/*! \file gd32f4xx_rcu.c \brief RCU driver \version 2016-08-15, V1.0.0, firmware for GD32F4xx \version 2018-12-12, V2.0.0, firmware for GD32F4xx \version 2020-09-30, V2.1.0, firmware for GD32F4xx */ /* Copyright (c) 2020, GigaDevice Semiconductor Inc. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "gd32f4xx_rcu.h" /* define clock source */ #define SEL_IRC16M ((uint16_t)0U) /* IRC16M is selected as CK_SYS */ #define SEL_HXTAL ((uint16_t)1U) /* HXTAL is selected as CK_SYS */ #define SEL_PLLP ((uint16_t)2U) /* PLLP is selected as CK_SYS */ /* define startup timeout count */ #define OSC_STARTUP_TIMEOUT ((uint32_t)0x000fffffU) #define LXTAL_STARTUP_TIMEOUT ((uint32_t)0x0fffffffU) /* RCU IRC16M adjust value mask and offset*/ #define RCU_IRC16M_ADJUST_MASK ((uint8_t)0x1FU) #define RCU_IRC16M_ADJUST_OFFSET ((uint32_t)3U) /*! \brief deinitialize the RCU \param[in] none \param[out] none \retval none */ void rcu_deinit(void) { /* enable IRC16M */ RCU_CTL |= RCU_CTL_IRC16MEN; rcu_osci_stab_wait(RCU_IRC16M); /* reset CFG0 register */ RCU_CFG0 &= ~(RCU_CFG0_SCS | RCU_CFG0_AHBPSC | RCU_CFG0_APB1PSC | RCU_CFG0_APB2PSC | RCU_CFG0_RTCDIV | RCU_CFG0_CKOUT0SEL | RCU_CFG0_I2SSEL | RCU_CFG0_CKOUT0DIV | RCU_CFG0_CKOUT1DIV | RCU_CFG0_CKOUT1SEL); /* reset CTL register */ RCU_CTL &= ~(RCU_CTL_HXTALEN | RCU_CTL_CKMEN | RCU_CTL_PLLEN | RCU_CTL_PLLI2SEN | RCU_CTL_PLLSAIEN); RCU_CTL &= ~(RCU_CTL_HXTALBPS); /* reset PLL register */ RCU_PLL = 0x24003010U; /* reset PLLI2S register */ RCU_PLLI2S = 0x24003000U; /* reset PLLSAI register */ RCU_PLLSAI = 0x24003010U; /* reset INT register */ RCU_INT = 0x00000000U; /* reset CFG1 register */ RCU_CFG1 &= ~(RCU_CFG1_PLLSAIRDIV | RCU_CFG1_TIMERSEL); } /*! \brief enable the peripherals clock \param[in] periph: RCU peripherals, refer to rcu_periph_enum only one parameter can be selected which is shown as below: \arg RCU_GPIOx (x=A,B,C,D,E,F,G,H,I): GPIO ports clock \arg RCU_CRC: CRC clock \arg RCU_BKPSRAM: BKPSRAM clock \arg RCU_TCMSRAM: TCMSRAM clock \arg RCU_DMAx (x=0,1): DMA clock \arg RCU_IPA: IPA clock \arg RCU_ENET: ENET clock \arg RCU_ENETTX: ENETTX clock \arg RCU_ENETRX: ENETRX clock \arg RCU_ENETPTP: ENETPTP clock \arg RCU_USBHS: USBHS clock \arg RCU_USBHSULPI: USBHSULPI clock \arg RCU_DCI: DCI clock \arg RCU_TRNG: TRNG clock \arg RCU_USBFS: USBFS clock \arg RCU_EXMC: EXMC clock \arg RCU_TIMERx (x=0,1,2,3,4,5,6,7,8,9,10,11,12,13): TIMER clock \arg RCU_WWDGT: WWDGT clock \arg RCU_SPIx (x=0,1,2,3,4,5): SPI clock \arg RCU_USARTx (x=0,1,2,5): USART clock \arg RCU_UARTx (x=3,4,6,7): UART clock \arg RCU_I2Cx (x=0,1,2): I2C clock \arg RCU_CANx (x=0,1): CAN clock \arg