(uint32_t RCC_PREDIV1_Div)
{
  uint32_t tmpreg = 0;

  /* Check the parameters */
  assert_param(IS_RCC_PREDIV1(RCC_PREDIV1_Div));

  tmpreg = RCC->CFGR2;
  /* Clear PREDIV1[3:0] bits */
  tmpreg &= ~(RCC_CFGR2_PREDIV1);
  /* Set the PREDIV1 division factor */
  tmpreg |= RCC_PREDIV1_Div;
  /* Store the new value */
  RCC->CFGR2 = tmpreg;
}

/**
  * @brief  Enables or disables the Clock Security System.
  * @note   If a failure is detected on the HSE oscillator clock, this oscillator
  *         is automatically disabled and an interrupt is generated to inform the
  *         software about the failure (Clock Security System Interrupt, CSSI),
  *         allowing the MCU to perform rescue operations. The CSSI is linked to
  *         the Cortex-M0 NMI (Non-Maskable Interrupt) exception vector.
  * @param  NewState: new state of the Clock Security System.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_ClockSecuritySystemCmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->CR |= RCC_CR_CSSON;
  }
  else
  {
    RCC->CR &= ~RCC_CR_CSSON;
  }
}
/**
  * @brief  Selects the clock source to output on MCO pin (PA8) and the corresponding
  *         prescsaler.
  * @note   PA8 should be configured in alternate function mode.
  * @param  RCC_MCOSource: specifies the clock source to output.
  *          This parameter can be one of the following values:
  *            @arg RCC_MCOSource_NoClock: No clock selected.
  *            @arg RCC_MCOSource_HSI14: HSI14 oscillator clock selected.
  *            @arg RCC_MCOSource_LSI: LSI oscillator clock selected.
  *            @arg RCC_MCOSource_LSE: LSE oscillator clock selected.
  *            @arg RCC_MCOSource_SYSCLK: System clock selected.
  *            @arg RCC_MCOSource_HSI: HSI oscillator clock selected.
  *            @arg RCC_MCOSource_HSE: HSE oscillator clock selected.
  *            @arg RCC_MCOSource_PLLCLK_Div2: PLL clock divided by 2 selected.
  *            @arg RCC_MCOSource_PLLCLK: PLL clock selected.
  *            @arg RCC_MCOSource_HSI48: HSI48 clock selected.
  * @param  RCC_MCOPrescaler: specifies the prescaler on MCO pin.
  *          This parameter can be one of the following values:
  *            @arg RCC_MCOPrescaler_1: MCO clock is divided by 1.
  *            @arg RCC_MCOPrescaler_2: MCO clock is divided by 2.
  *            @arg RCC_MCOPrescaler_4: MCO clock is divided by 4.
  *            @arg RCC_MCOPrescaler_8: MCO clock is divided by 8.
  *            @arg RCC_MCOPrescaler_16: MCO clock is divided by 16.
  *            @arg RCC_MCOPrescaler_32: MCO clock is divided by 32.
  *            @arg RCC_MCOPrescaler_64: MCO clock is divided by 64.
  *            @arg RCC_MCOPrescaler_128: MCO clock is divided by 128.
  * @retval None
  */
void RCC_MCOConfig(uint8_t RCC_MCOSource, uint32_t RCC_MCOPrescaler)
{
  uint32_t tmpreg = 0;

  /* Check the parameters */
  assert_param(IS_RCC_MCO_SOURCE(RCC_MCOSource));
  assert_param(IS_RCC_MCO_PRESCALER(RCC_MCOPrescaler));

  /* Get CFGR value */
  tmpreg = RCC->CFGR;
  /* Clear MCOPRE[2:0] bits */
  tmpreg &= ~(RCC_CFGR_MCO_PRE | RCC_CFGR_MCO | RCC_CFGR_PLLNODIV);
  /* Set the RCC_MCOSource and RCC_MCOPrescaler */
  tmpreg |= (RCC_MCOPrescaler | ((uint32_t)RCC_MCOSource<<24));
  /* Store the new value */
  RCC->CFGR = tmpreg;
}

/**
  * @}
  */
/**
  * @brief  Configures the system clock (SYSCLK).
  * @note   The HSI is used (enabled by hardware) as system clock source after
  *         startup from Reset, wake-up from STOP and STANDBY mode, or in case
  *         of failure of the HSE used directly or indirectly as system clock
  *         (if the Clock Security System CSS is enabled).
  * @note   A switch from one clock source to another occurs only if the target
  *         clock source is ready (clock stable after startup delay or PLL locked).
  *         If a clock source which is not yet ready is selected, the switch will
  *         occur when the clock source will be ready.
  *         You can use RCC_GetSYSCLKSource() function to know which clock is
  *         currently used as system clock source.
  * @param  RCC_SYSCLKSource: specifies the clock source used as system clock source
  *          This parameter can be one of the following values:
  *            @arg RCC_SYSCLKSource_HSI:    HSI selected as system clock source
  *            @arg RCC_SYSCLKSource_HSE:    HSE selected as system clock source
  *            @arg RCC_SYSCLKSource_PLLCLK: PLL selected as system clock source
  *            @arg RCC_SYSCLKSource_HSI48:  HSI48 selected as system clock source
  * @retval None
  */
void RCC_SYSCLKConfig(uint32_t RCC_SYSCLKSource)
{
  uint32_t tmpreg = 0;

