/* * Copyright (c) 2016, Freescale Semiconductor, Inc. * Copyright 2016-2017 NXP * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * o Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * o Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * o Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "fsl_phy.h" /******************************************************************************* * Definitions ******************************************************************************/ /*! @brief Defines the timeout macro. */ #define PHY_TIMEOUT_COUNT 0xFFFFU /******************************************************************************* * Prototypes ******************************************************************************/ /*! * @brief Get the ENET instance from peripheral base address. * * @param base ENET peripheral base address. * @return ENET instance. */ extern uint32_t ENET_GetInstance(ENET_Type *base); /******************************************************************************* * Variables ******************************************************************************/ #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /*! @brief Pointers to enet clocks for each instance. */ #if defined(FSL_FEATURE_SOC_ENET_COUNT) && (FSL_FEATURE_SOC_ENET_COUNT > 0) extern clock_ip_name_t s_enetClock[FSL_FEATURE_SOC_ENET_COUNT]; #elif defined(FSL_FEATURE_SOC_LPC_ENET_COUNT) && (FSL_FEATURE_SOC_LPC_ENET_COUNT > 0) extern clock_ip_name_t s_enetClock[FSL_FEATURE_SOC_LPC_ENET_COUNT]; #endif #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ /******************************************************************************* * Code ******************************************************************************/ status_t PHY_Init(ENET_Type *base, uint32_t phyAddr, uint32_t srcClock_Hz) { uint32_t reg; uint32_t idReg = 0; uint32_t delay = PHY_TIMEOUT_COUNT; uint32_t instance = ENET_GetInstance(base); #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /* Set SMI first. */ CLOCK_EnableClock(s_enetClock[instance]); #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ #if defined(FSL_FEATURE_SOC_ENET_COUNT) && (FSL_FEATURE_SOC_ENET_COUNT > 0) ENET_SetSMI(base, srcClock_Hz, false); #elif defined(FSL_FEATURE_SOC_LPC_ENET_COUNT) && (FSL_FEATURE_SOC_LPC_ENET_COUNT > 0) ENET_SetSMI(base); #endif /* Initialization after PHY stars to work. */ while ((idReg != PHY_CONTROL_ID1) && (delay != 0)) { PHY_Read(base, phyAddr, PHY_ID1_REG, &idReg); delay --; } if (!delay) { return kStatus_Fail; } delay = PHY_TIMEOUT_COUNT; /* Reset PHY and wait until completion. */ PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, PHY_BCTL_RESET_MASK); do { PHY_Read(base, phyAddr, PHY_BASICCONTROL_REG, ®); } while (delay-- && reg & PHY_BCTL_RESET_MASK); if (!delay) { return kStatus_Fail; } /* Set the ability. */ PHY_Write(base, phyAddr, PHY_AUTONEG_ADVERTISE_REG, (PHY_ALL_CAPABLE_MASK | 0x1U)); /* Start Auto negotiation and wait until auto negotiation completion */ PHY_Write(base, phyAddr, PHY_BASICCONTROL_REG, (PHY_BCTL_AUTONEG_MASK | PHY_BCTL_RESTART_AUTONEG_MASK)); delay = PHY_TIMEOUT_COUNT; do { PHY_Read(base, phyAddr, PHY_SEPCIAL_CONTROL_REG, ®); delay --; } while (delay && ((reg & PHY_SPECIALCTL_AUTONEGDONE_MASK) == 0)); if (!delay) { return kStatus_Fail; } return kStatus_Success; } status_t PHY_Write(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t data) { #if defined(FSL_FEATURE_SOC_ENET_COUNT) && (FSL_FEATURE_SOC_ENET_COUNT > 0) uint32_t counter; /* Clear the SMI interrupt event. */ ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK); /* Starts a SMI write command. */ ENET_StartSMIWrite(base, phyAddr, phyReg, kENET_MiiWriteValidFrame, data); /* Wait for SMI complete. */ for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--) { if (ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK) { break; } } /* Check for timeout. */ if (!counter) { return kStatus_PHY_SMIVisitTimeout; } /* Clear MII interrupt event. */ ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK); #elif defined(FSL_FEATURE_SOC_LPC_ENET_COUNT) && (FSL_FEATURE_SOC_LPC_ENET_COUNT > 0) ENET_StartSMIWrite(base, phyAddr, phyReg, data); while (ENET_IsSMIBusy(base)) ; #endif return kStatus_Success; } status_t PHY_Read(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t *dataPtr) { #if defined(FSL_FEATURE_SOC_ENET_COUNT) && (FSL_FEATURE_SOC_ENET_COUNT > 0) assert(dataPtr); uint32_t counter; /* Clear the MII interrupt event. */ ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK); /* Starts a SMI read command operation. */ ENET_StartSMIRead(base, phyAddr, phyReg, kENET_MiiReadValidFrame); /* Wait for MII complete. */ for (counter = PHY_TIMEOUT_COUNT; counter > 0; counter--) { if (ENET_GetInterruptStatus(base) & ENET_EIR_MII_MASK) { break; } } /* Check for timeout. */ if (!counter) { return kStatus_PHY_SMIVisitTimeout; } /* Get data from MII register. */ *dataPtr = ENET_ReadSMIData(base); /* Clear MII interrupt event. */ ENET_ClearInterruptStatus(base, ENET_EIR_MII_MASK); #elif defined(FSL_FEATURE_SOC_LPC_ENET_COUNT) && (FSL_FEATURE_SOC_LPC_ENET_COUNT > 0) ENET_StartSMIRead(base, phyAddr, phyReg); while (ENET_IsSMIBusy(base)) ; *dataPtr = ENET_ReadSMIData(base); #endif return kStatus_Success; } status_t PHY_GetLinkStatus(ENET_Type *base, uint32_t phyAddr, bool *status) { uint32_t reg; status_t result = kStatus_Success; /* Read the basic status register. */ result = PHY_Read(base, phyAddr, PHY_BASICSTATUS_REG, ®); if (result == kStatus_Success) { if (reg & PHY_BSTATUS_LINKSTATUS_MASK) { /* link up. */ *status = true; } else { *status = false; } } return result; } status_t PHY_GetLinkSpeedDuplex(ENET_Type *base, uint32_t phyAddr, phy_speed_t *speed, phy_duplex_t *duplex) { assert(duplex); assert(speed); uint32_t reg; status_t result = kStatus_Success; /* Read the control two register. */ result = PHY_Read(base, phyAddr, PHY_SEPCIAL_CONTROL_REG, ®); if (result == kStatus_Success) { if (reg & PHY_SPECIALCTL_DUPLEX_MASK) { /* Full duplex. */ *duplex = kPHY_FullDuplex; } else { /* Half duplex. */ *duplex = kPHY_HalfDuplex; } if (reg & PHY_SPECIALCTL_100SPEED_MASK) { /* 100M speed. */ *speed = kPHY_Speed100M; } else { /* 10M speed. */ *speed = kPHY_Speed10M; } } return result; }