RCU_PMU: PMU clock \arg RCU_DAC: DAC clock \arg RCU_RTC: RTC clock \arg RCU_ADCx (x=0,1,2): ADC clock \arg RCU_SDIO: SDIO clock \arg RCU_SYSCFG: SYSCFG clock \arg RCU_TLI: TLI clock \arg RCU_CTC: CTC clock \arg RCU_IREF: IREF clock \param[out] none \retval none */ void rcu_periph_clock_enable(rcu_periph_enum periph) { RCU_REG_VAL(periph) |= BIT(RCU_BIT_POS(periph)); } /*! \brief disable the peripherals clock \param[in] periph: RCU peripherals, refer to rcu_periph_enum only one parameter can be selected which is shown as below: \arg RCU_GPIOx (x=A,B,C,D,E,F,G,H,I): GPIO ports clock \arg RCU_CRC: CRC clock \arg RCU_BKPSRAM: BKPSRAM clock \arg RCU_TCMSRAM: TCMSRAM clock \arg RCU_DMAx (x=0,1): DMA clock \arg RCU_IPA: IPA clock \arg RCU_ENET: ENET clock \arg RCU_ENETTX: ENETTX clock \arg RCU_ENETRX: ENETRX clock \arg RCU_ENETPTP: ENETPTP clock \arg RCU_USBHS: USBHS clock \arg RCU_USBHSULPI: USBHSULPI clock \arg RCU_DCI: DCI clock \arg RCU_TRNG: TRNG clock \arg RCU_USBFS: USBFS clock \arg RCU_EXMC: EXMC clock \arg RCU_TIMERx (x=0,1,2,3,4,5,6,7,8,9,10,11,12,13): TIMER clock \arg RCU_WWDGT: WWDGT clock \arg RCU_SPIx (x=0,1,2,3,4,5): SPI clock \arg RCU_USARTx (x=0,1,2,5): USART clock \arg RCU_UARTx (x=3,4,6,7): UART clock \arg RCU_I2Cx (x=0,1,2): I2C clock \arg RCU_CANx (x=0,1): CAN clock \arg RCU_PMU: PMU clock \arg RCU_DAC: DAC clock \arg RCU_RTC: RTC clock \arg RCU_ADCx (x=0,1,2): ADC clock \arg RCU_SDIO: SDIO clock \arg RCU_SYSCFG: SYSCFG clock \arg RCU_TLI: TLI clock \arg RCU_CTC: CTC clock \arg RCU_IREF: IREF clock \param[out] none \retval none */ void rcu_periph_clock_disable(rcu_periph_enum periph) { RCU_REG_VAL(periph) &= ~BIT(RCU_BIT_POS(periph)); } /*! \brief enable the peripherals clock when sleep mode \param[in] periph: RCU peripherals, refer to rcu_periph_sleep_enum only one parameter can be selected which is shown as below: \arg RCU_GPIOx_SLP (x=A,B,C,D,E,F,G,H,I): GPIO ports clock \arg RCU_CRC_SLP: CRC clock \arg RCU_FMC_SLP: FMC clock \arg RCU_SRAM0_SLP: SRAM0 clock \arg RCU_SRAM1_SLP: SRAM1 clock \arg RCU_BKPSRAM: BKPSRAM clock \arg RCU_SRAM2_SLP: SRAM2 clock \arg RCU_DMAx_SLP (x=0,1): DMA clock \arg RCU_IPA_SLP: IPA clock \arg RCU_ENET_SLP: ENET clock \arg RCU_ENETTX_SLP: ENETTX clock \arg RCU_ENETRX_SLP: ENETRX clock \arg RCU_ENETPTP_SLP: ENETPTP clock \arg RCU_USBHS_SLP: USBHS clock \arg RCU_USBHSULPI_SLP: USBHSULPI clock \arg RCU_DCI_SLP: DCI clock \arg RCU_TRNG_SLP: TRNG clock \arg RCU_USBFS_SLP: USBFS clock \arg RCU_EXMC_SLP: EXMC clock \arg RCU_TIMERx_SLP (x=0,1,2,3,4,5,6,7,8,9,10,11,12,13): TIMER clock \arg RCU_WWDGT_SLP: WWDGT clock \arg RCU_SPIx_SLP (x=0,1,2,3,4,5): SPI