  /* Check the parameters */
  assert_param(IS_RCC_SYSCLK_SOURCE(RCC_SYSCLKSource));

  tmpreg = RCC->CFGR;

  /* Clear SW[1:0] bits */
  tmpreg &= ~RCC_CFGR_SW;

  /* Set SW[1:0] bits according to RCC_SYSCLKSource value */
  tmpreg |= RCC_SYSCLKSource;

  /* Store the new value */
  RCC->CFGR = tmpreg;
}

/**
  * @brief  Returns the clock source used as system clock.
  * @param  None
  * @retval The clock source used as system clock. The returned value can be one
  *         of the following values:
  *           - 0x00: HSI used as system clock
  *           - 0x04: HSE used as system clock
  *           - 0x08: PLL used as system clock
  *           - 0x0C: HSI48 used as system clock
  */
uint8_t RCC_GetSYSCLKSource(void)
{
  return ((uint8_t)(RCC->CFGR & RCC_CFGR_SWS));
}

/**
  * @brief  Configures the AHB clock (HCLK).
  * @param  RCC_SYSCLK: defines the AHB clock divider. This clock is derived from
  *         the system clock (SYSCLK).
  *          This parameter can be one of the following values:
  *            @arg RCC_SYSCLK_Div1:   AHB clock = SYSCLK
  *            @arg RCC_SYSCLK_Div2:   AHB clock = SYSCLK/2
  *            @arg RCC_SYSCLK_Div4:   AHB clock = SYSCLK/4
  *            @arg RCC_SYSCLK_Div8:   AHB clock = SYSCLK/8
  *            @arg RCC_SYSCLK_Div16:  AHB clock = SYSCLK/16
  *            @arg RCC_SYSCLK_Div64:  AHB clock = SYSCLK/64
  *            @arg RCC_SYSCLK_Div128: AHB clock = SYSCLK/128
  *            @arg RCC_SYSCLK_Div256: AHB clock = SYSCLK/256
  *            @arg RCC_SYSCLK_Div512: AHB clock = SYSCLK/512
  * @retval None
  */
void RCC_HCLKConfig(uint32_t RCC_SYSCLK)
{
  uint32_t tmpreg = 0;

  /* Check the parameters */
  assert_param(IS_RCC_HCLK(RCC_SYSCLK));

  tmpreg = RCC->CFGR;

  /* Clear HPRE[3:0] bits */
  tmpreg &= ~RCC_CFGR_HPRE;

  /* Set HPRE[3:0] bits according to RCC_SYSCLK value */
  tmpreg |= RCC_SYSCLK;

  /* Store the new value */
  RCC->CFGR = tmpreg;
}

/**
  * @brief  Configures the APB clock (PCLK).
  * @param  RCC_HCLK: defines the APB clock divider. This clock is derived from
  *         the AHB clock (HCLK).
  *          This parameter can be one of the following values:
  *            @arg RCC_HCLK_Div1: APB clock = HCLK
  *            @arg RCC_HCLK_Div2: APB clock = HCLK/2
  *            @arg RCC_HCLK_Div4: APB clock = HCLK/4
  *            @arg RCC_HCLK_Div8: APB clock = HCLK/8
  *            @arg RCC_HCLK_Div16: APB clock = HCLK/16
  * @retval None
  */
void RCC_PCLKConfig(uint32_t RCC_HCLK)
{
  uint32_t tmpreg = 0;

  /* Check the parameters */
  assert_param(IS_RCC_PCLK(RCC_HCLK));

  tmpreg = RCC->CFGR;

  /* Clear PPRE[2:0] bits */
  tmpreg &= ~RCC_CFGR_PPRE;

  /* Set PPRE[2:0] bits according to RCC_HCLK value */
  tmpreg |= RCC_HCLK;

  /* Store the new value */
  RCC->CFGR = tmpreg;
}

/**
  * @brief  Configures the ADC clock (ADCCLK).
  * @note   This function is obsolete.
  *         For proper ADC clock selection, refer to ADC_ClockModeConfig() in the ADC driver
  * @param  RCC_ADCCLK: defines the ADC clock source. This clock is derived
  *         from the HSI14 or APB clock (PCLK).
  *          This parameter can be one of the following values:
  *             @arg RCC_ADCCLK_HSI14: ADC clock = HSI14 (14MHz)
  *             @arg RCC_ADCCLK_PCLK_Div2: ADC clock = PCLK/2
  *             @arg RCC_ADCCLK_PCLK_Div4: ADC clock = PCLK/4
  * @retval None
  */
void RCC_ADCCLKConfig(uint32_t RCC_ADCCLK)
{
  /* Check the parameters */
  assert_param(IS_RCC_ADCCLK(RCC_ADCCLK));

  /* Clear ADCPRE bit */
  RCC->CFGR &= ~RCC_CFGR_ADCPRE;
  /* Set ADCPRE bits according to RCC_PCLK value */
  RCC->CFGR |= RCC_ADCCLK & 0xFFFF;

  /* Clear ADCSW bit */
  RCC->CFGR3 &= ~RCC_CFGR3_ADCSW;
  /* Set ADCSW bits according to RCC_ADCCLK value */
  RCC->CFGR3 |= RCC_ADCCLK >> 16;
}

