/* * @brief LPC82x ADC driver * * @note * Copyright(C) NXP Semiconductors, 2014 * All rights reserved. * * @par * Software that is described herein is for illustrative purposes only * which provides customers with programming information regarding the * LPC products. This software is supplied "AS IS" without any warranties of * any kind, and NXP Semiconductors and its licensor disclaim any and * all warranties, express or implied, including all implied warranties of * merchantability, fitness for a particular purpose and non-infringement of * intellectual property rights. NXP Semiconductors assumes no responsibility * or liability for the use of the software, conveys no license or rights under any * patent, copyright, mask work right, or any other intellectual property rights in * or to any products. NXP Semiconductors reserves the right to make changes * in the software without notification. NXP Semiconductors also makes no * representation or warranty that such application will be suitable for the * specified use without further testing or modification. * * @par * Permission to use, copy, modify, and distribute this software and its * documentation is hereby granted, under NXP Semiconductors' and its * licensor's relevant copyrights in the software, without fee, provided that it * is used in conjunction with NXP Semiconductors microcontrollers. This * copyright, permission, and disclaimer notice must appear in all copies of * this code. */ #ifndef __ADC_8XX_H_ #define __ADC_8XX_H_ #ifdef __cplusplus extern "C" { #endif /** @defgroup ADC_8XX CHIP: LPC8xx A/D conversion driver (Available on LPC82x Family) * @ingroup CHIP_8xx_Drivers * @{ */ /** Sequence index enumerations, used in various parts of the code for register indexing and sequencer selection */ typedef enum { ADC_SEQA_IDX, ADC_SEQB_IDX } ADC_SEQ_IDX_T; /** * @brief ADC register block structure */ typedef struct { /*!< ADCn Structure */ __IO uint32_t CTRL; /*!< A/D Control Register. The AD0CR register must be written to select the operating mode before A/D conversion can occur. */ __I uint32_t RESERVED0; __IO uint32_t SEQ_CTRL[ADC_SEQB_IDX + 1]; /*!< A/D Sequence A & B Control Register. Controls triggering and channel selection for sonversion sequence. */ __IO uint32_t SEQ_GDAT[ADC_SEQB_IDX + 1]; /*!< A/D Sequence A & B Global Data Register. Contains the result of the most recent A/D conversion for sequence. */ __I uint32_t RESERVED1[2]; __I uint32_t DR[12]; /*!< A/D Channel Data Register. This register contains the result of the most recent conversion completed on channel n. */ __IO uint32_t THR_LOW[2]; /*!< A/D Low Compare Threshold Register 0 & 1. Contains the lower threshold level for automatic threshold comparison. */ __IO uint32_t THR_HIGH[2]; /*!< A/D High Compare Threshold Register 0 & 1. Contains the higher threshold level for automatic threshold comparison. */ __IO uint32_t CHAN_THRSEL; /*!< A/D Channel Threshold Select Register. Specifies which set of threshold compare registers to use. */ __IO uint32_t INTEN; /*!< A/D Interrupt Enable Register. This register contains enable bits that enable sequence-A, sequence-B, threshold compare and overrun interrupts. */ __IO uint32_t FLAGS; /*!