clock \arg RCU_USARTx_SLP (x=0,1,2,5): USART clock \arg RCU_UARTx_SLP (x=3,4,6,7): UART clock \arg RCU_I2Cx_SLP (x=0,1,2): I2C clock \arg RCU_CANx_SLP (x=0,1): CAN clock \arg RCU_PMU_SLP: PMU clock \arg RCU_DAC_SLP: DAC clock \arg RCU_RTC_SLP: RTC clock \arg RCU_ADCx_SLP (x=0,1,2): ADC clock \arg RCU_SDIO_SLP: SDIO clock \arg RCU_SYSCFG_SLP: SYSCFG clock \arg RCU_TLI_SLP: TLI clock \arg RCU_CTC_SLP: CTC clock \arg RCU_IREF_SLP: IREF clock \param[out] none \retval none */ void rcu_periph_clock_sleep_enable(rcu_periph_sleep_enum periph) { RCU_REG_VAL(periph) |= BIT(RCU_BIT_POS(periph)); } /*! \brief disable the peripherals clock when sleep mode \param[in] periph: RCU peripherals, refer to rcu_periph_sleep_enum only one parameter can be selected which is shown as below: \arg RCU_GPIOx_SLP (x=A,B,C,D,E,F,G,H,I): GPIO ports clock \arg RCU_CRC_SLP: CRC clock \arg RCU_FMC_SLP: FMC clock \arg RCU_SRAM0_SLP: SRAM0 clock \arg RCU_SRAM1_SLP: SRAM1 clock \arg RCU_BKPSRAM: BKPSRAM clock \arg RCU_SRAM2_SLP: SRAM2 clock \arg RCU_DMAx_SLP (x=0,1): DMA clock \arg RCU_IPA_SLP: IPA clock \arg RCU_ENET_SLP: ENET clock \arg RCU_ENETTX_SLP: ENETTX clock \arg RCU_ENETRX_SLP: ENETRX clock \arg RCU_ENETPTP_SLP: ENETPTP clock \arg RCU_USBHS_SLP: USBHS clock \arg RCU_USBHSULPI_SLP: USBHSULPI clock \arg RCU_DCI_SLP: DCI clock \arg RCU_TRNG_SLP: TRNG clock \arg RCU_USBFS_SLP: USBFS clock \arg RCU_EXMC_SLP: EXMC clock \arg RCU_TIMERx_SLP (x=0,1,2,3,4,5,6,7,8,9,10,11,12,13): TIMER clock \arg RCU_WWDGT_SLP: WWDGT clock \arg RCU_SPIx_SLP (x=0,1,2,3,4,5): SPI clock \arg RCU_USARTx_SLP (x=0,1,2,5): USART clock \arg RCU_UARTx_SLP (x=3,4,6,7): UART clock \arg RCU_I2Cx_SLP (x=0,1,2): I2C clock \arg RCU_CANx_SLP (x=0,1): CAN clock \arg RCU_PMU_SLP: PMU clock \arg RCU_DAC_SLP: DAC clock \arg RCU_RTC_SLP: RTC clock \arg RCU_ADCx_SLP (x=0,1,2): ADC clock \arg RCU_SDIO_SLP: SDIO clock \arg RCU_SYSCFG_SLP: SYSCFG clock \arg RCU_TLI_SLP: TLI clock \arg RCU_CTC_SLP: CTC clock \arg RCU_IREF_SLP: IREF clock \param[out] none \retval none */ void rcu_periph_clock_sleep_disable(rcu_periph_sleep_enum periph) { RCU_REG_VAL(periph) &= ~BIT(RCU_BIT_POS(periph)); } /*! \brief reset the peripherals \param[in] periph_reset: RCU peripherals reset, refer to rcu_periph_reset_enum only one parameter can be selected which is shown as below: \arg RCU_GPIOxRST (x=A,B,C,D,E,F,G,H,I): reset GPIO ports \arg RCU_CRCRST: reset CRC \arg RCU_DMAxRST (x=0,1): reset DMA \arg RCU_IPARST: reset IPA \arg RCU_ENETRST: reset ENET \arg RCU_USBHSRST: reset USBHS \arg RCU_DCIRST: reset DCI \arg RCU_TRNGRST: reset TRNG \arg RCU_USBFSRST: reset USBFS \arg