/**
  * @brief  Configures the CEC clock (CECCLK).
  * @param  RCC_CECCLK: defines the CEC clock source. This clock is derived
  *         from the HSI or LSE clock.
  *          This parameter can be one of the following values:
  *             @arg RCC_CECCLK_HSI_Div244: CEC clock = HSI/244 (32768Hz)
  *             @arg RCC_CECCLK_LSE: CEC clock = LSE
  * @retval None
  */


/**
  * @brief  Configures the I2C1 clock (I2C1CLK).
  * @param  RCC_I2CCLK: defines the I2C1 clock source. This clock is derived
  *         from the HSI or System clock.
  *          This parameter can be one of the following values:
  *             @arg RCC_I2C1CLK_HSI: I2C1 clock = HSI
  *             @arg RCC_I2C1CLK_SYSCLK: I2C1 clock = System Clock
  * @retval None
  */
void RCC_I2CCLKConfig(uint32_t RCC_I2CCLK)
{
  /* Check the parameters */
  assert_param(IS_RCC_I2CCLK(RCC_I2CCLK));

  /* Clear I2CSW bit */
  RCC->CFGR3 &= ~RCC_CFGR3_I2C1SW;
  /* Set I2CSW bits according to RCC_I2CCLK value */
  RCC->CFGR3 |= RCC_I2CCLK;
}

/**
  * @brief  Configures the USART1 clock (USART1CLK).
  * @param  RCC_USARTCLK: defines the USART clock source. This clock is derived
  *         from the HSI or System clock.
  *          This parameter can be one of the following values:
  *             @arg RCC_USART1CLK_PCLK: USART1 clock = APB Clock (PCLK)
  *             @arg RCC_USART1CLK_SYSCLK: USART1 clock = System Clock
  *             @arg RCC_USART1CLK_LSE: USART1 clock = LSE Clock
  *             @arg RCC_USART1CLK_HSI: USART1 clock = HSI Clock
  *             @arg RCC_USART2CLK_PCLK: USART2 clock = APB Clock (PCLK)
  *             @arg RCC_USART2CLK_SYSCLK: USART2 clock = System Clock
  *             @arg RCC_USART2CLK_LSE: USART2 clock = LSE Clock
  *             @arg RCC_USART2CLK_HSI: USART2 clock = HSI Clock
  *             @arg RCC_USART3CLK_PCLK: USART3 clock = APB Clock (PCLK)
  *             @arg RCC_USART3CLK_SYSCLK: USART3 clock = System Clock
  *             @arg RCC_USART3CLK_LSE: USART3 clock = LSE Clock
  *             @arg RCC_USART3CLK_HSI: USART3 clock = HSI Clock
  * @retval None
  */
void RCC_USARTCLKConfig(uint32_t RCC_USARTCLK)
{
  uint32_t tmp = 0;

  /* Check the parameters */
  assert_param(IS_RCC_USARTCLK(RCC_USARTCLK));

  /* Get USART index */
  tmp = (RCC_USARTCLK >> 28);

  /* Clear USARTSW[1:0] bit */
  if (tmp == (uint32_t)0x00000001)
  {
    /* Clear USART1SW[1:0] bit */
    RCC->CFGR3 &= ~RCC_CFGR3_USART1SW;
  }
//  else if (tmp == (uint32_t)0x00000002)
//  {
//    /* Clear USART2SW[1:0] bit */
//    RCC->CFGR3 &= ~RCC_CFGR3_USART2SW;
//  }
//  else
//  {
//    /* Clear USART3SW[1:0] bit */
//    RCC->CFGR3 &= ~RCC_CFGR3_USART3SW;
//  }

  /* Set USARTxSW bits according to RCC_USARTCLK value */
  RCC->CFGR3 |= RCC_USARTCLK;
}

/**
  * @brief  Configures the USB clock (USBCLK).
  * @param  RCC_USBCLK: defines the USB clock source. This clock is derived
  *         from the HSI48 or system clock.
  *          This parameter can be one of the following values:
  *             @arg RCC_USBCLK_HSI48: USB clock = HSI48
  *             @arg RCC_USBCLK_PLLCLK: USB clock = PLL clock
  * @retval None
  */
void RCC_USBCLKConfig(uint32_t RCC_USBCLK)
{
  /* Check the parameters */
  assert_param(IS_RCC_USBCLK(RCC_USBCLK));

  /* Clear USBSW bit */
  RCC->CFGR3 &= ~RCC_CFGR3_USBSW;
  /* Set USBSW bits according to RCC_USBCLK value */
  RCC->CFGR3 |= RCC_USBCLK;
}