< A/D Flags Register. This register contains interrupt flags. - To be checked */ __IO uint32_t TRM; /*!< A/D Trim Register. */ } LPC_ADC_T; /** Maximum sample rate in Hz (12-bit conversions) */ #define ADC_MAX_SAMPLE_RATE 30000000 /** * @brief ADC register support bitfields and mask */ /** ADC Control register bit fields */ #define ADC_CR_CLKDIV_MASK (0xFF << 0) /*!< Mask for Clock divider value */ #define ADC_CR_CLKDIV_BITPOS (0) /*!< Bit position for Clock divider value */ #define ADC_CR_ASYNMODE (1 << 8) /*!< Asynchronous mode enable bit */ #define ADC_CR_MODE10BIT (1 << 9) /*!< 10-bit mode enable bit */ #define ADC_CR_LPWRMODEBIT (1 << 10) /*!< Low power mode enable bit */ #define ADC_CR_CALMODEBIT (1 << 30) /*!< Self calibration cycle enable bit */ #define ADC_CR_BITACC(n) ((((n) & 0x1) << 9)) /*!< 12-bit or 10-bit ADC accuracy */ #define ADC_CR_CLKDIV(n) ((((n) & 0xFF) << 0)) /*!< The APB clock (PCLK) is divided by (this value plus one) to produce the clock for the A/D */ #define ADC_SAMPLE_RATE_CONFIG_MASK (ADC_CR_CLKDIV(0xFF) | ADC_CR_BITACC(0x01)) /** ADC Sequence Control register bit fields */ #define ADC_SEQ_CTRL_CHANSEL(n) (1 << (n)) /*!< Channel select macro */ #define ADC_SEQ_CTRL_CHANSEL_MASK (0xFFF) /*!< Channel select mask */ /** ADC hardware trigger sources in SEQ_CTRL */ #define ADC_SEQ_CTRL_HWTRIG_ARM_TXEV (0 << 12) /*!< HW trigger input - ARM TXEV */ #define ADC_SEQ_CTRL_HWTRIG_CT32B0_MAT0 (1 << 12) /*!< HW trigger input - Match output 0 of CT32B0 */ #define ADC_SEQ_CTRL_HWTRIG_CT32B0_MAT1 (2 << 12) /*!< HW trigger input - Match output 1 of CT32B1 or SCT_OUT0 */ #define ADC_SEQ_CTRL_HWTRIG_SCT_OUT0 (2 << 12) /*!< HW trigger input - Match output 1 of CT32B1 or SCT_OUT0 */ #define ADC_SEQ_CTRL_HWTRIG_CT16B0_MAT0 (3 << 12) /*!< HW trigger input - Match output 0 of CT16B0 */ #define ADC_SEQ_CTRL_HWTRIG_CT16B0_MAT1 (4 << 12) /*!< HW trigger input - Match output 1 of CT16B1 or SCT_OUT1 */ #define ADC_SEQ_CTRL_HWTRIG_SCT_OUT1 (4 << 12) /*!< HW trigger input - Match output 1 of CT16B1 or SCT_OUT1 */ #define ADC_SEQ_CTRL_HWTRIG_CT16B0_CAP0 (5 << 12) /*!< HW trigger input - Capture input 0 of CT16B0 */ #define ADC_SEQ_CTRL_HWTRIG_CT16B1_CAP0 (6 << 12) /*!< HW trigger input - Capture input 0 of CT16B1 */ #define ADC_SEQ_CTRL_HWTRIG_CT32B0_CAP0 (7 << 12) /*!< HW trigger input - Capture input 0 of CT32B1 */ #define ADC_SEQ_CTRL_HWTRIG_MASK (0x3F << 12) /*!< HW trigger input bitfield mask */ /** SEQ_CTRL register bit fields */ #define ADC_SEQ_CTRL_HWTRIG_POLPOS (1 << 18) /*!< HW trigger polarity - positive edge */ #define ADC_SEQ_CTRL_HWTRIG_SYNCBYPASS (1 << 19) /*!< HW trigger bypass synchronisation */ #define ADC_SEQ_CTRL_START (1 << 26) /*!< Start conversion enable bit */ #define ADC_SEQ_CTRL_BURST (1 << 27) /*!< Repeated conversion enable bit */ #define ADC_SEQ_CTRL_SINGLESTEP (1 << 28) /*!< Single step enable bit */ #define ADC_SEQ_CTRL_LOWPRIO (1 << 29) /*!< High priority enable bit (regardless of name) */ #define ADC_SEQ_CTRL_MODE_EOS (1 << 30) /*!< Mode End of sequence enable bit */ #define ADC_SEQ_CTRL_SEQ_ENA (1UL << 31) /*!< Sequence enable bit */ /** ADC global data register bit fields */ #define ADC_SEQ_GDAT_RESULT_MASK (0xFFF << 4) /*!