/* * File : drv_spi.c * This file is part of RT-Thread RTOS * COPYRIGHT (C) 2017 RT-Thread Develop Team * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * http://www.rt-thread.org/license/LICENSE * * Change Logs: * Date Author Notes * 2017-06-05 tanek first implementation. * 2018-04-19 misonyo Porting for gd32f30x */ #include "drv_spi.h" #include "gd32f30x.h" #include #if defined(RT_USING_SPI) && defined(RT_USING_PIN) #include #if !defined(RT_USING_SPI0) && !defined(RT_USING_SPI1) && \ !defined(RT_USING_SPI2) #error "Please define at least one SPIx" #endif /* #define DEBUG */ #ifdef DEBUG #define DEBUG_PRINTF(...) rt_kprintf(__VA_ARGS__) #else #define DEBUG_PRINTF(...) #endif /* private rt-thread spi ops function */ static rt_err_t configure(struct rt_spi_device* device, struct rt_spi_configuration* configuration); static rt_uint32_t xfer(struct rt_spi_device* device, struct rt_spi_message* message); static struct rt_spi_ops gd32_spi_ops = { configure, xfer }; static rt_err_t configure(struct rt_spi_device* device, struct rt_spi_configuration* configuration) { spi_parameter_struct spi_init_struct; rt_uint32_t spi_periph = (rt_uint32_t)device->bus->parent.user_data; RT_ASSERT(device != RT_NULL); RT_ASSERT(configuration != RT_NULL); if(configuration->data_width <= 8) { spi_init_struct.frame_size = SPI_FRAMESIZE_8BIT; } else if(configuration->data_width <= 16) { spi_init_struct.frame_size = SPI_FRAMESIZE_16BIT; } else { return RT_EIO; } { rcu_clock_freq_enum spi_src; rt_uint32_t spi_apb_clock; rt_uint32_t max_hz; max_hz = configuration->max_hz; DEBUG_PRINTF("sys freq: %d\n", rcu_clock_freq_get(CK_SYS)); DEBUG_PRINTF("CK_APB2 freq: %d\n", rcu_clock_freq_get(CK_APB2)); DEBUG_PRINTF("max freq: %d\n", max_hz); if (spi_periph == SPI1 || spi_periph == SPI2) { spi_src = CK_APB1; } else { spi_src = CK_APB2; } spi_apb_clock = rcu_clock_freq_get(spi_src); if(max_hz >= spi_apb_clock/2) { spi_init_struct.prescale = SPI_PSC_2; } else if (max_hz >= spi_apb_clock/4) { spi_init_struct.prescale = SPI_PSC_4; } else if (max_hz >= spi_apb_clock/8) { spi_init_struct.prescale = SPI_PSC_8; } else if (max_hz >= spi_apb_clock/16) { spi_init_struct.prescale = SPI_PSC_16; } else if (max_hz >= spi_apb_clock/32) { spi_init_struct.prescale = SPI_PSC_32; } else if (max_hz >= spi_apb_clock/64) { spi_init_struct.prescale = SPI_PSC_64; } else if (max_hz >= spi_apb_clock/128) { spi_init_struct.prescale = SPI_PSC_128; } else { /* min prescaler 256 */ spi_init_struct.prescale = SPI_PSC_256; } } /* baudrate */ switch(configuration->mode & RT_SPI_MODE_3) { case RT_SPI_MODE_0: spi_init_struct.clock_polarity_phase = SPI_CK_PL_LOW_PH_1EDGE; break; case RT_SPI_MODE_1: spi_init_struct.clock_polarity_phase = SPI_CK_PL_LOW_PH_2EDGE; break; case RT_SPI_MODE_2: spi_init_struct.clock_polarity_phase = SPI_CK_PL_HIGH_PH_1EDGE; break; case RT_SPI_MODE_3: spi_init_struct.clock_polarity_phase = SPI_CK_PL_HIGH_PH_2EDGE; break; } /* MSB or LSB */ if(configuration->mode & RT_SPI_MSB) { spi_init_struct.endian = SPI_ENDIAN_MSB; } else { spi_init_struct.endian = SPI_ENDIAN_LSB; } spi_init_struct.trans_mode = SPI_TRANSMODE_FULLDUPLEX; spi_init_struct.device_mode = SPI_MASTER; spi_init_struct.nss = SPI_NSS_SOFT; spi_init(spi_periph, &spi_init_struct); spi_crc_off(spi_periph); spi_enable(spi_periph); return RT_EOK; }; static rt_uint32_t xfer(struct rt_spi_device* device, struct rt_spi_message* message) { rt_base_t