/**
  * @brief  Returns the frequencies of the System, AHB and APB busses clocks.
  * @note    The frequency returned by this function is not the real frequency
  *           in the chip. It is calculated based on the predefined constant and
  *           the source selected by RCC_SYSCLKConfig():
  *
  * @note     If SYSCLK source is HSI, function returns constant HSI_VALUE(*)
  *
  * @note     If SYSCLK source is HSE, function returns constant HSE_VALUE(**)
  *
  * @note     If SYSCLK source is PLL, function returns constant HSE_VALUE(**)
  *             or HSI_VALUE(*) multiplied by the PLL factors.
  *
  * @note     If SYSCLK source is HSI48, function returns constant HSI48_VALUE(***)
  *
  * @note     (*) HSI_VALUE is a constant defined in ft32f0xx.h file (default value
  *               8 MHz) but the real value may vary depending on the variations
  *               in voltage and temperature, refer to RCC_AdjustHSICalibrationValue().
  *
  * @note     (**) HSE_VALUE is a constant defined in ft32f0xx.h file (default value
  *                8 MHz), user has to ensure that HSE_VALUE is same as the real
  *                frequency of the crystal used. Otherwise, this function may
  *                return wrong result.
  *
  * @note     (***) HSI48_VALUE is a constant defined in ft32f0xx.h file (default value
  *                 48 MHz) but the real value may vary depending on the variations
  *                 in voltage and temperature.
  *
  * @note   The result of this function could be not correct when using fractional
  *         value for HSE crystal.
  *
  * @param  RCC_Clocks: pointer to a RCC_ClocksTypeDef structure which will hold
  *         the clocks frequencies.
  *
  * @note   This function can be used by the user application to compute the
  *         baudrate for the communication peripherals or configure other parameters.
  * @note   Each time SYSCLK, HCLK and/or PCLK clock changes, this function
  *         must be called to update the structure's field. Otherwise, any
  *         configuration based on this function will be incorrect.
  *
  * @retval None
  */
void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks)
{
  uint32_t tmp = 0, pllmull = 0, pllsource = 0, prediv1factor = 0, presc = 0, pllclk = 0;

  /* Get SYSCLK source -------------------------------------------------------*/
  tmp = RCC->CFGR & RCC_CFGR_SWS;

  switch (tmp)
  {
    case 0x00:  /* HSI used as system clock */
      RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
      break;
    case 0x04:  /* HSE used as system clock */
      RCC_Clocks->SYSCLK_Frequency = HSE_VALUE;
      break;
    case 0x08:  /* PLL used as system clock */
      /* Get PLL clock source and multiplication factor ----------------------*/
      pllmull = RCC->CFGR & RCC_CFGR_PLLMULL;
      pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
      pllmull = ( pllmull >> 18) + 2;

      if (pllsource == 0x00)
      {
        /* HSI oscillator clock divided by 2 selected as PLL clock entry */
        pllclk = (HSI_VALUE >> 1) * pllmull;
      }
      else
      {
        prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1;
        /* HSE oscillator clock selected as PREDIV1 clock entry */
        pllclk = (HSE_VALUE / prediv1factor) * pllmull;
      }
      RCC_Clocks->SYSCLK_Frequency = pllclk;
      break;
    case 0x0C:  /* HSI48 used as system clock */
      RCC_Clocks->SYSCLK_Frequency = HSI48_VALUE;
      break;
    default: /* HSI used as system clock */
      RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
      break;
  }
  /* Compute HCLK, PCLK clocks frequencies -----------------------------------*/
  /* Get HCLK prescaler */
  tmp = RCC->CFGR & RCC_CFGR_HPRE;
  tmp = tmp >> 4;
  presc = APBAHBPrescTable[tmp];
  /* HCLK clock frequency */
  RCC_Clocks->HCLK_Frequency = RCC_Clocks->SYSCLK_Frequency >> presc;

  /* Get PCLK prescaler */
  tmp = RCC->CFGR & RCC_CFGR_PPRE;
  tmp = tmp >> 8;
  presc = APBAHBPrescTable[tmp];
  /* PCLK clock frequency */
  RCC_Clocks->PCLK_Frequency = RCC_Clocks->HCLK_Frequency >> presc;

  /* ADCCLK clock frequency */
  if((RCC->CFGR3 & RCC_CFGR3_ADCSW) != RCC_CFGR3_ADCSW)
  {
    /* ADC Clock is HSI14 Osc. */
    RCC_Clocks->ADCCLK_Frequency = HSI14_VALUE;
  }
  else
  {
    if((RCC->CFGR & RCC_CFGR_ADCPRE) != RCC_CFGR_ADCPRE)
    {
      /* ADC Clock is derived from PCLK/2 */
      RCC_Clocks->ADCCLK_Frequency = RCC_Clocks->PCLK_Frequency >> 1;
    }
    else
    {
      /* ADC Clock is derived from PCLK/4 */
      RCC_Clocks->ADCCLK_Frequency = RCC_Clocks->PCLK_Frequency >> 2;
    }

  }

  /* CECCLK clock frequency */


  /* I2C1CLK clock frequency */
  if((RCC->CFGR3 & RCC_CFGR3_I2C1SW) != RCC_CFGR3_I2C1SW)
  {
    /* I2C1 Clock is HSI Osc. */
    RCC_Clocks->I2C1CLK_Frequency = HSI_VALUE;
  }
  else
  {
    /* I2C1 Clock is System Clock */
    RCC_Clocks->I2C1CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
  }

  /* USART1CLK clock frequency */
  if((RCC->CFGR3 & RCC_CFGR3_USART1SW) == 0x0)
  {
    /* USART1 Clock is PCLK */
    RCC_Clocks->USART1CLK_Frequency = RCC_Clocks->PCLK_Frequency;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_USART1SW) == RCC_CFGR3_USART1SW_0)
  {
    /* USART1 Clock is System Clock */
    RCC_Clocks->USART1CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_USART1SW) == RCC_CFGR3_USART1SW_1)
  {
    /* USART1 Clock is LSE Osc. */
    RCC_Clocks->USART1CLK_Frequency = LSE_VALUE;
  }
  else if((RCC->CFGR3 & RCC_CFGR3_USART1SW) == RCC_CFGR3_USART1SW)
  {
    /* USART1 Clock is HSI Osc. */
    RCC_Clocks->USART1CLK_Frequency = HSI_VALUE;
  }