< Result value mask */ #define ADC_SEQ_GDAT_RESULT_BITPOS (4) /*!< Result start bit position */ #define ADC_SEQ_GDAT_THCMPRANGE_MASK (0x3 << 16) /*!< Comparion range mask */ #define ADC_SEQ_GDAT_THCMPRANGE_BITPOS (16) /*!< Comparison range bit position */ #define ADC_SEQ_GDAT_THCMPCROSS_MASK (0x3 << 18) /*!< Comparion cross mask */ #define ADC_SEQ_GDAT_THCMPCROSS_BITPOS (18) /*!< Comparison cross bit position */ #define ADC_SEQ_GDAT_CHAN_MASK (0xF << 26) /*!< Channel number mask */ #define ADC_SEQ_GDAT_CHAN_BITPOS (26) /*!< Channel number bit position */ #define ADC_SEQ_GDAT_OVERRUN (1 << 30) /*!< Overrun bit */ #define ADC_SEQ_GDAT_DATAVALID (1UL << 31) /*!< Data valid bit */ /** ADC Data register bit fields */ #define ADC_DR_RESULT(n) ((((n) >> 4) & 0xFFF)) /*!< Macro for getting the ADC data value */ #define ADC_DR_THCMPRANGE_MASK (0x3 << 16) /*!< Comparion range mask */ #define ADC_DR_THCMPRANGE_BITPOS (16) /*!< Comparison range bit position */ #define ADC_DR_THCMPRANGE(n) (((n) >> ADC_DR_THCMPRANGE_BITPOS) & 0x3) #define ADC_DR_THCMPCROSS_MASK (0x3 << 18) /*!< Comparion cross mask */ #define ADC_DR_THCMPCROSS_BITPOS (18) /*!< Comparison cross bit position */ #define ADC_DR_THCMPCROSS(n) (((n) >> ADC_DR_THCMPCROSS_BITPOS) & 0x3) #define ADC_DR_CHAN_MASK (0xF << 26) /*!< Channel number mask */ #define ADC_DR_CHAN_BITPOS (26) /*!< Channel number bit position */ #define ADC_DR_CHANNEL(n) (((n) >> ADC_DR_CHAN_BITPOS) & 0xF) /*!< Channel number bit position */ #define ADC_DR_OVERRUN (1 << 30) /*!< Overrun bit */ #define ADC_DR_DATAVALID (1UL << 31) /*!< Data valid bit */ #define ADC_DR_DONE(n) (((n) >> 31)) /** ADC low/high Threshold register bit fields */ #define ADC_THR_VAL_MASK (0xFFF << 4) /*!< Threshold value bit mask */ #define ADC_THR_VAL_POS (4) /*!< Threshold value bit position */ /** ADC Threshold select register bit fields */ #define ADC_THRSEL_CHAN_SEL_THR1(n) (1 << (n)) /*!< Select THR1 register for channel n */ /** ADC Interrupt Enable register bit fields */ #define ADC_INTEN_SEQA_ENABLE (1 << 0) /*!< Sequence A Interrupt enable bit */ #define ADC_INTEN_SEQB_ENABLE (1 << 1) /*!< Sequence B Interrupt enable bit */ #define ADC_INTEN_SEQN_ENABLE(seq) (1 << (seq)) /*!< Sequence A/B Interrupt enable bit */ #define ADC_INTEN_OVRRUN_ENABLE (1 << 2) /*!< Overrun Interrupt enable bit */ #define ADC_INTEN_CMP_DISBALE (0) /*!< Disable comparison interrupt value */ #define ADC_INTEN_CMP_OUTSIDETH (1) /*!< Outside threshold interrupt value */ #define ADC_INTEN_CMP_CROSSTH (2) /*!< Crossing threshold interrupt value */ #define ADC_INTEN_CMP_MASK (3) /*!< Comparison interrupt value mask */ #define ADC_INTEN_CMP_ENABLE(isel, ch) (((isel) & ADC_INTEN_CMP_MASK) << ((2 * (ch)) + 3)) /*!< Interrupt selection for channel */ /** ADC Flags register bit fields */ #define ADC_FLAGS_THCMP_MASK(ch) (1 << (ch)) /*!< Threshold comparison status for channel */ #define ADC_FLAGS_OVRRUN_MASK(ch) (1 << (12 + (ch))) /*!< Overrun status for channel */ #define ADC_FLAGS_SEQA_OVRRUN_MASK (1 << 24) /*!< Seq A Overrun status */ #define ADC_FLAGS_SEQB_OVRRUN_MASK (1 << 25) /*!< Seq B Overrun status */ #define ADC_FLAGS_SEQN_OVRRUN_MASK(seq) (1 << (24 + (seq))) /*!< Seq A/B Overrun status */ #define ADC_FLAGS_SEQA_INT_MASK (1 << 28) /*!