RCU_EXMCRST: reset EXMC \arg RCU_TIMERxRST (x=0,1,2,3,4,5,6,7,8,9,10,11,12,13): reset TIMER \arg RCU_WWDGTRST: reset WWDGT \arg RCU_SPIxRST (x=0,1,2,3,4,5): reset SPI \arg RCU_USARTxRST (x=0,1,2,5): reset USART \arg RCU_UARTxRST (x=3,4,6,7): reset UART \arg RCU_I2CxRST (x=0,1,2): reset I2C \arg RCU_CANxRST (x=0,1): reset CAN \arg RCU_PMURST: reset PMU \arg RCU_DACRST: reset DAC \arg RCU_ADCRST (x=0,1,2): reset ADC \arg RCU_SDIORST: reset SDIO \arg RCU_SYSCFGRST: reset SYSCFG \arg RCU_TLIRST: reset TLI \arg RCU_CTCRST: reset CTC \arg RCU_IREFRST: reset IREF \param[out] none \retval none */ void rcu_periph_reset_enable(rcu_periph_reset_enum periph_reset) { RCU_REG_VAL(periph_reset) |= BIT(RCU_BIT_POS(periph_reset)); } /*! \brief disable reset the peripheral \param[in] periph_reset: RCU peripherals reset, refer to rcu_periph_reset_enum only one parameter can be selected which is shown as below: \arg RCU_GPIOxRST (x=A,B,C,D,E,F,G,H,I): reset GPIO ports \arg RCU_CRCRST: reset CRC \arg RCU_DMAxRST (x=0,1): reset DMA \arg RCU_IPARST: reset IPA \arg RCU_ENETRST: reset ENET \arg RCU_USBHSRST: reset USBHS \arg RCU_DCIRST: reset DCI \arg RCU_TRNGRST: reset TRNG \arg RCU_USBFSRST: reset USBFS \arg RCU_EXMCRST: reset EXMC \arg RCU_TIMERxRST (x=0,1,2,3,4,5,6,7,8,9,10,11,12,13): reset TIMER \arg RCU_WWDGTRST: reset WWDGT \arg RCU_SPIxRST (x=0,1,2,3,4,5): reset SPI \arg RCU_USARTxRST (x=0,1,2,5): reset USART \arg RCU_UARTxRST (x=3,4,6,7): reset UART \arg RCU_I2CxRST (x=0,1,2): reset I2C \arg RCU_CANxRST (x=0,1): reset CAN \arg RCU_PMURST: reset PMU \arg RCU_DACRST: reset DAC \arg RCU_ADCRST (x=0,1,2): reset ADC \arg RCU_SDIORST: reset SDIO \arg RCU_SYSCFGRST: reset SYSCFG \arg RCU_TLIRST: reset TLI \arg RCU_CTCRST: reset CTC \arg RCU_IREFRST: reset IREF \param[out] none \retval none */ void rcu_periph_reset_disable(rcu_periph_reset_enum periph_reset) { RCU_REG_VAL(periph_reset) &= ~BIT(RCU_BIT_POS(periph_reset)); } /*! \brief reset the BKP \param[in] none \param[out] none \retval none */ void rcu_bkp_reset_enable(void) { RCU_BDCTL |= RCU_BDCTL_BKPRST; } /*! \brief disable the BKP reset \param[in] none \param[out] none \retval none */ void rcu_bkp_reset_disable(void) { RCU_BDCTL &= ~RCU_BDCTL_BKPRST; } /*! \brief configure the system clock source \param[in] ck_sys: system clock source select only one parameter can be selected which is shown as below: \arg RCU_CKSYSSRC_IRC16M: select CK_IRC16M as the CK_SYS source \arg RCU_CKSYSSRC_HXTAL: select CK_HXTAL as the CK_SYS source \arg RCU_CKSYSSRC_PLLP: select CK_PLLP as the CK_SYS source \param[out] none \retval none */ void rcu_system_clock_source_config(uint32_t