  /* USART2CLK clock frequency */
  RCC_Clocks->USART2CLK_Frequency=RCC_Clocks->PCLK_Frequency;
    /* USART2CLK clock frequency */
//  if((RCC->CFGR3 & RCC_CFGR3_USART2SW) == 0x0)
//  {
//    /* USART Clock is PCLK */
//    RCC_Clocks->USART2CLK_Frequency = RCC_Clocks->PCLK_Frequency;
//  }
//  else if((RCC->CFGR3 & RCC_CFGR3_USART2SW) == RCC_CFGR3_USART2SW_0)
//  {
//    /* USART Clock is System Clock */
//    RCC_Clocks->USART2CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
//  }
//  else if((RCC->CFGR3 & RCC_CFGR3_USART2SW) == RCC_CFGR3_USART2SW_1)
//  {
//    /* USART Clock is LSE Osc. */
//    RCC_Clocks->USART2CLK_Frequency = LSE_VALUE;
//  }
//  else if((RCC->CFGR3 & RCC_CFGR3_USART2SW) == RCC_CFGR3_USART2SW)
//  {
//    /* USART Clock is HSI Osc. */
//    RCC_Clocks->USART2CLK_Frequency = HSI_VALUE;
//  }


  /* USART3CLK clock frequency */

  /* USBCLK clock frequency */
  if((RCC->CFGR3 & RCC_CFGR3_USBSW) != RCC_CFGR3_USBSW)
  {
    /* USB Clock is HSI48 */
    RCC_Clocks->USBCLK_Frequency = HSI48_VALUE;
  }
  else
  {
    /* USB Clock is PLL clock */
    RCC_Clocks->USBCLK_Frequency = pllclk;
  }
}

/**
  * @}
  */

/**
  * @brief  Configures the RTC clock (RTCCLK).
  * @note   As the RTC clock configuration bits are in the Backup domain and write
  *         access is denied to this domain after reset, you have to enable write
  *         access using PWR_BackupAccessCmd(ENABLE) function before to configure
  *         the RTC clock source (to be done once after reset).
  * @note   Once the RTC clock is configured it can't be changed unless the RTC
  *         is reset using RCC_BackupResetCmd function, or by a Power On Reset (POR)
  *
  * @param  RCC_RTCCLKSource: specifies the RTC clock source.
  *          This parameter can be one of the following values:
  *            @arg RCC_RTCCLKSource_LSE: LSE selected as RTC clock
  *            @arg RCC_RTCCLKSource_LSI: LSI selected as RTC clock
  *            @arg RCC_RTCCLKSource_HSE_Div32: HSE divided by 32 selected as RTC clock
  *
  * @note   If the LSE or LSI is used as RTC clock source, the RTC continues to
  *         work in STOP and STANDBY modes, and can be used as wakeup source.
  *         However, when the HSE clock is used as RTC clock source, the RTC
  *         cannot be used in STOP and STANDBY modes.
  *
  * @note   The maximum input clock frequency for RTC is 2MHz (when using HSE as
  *         RTC clock source).
  *
  * @retval None
  */
void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource)
{
  /* Check the parameters */
  assert_param(IS_RCC_RTCCLK_SOURCE(RCC_RTCCLKSource));

  /* Select the RTC clock source */
  RCC->BDCR |= RCC_RTCCLKSource;
}

/**
  * @brief  Enables or disables the RTC clock.
  * @note   This function must be used only after the RTC clock source was selected
  *         using the RCC_RTCCLKConfig function.
  * @param  NewState: new state of the RTC clock.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_RTCCLKCmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->BDCR |= RCC_BDCR_RTCEN;
  }
  else
  {
    RCC->BDCR &= ~RCC_BDCR_RTCEN;
  }
}

/**
  * @brief  Forces or releases the Backup domain reset.
  * @note   This function resets the RTC peripheral (including the backup registers)
  *         and the RTC clock source selection in RCC_BDCR register.
  * @param  NewState: new state of the Backup domain reset.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_BackupResetCmd(FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->BDCR |= RCC_BDCR_BDRST;
  }
  else
  {
    RCC->BDCR &= ~RCC_BDCR_BDRST;
  }
}

/**
  * @brief  Enables or disables the AHB peripheral clock.
  * @note   After reset, the peripheral clock (used for registers read/write access)
  *         is disabled and the application software has to enable this clock before
  *         using it.
  * @param  RCC_AHBPeriph: specifies the AHB peripheral to gates its clock.
  *          This parameter can be any combination of the following values:
  *             @arg RCC_AHBPeriph_GPIOA: GPIOA clock
  *             @arg RCC_AHBPeriph_GPIOB: GPIOB clock
  *             @arg RCC_AHBPeriph_GPIOC: GPIOC clock
  *             @arg RCC_AHBPeriph_GPIOD: GPIOD clock
  *             @arg RCC_AHBPeriph_GPIOE: GPIOE clock
  *             @arg RCC_AHBPeriph_GPIOF: GPIOF clock
  *             @arg RCC_AHBPeriph_TS:    TS clock
  *             @arg RCC_AHBPeriph_CRC:   CRC clock
  *             @arg RCC_AHBPeriph_FLITF: (has effect only when the Flash memory is in power down mode)
  *             @arg RCC_AHBPeriph_SRAM:  SRAM clock
  *             @arg RCC_AHBPeriph_DMA1:  DMA1 clock
  *             @arg RCC_AHBPeriph_DMA2:  DMA2 clock
  * @param  NewState: new state of the specified peripheral clock.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_AHBPeriphClockCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_AHB_PERIPH(RCC_AHBPeriph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->AHBENR |= RCC_AHBPeriph;
  }
  else
  {
    RCC->AHBENR &= ~RCC_AHBPeriph;
  }
}