< Seq A Interrupt status */ #define ADC_FLAGS_SEQB_INT_MASK (1 << 29) /*!< Seq B Interrupt status */ #define ADC_FLAGS_SEQN_INT_MASK(seq) (1 << (28 + (seq)))/*!< Seq A/B Interrupt status */ #define ADC_FLAGS_THCMP_INT_MASK (1 << 30) /*!< Threshold comparison Interrupt status */ #define ADC_FLAGS_OVRRUN_INT_MASK (1UL << 31) /*!< Overrun Interrupt status */ /** ADC Trim register bit fields */ #define ADC_TRIM_VRANGE_HIGHV (0 << 5) /*!< Voltage range bit - High volatge (2.7V to 3.6V) */ #define ADC_TRIM_VRANGE_LOWV (1 << 5) /*!< Voltage range bit - Low volatge (1.8V to 2.7V) */ /** ADC Register reserved bit masks */ #define ADC_CHAN_THRSEL_RES 0xFFFFF000 #define ADC_INTEN_RES 0xF8000000 #define ADC_SEQ_CTRL_RES ((7 << 15) | (0x3F << 20)) /** * @brief Initialize the ADC peripheral * @param pADC : The base of ADC peripheral on the chip * @param flags : ADC flags for init (ADC_CR_MODE10BIT and/or ADC_CR_LPWRMODEBIT) * @return Nothing * @note To select low-power ADC mode, enable the ADC_CR_LPWRMODEBIT flag. * To select 10-bit conversion mode, enable the ADC_CR_MODE10BIT flag.
* Example: Chip_ADC_Init(LPC_ADC, (ADC_CR_MODE10BIT | ADC_CR_LPWRMODEBIT)); */ void Chip_ADC_Init(LPC_ADC_T *pADC, uint32_t flags); /** * @brief Shutdown ADC * @param pADC : The base of ADC peripheral on the chip * @return Nothing * @note Disables the ADC clocks and ADC power */ void Chip_ADC_DeInit(LPC_ADC_T *pADC); /** * @brief Set ADC divider * @param pADC : The base of ADC peripheral on the chip * @param div : ADC divider value to set minus 1 * @return Nothing * @note The value is used as a divider to generate the ADC * clock rate from the ADC input clock. The ADC input clock is based * on the system clock. Valid values for this function are from 0 to 255 * with 0=divide by 1, 1=divide by 2, 2=divide by 3, etc.
* Do not decrement this value by 1.
* To set the ADC clock rate to 1MHz, use the following function:
* Chip_ADC_SetDivider(LPC_ADC, (Chip_Clock_GetSystemClockRate() / 1000000) - 1); */ STATIC INLINE void Chip_ADC_SetDivider(LPC_ADC_T *pADC, uint8_t div) { uint32_t temp; temp = pADC->CTRL & ~(ADC_CR_CLKDIV_MASK); pADC->CTRL = temp | (uint32_t) div; } /** * @brief Set ADC clock rate * @param pADC : The base of ADC peripheral on the chip * @param rate : rate in Hz to set ADC clock to (maximum ADC_MAX_SAMPLE_RATE) * @return Nothing * @note When ADC is set to ADC_CR_ASYNMODE this function has no effect. The * rate mentioned in @a rate is the sampling clock rate and not the frequency at * at which the conversion will be done. Example setting @a rate to 30 MHz will * get a sampling rate of 1.2M samples per second. */ STATIC INLINE void Chip_ADC_SetClockRate(LPC_ADC_T *pADC, uint32_t rate) { Chip_ADC_SetDivider(pADC, (uint8_t) (Chip_Clock_GetSystemClockRate() / rate) - 1); } /** * @brief Get ADC divider * @param pADC : The base of ADC peripheral on the chip * @return the current ADC divider * @note This function returns the divider that is used to generate the * ADC frequency. The returned value must be incremented by 1. The * frequency can be determined with the following function:
* adc_freq = Chip_Clock_GetSystemClockRate() / (Chip_ADC_GetDivider(LPC_ADC) + 1); */ STATIC INLINE uint8_t Chip_ADC_GetDivider(LPC_ADC_T *pADC) { return pADC->CTRL & ADC_CR_CLKDIV_MASK; } /** * @brief Start ADC calibration * @param pADC : The base of ADC peripheral on the chip * @return Nothing * @note Calibration is not done as part of Chip_ADC_Init(), but * is required after the call to Chip_ADC_Init() or after returning * from a power-down state. Calibration may alter the ADC_CR_ASYNMODE * and ADC_CR_LPWRMODEBIT flags ni the CTRL register. */ void Chip_ADC_StartCalibration(LPC_ADC_T *pADC); /** * @brief Start ADC calibration * @param pADC : The base of ADC peripheral on the chip * @return TRUE if calibration is complete, otherwise FALSE. */ STATIC INLINE bool Chip_ADC_IsCalibrationDone(LPC_ADC_T *pADC) { return (bool) ((pADC->CTRL & ADC_CR_CALMODEBIT) == 0); } /** * @brief Helper function for safely setting ADC sequencer register bits * @param pADC : The base of ADC peripheral on the chip * @param seqIndex : Sequencer to set bits for * @param bits : Or'ed bits of a sequencer register to set * @return Nothing * @note This function will safely set the ADC sequencer register bits * while maintaining bits 20..25 as 0, regardless of the read state of those bits. */ STATIC INLINE void Chip_ADC_SetSequencerBits(LPC_ADC_T *pADC, ADC_SEQ_IDX_T seqIndex, uint32_t bits) { pADC->SEQ_CTRL[seqIndex] = (pADC->SEQ_CTRL[seqIndex] & ~ADC_SEQ_CTRL_RES) | bits; } /** * @brief Helper function for safely clearing ADC sequencer register bits * @param pADC : The base of ADC peripheral on the chip * @param seqIndex : Sequencer to clear bits for * @param bits : Or'ed bits of a sequencer register to clear * @return Nothing * @note This function will safely clear the ADC sequencer register bits * while maintaining bits 20..25 as 0, regardless of the read state of those bits. */ STATIC INLINE void Chip_ADC_ClearSequencerBits(LPC_ADC_T *pADC, ADC_SEQ_IDX_T seqIndex, uint32_t bits) { pADC->SEQ_CTRL[seqIndex] = pADC->SEQ_CTRL[seqIndex] & ~(ADC_SEQ_CTRL_RES | bits); } /** * @brief Sets up ADC conversion sequencer A or B * @param pADC : The base of ADC peripheral on the chip * @param seqIndex : Sequencer to setup * @param options : OR'ed Sequencer options to setup (see notes) * @return Nothing * @note Sets up sequencer options for a conversion sequence. This function * should be used to setup the selected channels for the sequence, the sequencer * trigger, the trigger polarity, synchronization bypass, priority, and mode. All * options are passed to the functions as a OR'ed list of values. This function will * disable/clear the sequencer start/burst/single step/enable if they are enabled.
* Select the channels by OR'ing in one or more ADC_SEQ_CTRL_CHANSEL(ch) values.
* Select the hardware trigger by OR'ing in one ADC_SEQ_CTRL_HWTRIG_* value.
* Select a positive edge hardware trigger by OR'ing in ADC_SEQ_CTRL_HWTRIG_POLPOS.
* Select trigger bypass synchronisation by OR'ing in ADC_SEQ_CTRL_HWTRIG_SYNCBYPASS.
* Select ADC single step on trigger/start by OR'ing in ADC_SEQ_CTRL_SINGLESTEP.
* Select higher priority conversion on the other sequencer by OR'ing in ADC_SEQ_CTRL_LOWPRIO.
* Select end of seqeuence instead of end of conversion interrupt by OR'ing in ADC_SEQ_CTRL_MODE_EOS.