gd32_cs_pin = (rt_base_t)device->parent.user_data; rt_uint32_t spi_periph = (rt_uint32_t)device->bus->parent.user_data; struct rt_spi_configuration * config = &device->config; RT_ASSERT(device != NULL); RT_ASSERT(message != NULL); /* take CS */ if(message->cs_take) { rt_pin_write(gd32_cs_pin, PIN_LOW); DEBUG_PRINTF("spi take cs\n"); } { if(config->data_width <= 8) { const rt_uint8_t * send_ptr = message->send_buf; rt_uint8_t * recv_ptr = message->recv_buf; rt_uint32_t size = message->length; DEBUG_PRINTF("spi poll transfer start: %d\n", size); while(size--) { rt_uint8_t data = 0xFF; if(send_ptr != RT_NULL) { data = *send_ptr++; } // Todo: replace register read/write by gd32f3 lib //Wait until the transmit buffer is empty while(RESET == spi_i2s_flag_get(spi_periph, SPI_FLAG_TBE)); // Send the byte spi_i2s_data_transmit(spi_periph, data); //Wait until a data is received while(RESET == spi_i2s_flag_get(spi_periph, SPI_FLAG_RBNE)); // Get the received data data = spi_i2s_data_receive(spi_periph); if(recv_ptr != RT_NULL) { *recv_ptr++ = data; } } DEBUG_PRINTF("spi poll transfer finsh\n"); } else if(config->data_width <= 16) { const rt_uint16_t * send_ptr = message->send_buf; rt_uint16_t * recv_ptr = message->recv_buf; rt_uint32_t size = message->length; while(size--) { rt_uint16_t data = 0xFF; if(send_ptr != RT_NULL) { data = *send_ptr++; } //Wait until the transmit buffer is empty while(RESET == spi_i2s_flag_get(spi_periph, SPI_FLAG_TBE)); // Send the byte spi_i2s_data_transmit(spi_periph, data); //Wait until a data is received while(RESET == spi_i2s_flag_get(spi_periph, SPI_FLAG_RBNE)); // Get the received data data = spi_i2s_data_receive(spi_periph); if(recv_ptr != RT_NULL) { *recv_ptr++ = data; } } } } /* release CS */ if(message->cs_release) { rt_pin_write(gd32_cs_pin, PIN_HIGH); DEBUG_PRINTF("spi release cs\n"); } return message->length; }; int gd32_hw_spi_init(void) { int result = 0; #ifdef RT_USING_SPI0 static struct rt_spi_bus spi_bus0; spi_bus0.parent.user_data = (void *)SPI0; result = rt_spi_bus_register(&spi_bus0, "spi0", &gd32_spi_ops); rcu_periph_clock_enable(RCU_GPIOA); rcu_periph_clock_enable(RCU_SPI0); /* SPI0_SCK(PA5), SPI0_MISO(PA6) and SPI0_MOSI(PA7) GPIO pin configuration */ gpio_init(GPIOA, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_5 | GPIO_PIN_7); gpio_init(GPIOA, GPIO_MODE_IN_FLOATING, GPIO_OSPEED_50MHZ, GPIO_PIN_6); #endif #ifdef RT_USING_SPI1 static struct rt_spi_bus spi_bus1; spi_bus1.parent.user_data = (void *)SPI1; result = rt_spi_bus_register(&spi_bus1, "spi1", &gd32_spi_ops); rcu_periph_clock_enable(RCU_SPI1); rcu_periph_clock_enable(RCU_GPIOB); /* SPI1_SCK(PB13), SPI1_MISO(PB14) and SPI1_MOSI(PB15) GPIO pin configuration */ gpio_init(GPIOB, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_13 | GPIO_PIN_15); gpio_init(GPIOB, GPIO_MODE_IN_FLOATING, GPIO_OSPEED_50MHZ, GPIO_PIN_14); #endif #ifdef RT_USING_SPI2 static struct rt_spi_bus spi_bus2; spi_bus2.parent.user_data = (void *)SPI2; result = rt_spi_bus_register(&spi_bus2, "spi2", &gd32_spi_ops); rcu_periph_clock_enable(RCU_SPI2); rcu_periph_clock_enable(RCU_GPIOB); /* SPI2_SCK(PB3), SPI2_MISO(PB4) and SPI2_MOSI(PB5) GPIO pin configuration */ gpio_init(GPIOB, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_3 | GPIO_PIN_5); gpio_init(GPIOB, GPIO_MODE_IN_FLOATING, GPIO_OSPEED_50MHZ, GPIO_PIN_4); #endif return result; } INIT_BOARD_EXPORT(gd32_hw_spi_init); #endif