/**
  * @brief  Enables or disables the High Speed APB (APB2) peripheral clock.
  * @note   After reset, the peripheral clock (used for registers read/write access)
  *         is disabled and the application software has to enable this clock before
  *         using it.
  * @param  RCC_APB2Periph: specifies the APB2 peripheral to gates its clock.
  *          This parameter can be any combination of the following values:
  *             @arg RCC_APB2Periph_SYSCFG: SYSCFG clock
  *             @arg RCC_APB2Periph_USART6: USART6 clock
  *             @arg RCC_APB2Periph_USART7: USART7 clock
  *             @arg RCC_APB2Periph_USART8: USART8 clock
  *             @arg RCC_APB2Periph_ADC1:   ADC1 clock
  *             @arg RCC_APB2Periph_TIM1:   TIM1 clock
  *             @arg RCC_APB2Periph_SPI1:   SPI1 clock
  *             @arg RCC_APB2Periph_USART1: USART1 clock
  *             @arg RCC_APB2Periph_TIM15:  TIM15 clock
  *             @arg RCC_APB2Periph_TIM16:  TIM16 clock
  *             @arg RCC_APB2Periph_TIM17:  TIM17 clock
  *             @arg RCC_APB2Periph_DBGMCU: DBGMCU clock
  * @param  NewState: new state of the specified peripheral clock.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->APB2ENR |= RCC_APB2Periph;
  }
  else
  {
    RCC->APB2ENR &= ~RCC_APB2Periph;
  }
}

/**
  * @brief  Enables or disables the Low Speed APB (APB1) peripheral clock.
  * @note   After reset, the peripheral clock (used for registers read/write access)
  *         is disabled and the application software has to enable this clock before
  *         using it.
  * @param  RCC_APB1Periph: specifies the APB1 peripheral to gates its clock.
  *          This parameter can be any combination of the following values:
  *           @arg RCC_APB1Periph_TIM2:   TIM2 clock
  *           @arg RCC_APB1Periph_TIM3:   TIM3 clock
  *           @arg RCC_APB1Periph_TIM6:   TIM6 clock
  *           @arg RCC_APB1Periph_TIM7:   TIM7 clock
  *           @arg RCC_APB1Periph_TIM14:  TIM14 clock
  *           @arg RCC_APB1Periph_WWDG:   WWDG clock
  *           @arg RCC_APB1Periph_SPI2:   SPI2 clock
  *           @arg RCC_APB1Periph_USART2: USART2 clock
  *           @arg RCC_APB1Periph_USART3: USART3 clock
  *           @arg RCC_APB1Periph_USART4: USART4 clock
  *           @arg RCC_APB1Periph_USART5: USART5 clock
  *           @arg RCC_APB1Periph_I2C1:   I2C1 clock
  *           @arg RCC_APB1Periph_I2C2:   I2C2 clock
  *           @arg RCC_APB1Periph_USB:    USB clock
  *           @arg RCC_APB1Periph_CAN:    CAN clock
  *           @arg RCC_APB1Periph_CRS:    CRS clock
  *           @arg RCC_APB1Periph_PWR:    PWR clock
  *           @arg RCC_APB1Periph_DAC:    DAC clock
  *           @arg RCC_APB1Periph_CEC:    CEC clock
  * @param  NewState: new state of the specified peripheral clock.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->APB1ENR |= RCC_APB1Periph;
  }
  else
  {
    RCC->APB1ENR &= ~RCC_APB1Periph;
  }
}

/**
  * @brief  Forces or releases AHB peripheral reset.
  * @param  RCC_AHBPeriph: specifies the AHB peripheral to reset.
  *          This parameter can be any combination of the following values:
  *             @arg RCC_AHBPeriph_GPIOA: GPIOA clock
  *             @arg RCC_AHBPeriph_GPIOB: GPIOB clock
  *             @arg RCC_AHBPeriph_GPIOC: GPIOC clock
  *             @arg RCC_AHBPeriph_GPIOD: GPIOD clock
  *             @arg RCC_AHBPeriph_GPIOE: GPIOE clock
  *             @arg RCC_AHBPeriph_GPIOF: GPIOF clock
  *             @arg RCC_AHBPeriph_TS:    TS clock
  * @param  NewState: new state of the specified peripheral reset.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_AHBPeriphResetCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_AHB_RST_PERIPH(RCC_AHBPeriph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->AHBRSTR |= RCC_AHBPeriph;
  }
  else
  {
    RCC->AHBRSTR &= ~RCC_AHBPeriph;
  }
}