* Example for setting up sequencer A (channels 0-2, trigger on high edge of PIO0_2, interrupt on end of sequence):
* Chip_ADC_SetupSequencer(LPC_ADC, ADC_SEQA_IDX, ( * ADC_SEQ_CTRL_CHANSEL(0) | ADC_SEQ_CTRL_CHANSEL(1) | ADC_SEQ_CTRL_CHANSEL(2) | * ADC_SEQ_CTRL_HWTRIG_PIO0_2 | ADC_SEQ_CTRL_HWTRIG_POLPOS | ADC_SEQ_CTRL_MODE_EOS)); */ STATIC INLINE void Chip_ADC_SetupSequencer(LPC_ADC_T *pADC, ADC_SEQ_IDX_T seqIndex, uint32_t options) { pADC->SEQ_CTRL[seqIndex] = options; } /** * @brief Enables a sequencer * @param pADC : The base of ADC peripheral on the chip * @param seqIndex : Sequencer to enable * @return Nothing */ STATIC INLINE void Chip_ADC_EnableSequencer(LPC_ADC_T *pADC, ADC_SEQ_IDX_T seqIndex) { Chip_ADC_SetSequencerBits(pADC, seqIndex, ADC_SEQ_CTRL_SEQ_ENA); } /** * @brief Disables a sequencer * @param pADC : The base of ADC peripheral on the chip * @param seqIndex : Sequencer to disable * @return Nothing */ STATIC INLINE void Chip_ADC_DisableSequencer(LPC_ADC_T *pADC, ADC_SEQ_IDX_T seqIndex) { Chip_ADC_ClearSequencerBits(pADC, seqIndex, ADC_SEQ_CTRL_SEQ_ENA); } /** * @brief Forces a sequencer trigger event (software trigger of ADC) * @param pADC : The base of ADC peripheral on the chip * @param seqIndex : Sequencer to start * @return Nothing * @note This function sets the START bit for the sequencer to force a * single conversion sequence or a single step conversion. */ STATIC INLINE void Chip_ADC_StartSequencer(LPC_ADC_T *pADC, ADC_SEQ_IDX_T seqIndex) { Chip_ADC_SetSequencerBits(pADC, seqIndex, ADC_SEQ_CTRL_START); } /** * @brief Starts sequencer burst mode * @param pADC : The base of ADC peripheral on the chip * @param seqIndex : Sequencer to start burst on * @return Nothing * @note This function sets the BURST bit for the sequencer to force * continuous conversion. Use Chip_ADC_StopBurstSequencer() to stop the * ADC burst sequence. */ STATIC INLINE void Chip_ADC_StartBurstSequencer(LPC_ADC_T *pADC, ADC_SEQ_IDX_T seqIndex) { Chip_ADC_SetSequencerBits(pADC, seqIndex, ADC_SEQ_CTRL_BURST); } /** * @brief Stops sequencer burst mode * @param pADC : The base of ADC peripheral on the chip * @param seqIndex : Sequencer to stop burst on * @return Nothing */ STATIC INLINE void Chip_ADC_StopBurstSequencer(LPC_ADC_T *pADC, ADC_SEQ_IDX_T seqIndex) { Chip_ADC_ClearSequencerBits(pADC, seqIndex, ADC_SEQ_CTRL_BURST); } /** ADC sequence global data register threshold comparison range enumerations */ typedef enum { ADC_DR_THCMPRANGE_INRANGE, ADC_DR_THCMPRANGE_RESERVED, ADC_DR_THCMPRANGE_BELOW, ADC_DR_THCMPRANGE_ABOVE } ADC_DR_THCMPRANGE_T; /** ADC sequence global data register threshold comparison cross enumerations */ typedef enum { ADC_DR_THCMPCROSS_NOCROSS, ADC_DR_THCMPCROSS_RESERVED, ADC_DR_THCMPCROSS_DOWNWARD, ADC_DR_THCMPCROSS_UPWARD } ADC_DR_THCMPCROSS_T; /** * @brief Read a ADC sequence global data register * @param pADC : The base of ADC peripheral on the chip * @param seqIndex : Sequencer to read * @return Current raw value of the ADC sequence A or B global data register * @note This function returns the raw value of the data register and clears * the overrun and datavalid status for the register. Once this register is read, * the following functions can be used to parse the raw value:
* uint32_t adcDataRawValue = Chip_ADC_ReadSequencerDataReg(LPC_ADC, ADC_SEQA_IDX); // Get raw value * uint32_t adcDataValue = ADC_DR_RESULT(adcDataRawValue); // Aligned and masked ADC data value * ADC_DR_THCMPRANGE_T adcRange = (ADC_DR_THCMPRANGE_T) ADC_DR_THCMPRANGE(adcDataRawValue); // Sample range compared to threshold low/high * ADC_DR_THCMPCROSS_T adcRange = (ADC_DR_THCMPCROSS_T) ADC_DR_THCMPCROSS(adcDataRawValue); // Sample cross compared to threshold low * uint32_t channel = ADC_DR_CHANNEL(adcDataRawValue); // ADC channel for this sample/data * bool adcDataOverrun = (bool) ((adcDataRawValue & ADC_DR_OVERRUN) != 0); // Data overrun flag * bool adcDataValid = (bool) ((adcDataRawValue & ADC_SEQ_GDAT_DATAVALID) != 0); // Data valid flag */ STATIC INLINE uint32_t Chip_ADC_GetSequencerDataReg(LPC_ADC_T *pADC, ADC_SEQ_IDX_T seqIndex) { return pADC->SEQ_GDAT[seqIndex]; } /** * @brief Read a ADC data register * @param pADC : The base of ADC peripheral on the chip * @param index : Data register to read, 1-8 * @return Current raw value of the ADC data register * @note This function returns the raw value of the data register and clears * the overrun and datavalid status for the register. Once this register is read, * the following functions can be used to parse the raw value:
* uint32_t adcDataRawValue = Chip_ADC_ReadSequencerDataReg(LPC_ADC, ADC_SEQA_IDX); // Get raw value * uint32_t adcDataValue = ADC_DR_RESULT(adcDataRawValue); // Aligned and masked ADC data value * ADC_DR_THCMPRANGE_T adcRange = (ADC_DR_THCMPRANGE_T) ADC_DR_THCMPRANGE(adcDataRawValue); // Sample range compared to threshold low/high * ADC_DR_THCMPCROSS_T adcRange = (ADC_DR_THCMPCROSS_T) ADC_DR_THCMPCROSS(adcDataRawValue); // Sample cross compared to threshold low * uint32_t channel = ADC_DR_CHANNEL(adcDataRawValue); // ADC channel for this sample/data * bool adcDataOverrun = (bool) ((adcDataRawValue & ADC_DR_OVERRUN) != 0); // Data overrun flag * bool adcDataValid = (bool) ((adcDataRawValue & ADC_SEQ_GDAT_DATAVALID) != 0); // Data valid flag */ STATIC INLINE uint32_t Chip_ADC_GetDataReg(LPC_ADC_T *pADC, uint8_t index) { return pADC->DR[index]; } /** * @brief Set Threshold low value in ADC * @param pADC : The base of ADC peripheral on the chip * @param thrnum : Threshold register value (1 for threshold register 1, 0 for threshold register 0) * @param value : Threshold low data value (should be 12-bit value) * @return None */ STATIC INLINE void Chip_ADC_SetThrLowValue(LPC_ADC_T *pADC, uint8_t thrnum, uint16_t value) { pADC->THR_LOW[thrnum] = (((uint32_t) value) << ADC_THR_VAL_POS); } /** * @brief Set Threshold high value in ADC * @param pADC : The base of ADC peripheral on the chip * @param thrnum : Threshold register value (1 for threshold register 1, 0 for threshold register 0) * @param value : Threshold high data value (should be 12-bit value) * @return None */ STATIC INLINE void Chip_ADC_SetThrHighValue(LPC_ADC_T *pADC, uint8_t thrnum, uint16_t value) { pADC->THR_HIGH[thrnum] = (((uint32_t) value) << ADC_THR_VAL_POS); } /** * @brief Select threshold 0 values for comparison for selected channels * @param pADC : The base of ADC peripheral on the chip * @param channels : An OR'ed value of one or more ADC_THRSEL_CHAN_SEL_THR1(ch) values * @return None * @note Select multiple channels to use the threshold 0 comparison.
* Example:
* Chip_ADC_SelectTH0Channels(LPC_ADC, (ADC_THRSEL_CHAN_SEL_THR1(1) | ADC_THRSEL_CHAN_SEL_THR1(2))); // Selects channels 1 and 2 for threshold 0 */ STATIC INLINE void Chip_ADC_SelectTH0Channels(LPC_ADC_T *pADC, uint32_t channels) { pADC->CHAN_THRSEL = pADC->CHAN_THRSEL & ~(ADC_CHAN_THRSEL_RES | channels); } /** * @brief Select threshold 1 value for comparison for selected channels * @param pADC : The base of ADC peripheral on the chip * @param channels : An OR'ed value of one or more ADC_THRSEL_CHAN_SEL_THR1(ch) values * @return None * @note Select multiple channels to use the 1 threshold comparison.