/**
  * @brief  Forces or releases High Speed APB (APB2) peripheral reset.
  * @param  RCC_APB2Periph: specifies the APB2 peripheral to reset.
  *          This parameter can be any combination of the following values:
  *             @arg RCC_APB2Periph_SYSCFG: SYSCFG clock
  *             @arg RCC_APB2Periph_USART6: USART6 clock
  *             @arg RCC_APB2Periph_USART7: USART7 clock
  *             @arg RCC_APB2Periph_USART8: USART8 clock
  *             @arg RCC_APB2Periph_ADC1:   ADC1 clock
  *             @arg RCC_APB2Periph_TIM1:   TIM1 clock
  *             @arg RCC_APB2Periph_SPI1:   SPI1 clock
  *             @arg RCC_APB2Periph_USART1: USART1 clock
  *             @arg RCC_APB2Periph_TIM15:  TIM15 clock
  *             @arg RCC_APB2Periph_TIM16:  TIM16 clock
  *             @arg RCC_APB2Periph_TIM17:  TIM17 clock
  *             @arg RCC_APB2Periph_DBGMCU: DBGMCU clock
  * @param  NewState: new state of the specified peripheral reset.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_APB2PeriphResetCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->APB2RSTR |= RCC_APB2Periph;
  }
  else
  {
    RCC->APB2RSTR &= ~RCC_APB2Periph;
  }
}

/**
  * @brief  Forces or releases Low Speed APB (APB1) peripheral reset.
  * @param  RCC_APB1Periph: specifies the APB1 peripheral to reset.
  *          This parameter can be any combination of the following values:
  *           @arg RCC_APB1Periph_TIM2:   TIM2 clock
  *           @arg RCC_APB1Periph_TIM3:   TIM3 clock
  *           @arg RCC_APB1Periph_TIM6:   TIM6 clock
  *           @arg RCC_APB1Periph_TIM7:   TIM7 clock
  *           @arg RCC_APB1Periph_TIM14:  TIM14 clock
  *           @arg RCC_APB1Periph_WWDG:   WWDG clock
  *           @arg RCC_APB1Periph_SPI2:   SPI2 clock
  *           @arg RCC_APB1Periph_USART2: USART2 clock
  *           @arg RCC_APB1Periph_USART3: USART3 clock
  *           @arg RCC_APB1Periph_USART4: USART4 clock
  *           @arg RCC_APB1Periph_USART5: USART5 clock
  *           @arg RCC_APB1Periph_I2C1:   I2C1 clock
  *           @arg RCC_APB1Periph_I2C2:   I2C2 clock
  *           @arg RCC_APB1Periph_USB:    USB clock
  *           @arg RCC_APB1Periph_CAN:    CAN clock
  *           @arg RCC_APB1Periph_CRS:    CRS clock
  *           @arg RCC_APB1Periph_PWR:    PWR clock
  *           @arg RCC_APB1Periph_DAC:    DAC clock
  *           @arg RCC_APB1Periph_CEC:    CEC clock
  * @param  NewState: new state of the specified peripheral clock.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_APB1PeriphResetCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    RCC->APB1RSTR |= RCC_APB1Periph;
  }
  else
  {
    RCC->APB1RSTR &= ~RCC_APB1Periph;
  }
}

/**
  * @}
  */
/**
  * @brief  Enables or disables the specified RCC interrupts.
  * @note   The CSS interrupt doesn't have an enable bit; once the CSS is enabled
  *         and if the HSE clock fails, the CSS interrupt occurs and an NMI is
  *         automatically generated. The NMI will be executed indefinitely, and
  *         since NMI has higher priority than any other IRQ (and main program)
  *         the application will be stacked in the NMI ISR unless the CSS interrupt
  *         pending bit is cleared.
  * @param  RCC_IT: specifies the RCC interrupt sources to be enabled or disabled.
  *          This parameter can be any combination of the following values:
  *              @arg RCC_IT_LSIRDY: LSI ready interrupt
  *              @arg RCC_IT_LSERDY: LSE ready interrupt
  *              @arg RCC_IT_HSIRDY: HSI ready interrupt
  *              @arg RCC_IT_HSERDY: HSE ready interrupt
  *              @arg RCC_IT_PLLRDY: PLL ready interrupt
  *              @arg RCC_IT_HSI14RDY: HSI14 ready interrupt
  *              @arg RCC_IT_HSI48RDY: HSI48 ready interrupt
  * @param  NewState: new state of the specified RCC interrupts.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void RCC_ITConfig(uint8_t RCC_IT, FunctionalState NewState)
{
  /* Check the parameters */
  assert_param(IS_RCC_IT(RCC_IT));
  assert_param(IS_FUNCTIONAL_STATE(NewState));

  if (NewState != DISABLE)
  {
    /* Perform Byte access to RCC_CIR[13:8] bits to enable the selected interrupts */
    *(__IO uint8_t *) CIR_BYTE1_ADDRESS |= RCC_IT;
  }
  else
  {
    /* Perform Byte access to RCC_CIR[13:8] bits to disable the selected interrupts */
    *(__IO uint8_t *) CIR_BYTE1_ADDRESS &= (uint8_t)~RCC_IT;
  }
}

/**
  * @brief  Checks whether the specified RCC flag is set or not.
  * @param  RCC_FLAG: specifies the flag to check.
  *          This parameter can be one of the following values:
  *             @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready
  *             @arg RCC_FLAG_HSERDY: HSE oscillator clock ready
  *             @arg RCC_FLAG_PLLRDY: PLL clock ready
  *             @arg RCC_FLAG_LSERDY: LSE oscillator clock ready
  *             @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready
  *             @arg RCC_FLAG_OBLRST: Option Byte Loader (OBL) reset
  *             @arg RCC_FLAG_PINRST: Pin reset
  *             @arg RCC_FLAG_V18PWRRSTF:  V1.8 power domain reset
  *             @arg RCC_FLAG_PORRST: POR/PDR reset
  *             @arg RCC_FLAG_SFTRST: Software reset
  *             @arg RCC_FLAG_IWDGRST: Independent Watchdog reset
  *             @arg RCC_FLAG_WWDGRST: Window Watchdog reset
  *             @arg RCC_FLAG_LPWRRST: Low Power reset
  *             @arg RCC_FLAG_HSI14RDY: HSI14 oscillator clock ready
  *             @arg RCC_FLAG_HSI48RDY: HSI48 oscillator clock ready
  * @retval The new state of RCC_FLAG (SET or RESET).
  */
FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG)
{
  uint32_t tmp = 0;
  uint32_t statusreg = 0;
  FlagStatus bitstatus = RESET;

  /* Check the parameters */
  assert_param(IS_RCC_FLAG(RCC_FLAG));

  /* Get the RCC register index */
  tmp = RCC_FLAG >> 5;

  if (tmp == 0)               /* The flag to check is in CR register */
  {
    statusreg = RCC->CR;
  }
  else if (tmp == 1)          /* The flag to check is in BDCR register */
  {
    statusreg = RCC->BDCR;
  }
  else if (tmp == 2)          /* The flag to check is in CSR register */
  {
    statusreg = RCC->CSR;
  }
  else                        /* The flag to check is in CR2 register */
  {
    statusreg = RCC->CR2;
  }

  /* Get the flag position */
  tmp = RCC_FLAG & FLAG_MASK;

  if ((statusreg & ((uint32_t)1 << tmp)) != (uint32_t)RESET)
  {
    bitstatus = SET;
  }
  else
  {
    bitstatus = RESET;
  }
  /* Return the flag status */
  return bitstatus;
}

/**
  * @brief  Clears the RCC reset flags.
  *         The reset flags are: RCC_FLAG_OBLRST, RCC_FLAG_PINRST, RCC_FLAG_V18PWRRSTF,
  *         RCC_FLAG_PORRST, RCC_FLAG_SFTRST, RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST,
  *         RCC_FLAG_LPWRRST.
  * @param  None
  * @retval None
  */
void RCC_ClearFlag(void)
{
  /* Set RMVF bit to clear the reset flags */
  RCC->CSR |= RCC_CSR_RMVF;
}

/**
  * @brief  Checks whether the specified RCC interrupt has occurred or not.
  * @param  RCC_IT: specifies the RCC interrupt source to check.
  *          This parameter can be one of the following values:
  *             @arg RCC_IT_LSIRDY: LSI ready interrupt
  *             @arg RCC_IT_LSERDY: LSE ready interrupt
  *             @arg RCC_IT_HSIRDY: HSI ready interrupt
  *             @arg RCC_IT_HSERDY: HSE ready interrupt
  *             @arg RCC_IT_PLLRDY: PLL ready interrupt
  *             @arg RCC_IT_HSI14RDY: HSI14 ready interrupt
  *             @arg RCC_IT_HSI48RDY: HSI48 ready interrupt
  *             @arg RCC_IT_CSS: Clock Security System interrupt
  * @retval The new state of RCC_IT (SET or RESET).
  */
ITStatus RCC_GetITStatus(uint8_t RCC_IT)
{
  ITStatus bitstatus = RESET;

  /* Check the parameters */
  assert_param(IS_RCC_GET_IT(RCC_IT));

  /* Check the status of the specified RCC interrupt */
  if ((RCC->CIR & RCC_IT) != (uint32_t)RESET)
  {
    bitstatus = SET;
  }
  else
  {
    bitstatus = RESET;
  }
  /* Return the RCC_IT status */
  return  bitstatus;
}

/**
  * @brief  Clears the RCC's interrupt pending bits.
  * @param  RCC_IT: specifies the interrupt pending bit to clear.
  *          This parameter can be any combination of the following values:
  *             @arg RCC_IT_LSIRDY: LSI ready interrupt
  *             @arg RCC_IT_LSERDY: LSE ready interrupt
  *             @arg RCC_IT_HSIRDY: HSI ready interrupt
  *             @arg RCC_IT_HSERDY: HSE ready interrupt
  *             @arg RCC_IT_PLLRDY: PLL ready interrupt
  *             @arg RCC_IT_HSI48RDY: HSI48 ready interrupt
  *             @arg RCC_IT_HSI14RDY: HSI14 ready interrupt
  *             @arg RCC_IT_CSS: Clock Security System interrupt
  * @retval None
  */
void RCC_ClearITPendingBit(uint8_t RCC_IT)
{
  /* Check the parameters */
  assert_param(IS_RCC_CLEAR_IT(RCC_IT));

  /* Perform Byte access to RCC_CIR[23:16] bits to clear the selected interrupt
     pending bits */
  *(__IO uint8_t *) CIR_BYTE2_ADDRESS = RCC_IT;
}

/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT FMD *****END OF FILE****/