* Example:
* Chip_ADC_SelectTH1Channels(LPC_ADC, (ADC_THRSEL_CHAN_SEL_THR1(4) | ADC_THRSEL_CHAN_SEL_THR1(5))); // Selects channels 4 and 5 for 1 threshold */ STATIC INLINE void Chip_ADC_SelectTH1Channels(LPC_ADC_T *pADC, uint32_t channels) { pADC->CHAN_THRSEL = (pADC->CHAN_THRSEL & ~ADC_CHAN_THRSEL_RES) | channels; } /** * @brief Enable interrupts in ADC (sequencers A/B and overrun) * @param pADC : The base of ADC peripheral on the chip * @param intMask : Interrupt values to be enabled (see notes) * @return None * @note Select one or more OR'ed values of ADC_INTEN_SEQA_ENABLE, * ADC_INTEN_SEQB_ENABLE, and ADC_INTEN_OVRRUN_ENABLE to enable the * specific ADC interrupts. */ STATIC INLINE void Chip_ADC_EnableInt(LPC_ADC_T *pADC, uint32_t intMask) { pADC->INTEN = (pADC->INTEN & ~ADC_INTEN_RES) | intMask; } /** * @brief Disable interrupts in ADC (sequencers A/B and overrun) * @param pADC : The base of ADC peripheral on the chip * @param intMask : Interrupt values to be disabled (see notes) * @return None * @note Select one or more OR'ed values of ADC_INTEN_SEQA_ENABLE, * ADC_INTEN_SEQB_ENABLE, and ADC_INTEN_OVRRUN_ENABLE to disable the * specific ADC interrupts. */ STATIC INLINE void Chip_ADC_DisableInt(LPC_ADC_T *pADC, uint32_t intMask) { pADC->INTEN = pADC->INTEN & ~(ADC_INTEN_RES | intMask); } /** Threshold interrupt event options */ typedef enum { ADC_INTEN_THCMP_DISABLE, ADC_INTEN_THCMP_OUTSIDE, ADC_INTEN_THCMP_CROSSING, } ADC_INTEN_THCMP_T; /** * @brief Enable a threshold event interrupt in ADC * @param pADC : The base of ADC peripheral on the chip * @param ch : ADC channel to set threshold inetrrupt for, 1-8 * @param thInt : Selected threshold interrupt type * @return None */ STATIC INLINE void Chip_ADC_SetThresholdInt(LPC_ADC_T *pADC, uint8_t ch, ADC_INTEN_THCMP_T thInt) { pADC->INTEN = (pADC->INTEN & ~(ADC_INTEN_RES | (3 << (3 + (ch * 2))))) | (thInt << (3 + (ch * 2))); } /** * @brief Get flags register in ADC * @param pADC : The base of ADC peripheral on the chip * @return Flags register value (ORed ADC_FLAG* values) * @note Mask the return value of this function with the ADC_FLAGS_* * definitions to determine the overall ADC interrupt events.
* Example:
* if (Chip_ADC_GetFlags(LPC_ADC) & ADC_FLAGS_THCMP_MASK(3) // Check of threshold comp status for ADC channel 3 */ STATIC INLINE uint32_t Chip_ADC_GetFlags(LPC_ADC_T *pADC) { return pADC->FLAGS; } /** * @brief Clear flags register in ADC * @param pADC : The base of ADC peripheral on the chip * @param flags : An Or'ed values of ADC_FLAGS_* values to clear * @return Flags register value (ORed ADC_FLAG* values) */ STATIC INLINE void Chip_ADC_ClearFlags(LPC_ADC_T *pADC, uint32_t flags) { pADC->FLAGS = flags; } /** * @brief Set Trim register in ADC * @param pADC : The base of ADC peripheral on the chip * @param trim : Trim value (ADC_TRIM_VRANGE_HIGHV or ADC_TRIM_VRANGE_LOWV) * @return None */ STATIC INLINE void Chip_ADC_SetTrim(LPC_ADC_T *pADC, uint32_t trim) { pADC->TRM = trim; } /** * @} */ #ifdef __cplusplus } #endif #endif /* __ADC_8XX_H_ */