ck_sys) { uint32_t reg; reg = RCU_CFG0; /* reset the SCS bits and set according to ck_sys */ reg &= ~RCU_CFG0_SCS; RCU_CFG0 = (reg | ck_sys); } /*! \brief get the system clock source \param[in] none \param[out] none \retval which clock is selected as CK_SYS source \arg RCU_SCSS_IRC16M: CK_IRC16M is selected as the CK_SYS source \arg RCU_SCSS_HXTAL: CK_HXTAL is selected as the CK_SYS source \arg RCU_SCSS_PLLP: CK_PLLP is selected as the CK_SYS source */ uint32_t rcu_system_clock_source_get(void) { return (RCU_CFG0 & RCU_CFG0_SCSS); } /*! \brief configure the AHB clock prescaler selection \param[in] ck_ahb: AHB clock prescaler selection only one parameter can be selected which is shown as below: \arg RCU_AHB_CKSYS_DIVx, x=1, 2, 4, 8, 16, 64, 128, 256, 512 \param[out] none \retval none */ void rcu_ahb_clock_config(uint32_t ck_ahb) { uint32_t reg; reg = RCU_CFG0; /* reset the AHBPSC bits and set according to ck_ahb */ reg &= ~RCU_CFG0_AHBPSC; RCU_CFG0 = (reg | ck_ahb); } /*! \brief configure the APB1 clock prescaler selection \param[in] ck_apb1: APB1 clock prescaler selection only one parameter can be selected which is shown as below: \arg RCU_APB1_CKAHB_DIV1: select CK_AHB as CK_APB1 \arg RCU_APB1_CKAHB_DIV2: select CK_AHB/2 as CK_APB1 \arg RCU_APB1_CKAHB_DIV4: select CK_AHB/4 as CK_APB1 \arg RCU_APB1_CKAHB_DIV8: select CK_AHB/8 as CK_APB1 \arg RCU_APB1_CKAHB_DIV16: select CK_AHB/16 as CK_APB1 \param[out] none \retval none */ void rcu_apb1_clock_config(uint32_t ck_apb1) { uint32_t reg; reg = RCU_CFG0; /* reset the APB1PSC and set according to ck_apb1 */ reg &= ~RCU_CFG0_APB1PSC; RCU_CFG0 = (reg | ck_apb1); } /*! \brief configure the APB2 clock prescaler selection \param[in] ck_apb2: APB2 clock prescaler selection only one parameter can be selected which is shown as below: \arg RCU_APB2_CKAHB_DIV1: select CK_AHB as CK_APB2 \arg RCU_APB2_CKAHB_DIV2: select CK_AHB/2 as CK_APB2 \arg RCU_APB2_CKAHB_DIV4: select CK_AHB/4 as CK_APB2 \arg RCU_APB2_CKAHB_DIV8: select CK_AHB/8 as CK_APB2 \arg RCU_APB2_CKAHB_DIV16: select CK_AHB/16 as CK_APB2 \param[out] none \retval none */ void rcu_apb2_clock_config(uint32_t ck_apb2) { uint32_t reg; reg = RCU_CFG0; /* reset the APB2PSC and set according to ck_apb2 */ reg &= ~RCU_CFG0_APB2PSC; RCU_CFG0 = (reg | ck_apb2); } /*! \brief configure the CK_OUT0 clock source and divider \param[in] ckout0_src: CK_OUT0 clock source selection only one parameter can be selected which is shown as below: \arg RCU_CKOUT0SRC_IRC16M: IRC16M selected \arg RCU_CKOUT0SRC_LXTAL: LXTAL selected \arg RCU_CKOUT0SRC_HXTAL: HXTAL selected \arg RCU_CKOUT0SRC_PLLP: PLLP selected \param[in] ckout0_div: CK_OUT0 divider \arg RCU_CKOUT0_DIVx(x=1,2,3,4,5): CK_OUT0 is divided by x \param[out] none \retval none */ void rcu_ckout0_config(uint32_t ckout0_src, uint32_t ckout0_div) { uint32_t reg; reg = RCU_CFG0; /* reset the CKOUT0SRC, CKOUT0DIV and set according to ckout0_src and ckout0_div */ reg &= ~(RCU_CFG0_CKOUT0SEL | RCU_CFG0_CKOUT0DIV ); RCU_CFG0 = (reg | ckout0_src | ckout0_div); } /*! \brief configure the CK_OUT1 clock source and divider \param[in] ckout1_src: CK_OUT1 clock source selection only one parameter can be selected which is shown as below: \arg RCU_CKOUT1SRC_SYSTEMCLOCK: system clock selected \arg RCU_CKOUT1SRC_PLLI2SR: PLLI2SR selected \arg RCU_CKOUT1SRC_HXTAL: HXTAL selected \arg RCU_CKOUT1SRC_PLLP: PLLP selected \param[in] ckout1_div: CK_OUT1 divider \arg RCU_CKOUT1_DIVx(x=1,2,3,4,5): CK_OUT1 is divided by x \param[out] none \retval none */ void rcu_ckout1_config(uint32_t ckout1_src, uint32_t ckout1_div) { uint32_t reg; reg = RCU_CFG0; /* reset the CKOUT1SRC, CKOUT1DIV and set according to ckout1_src and ckout1_div */ reg &= ~(RCU_CFG0_CKOUT1SEL | RCU_CFG0_CKOUT1DIV); RCU_CFG0 = (reg | ckout1_src | ckout1_div); } /*! \brief configure the main PLL clock \param[in] pll_src: PLL clock source selection \arg RCU_PLLSRC_IRC16M: select IRC16M as PLL source clock \arg RCU_PLLSRC_HXTAL: select HXTAL as PLL source clock \param[in] pll_psc: the PLL VCO source clock prescaler \arg this parameter should be selected between 2 and 63 \param[in] pll_n: the PLL VCO clock multi factor \arg this parameter should be selected between 64 and 500 \param[in] pll_p: the PLLP output frequency division factor from PLL VCO clock \arg this parameter should be selected 2,4,6,8 \param[in] pll_q: the PLL Q output frequency division factor from PLL VCO clock \arg this parameter should be selected between 2 and 15 \param[out] none \retval ErrStatus: SUCCESS or ERROR */ ErrStatus rcu_pll_config(uint32_t pll_src, uint32_t pll_psc, uint32_t pll_n, uint32_t pll_p, uint32_t pll_q) { uint32_t ss_modulation_inc; uint32_t ss_modulation_reg; ss_modulation_inc = 0U; ss_modulation_reg = RCU_PLLSSCTL; /* calculate the minimum factor of PLLN */ if((ss_modulation_reg & RCU_PLLSSCTL_SSCGON) == RCU_PLLSSCTL_SSCGON){ if((ss_modulation_reg & RCU_SS_TYPE_DOWN) == RCU_SS_TYPE_DOWN){ ss_modulation_inc += RCU_SS_MODULATION_DOWN_INC; }else{ ss_modulation_inc += RCU_SS_MODULATION_CENTER_INC; } } /* check the function parameter */ if(CHECK_PLL_PSC_VALID(pll_psc) && CHECK_PLL_N_VALID(pll_n,ss_modulation_inc) && CHECK_PLL_P_VALID(pll_p) && CHECK_PLL_Q_VALID(pll_q)){ RCU_PLL = pll_psc | (pll_n << 6) | (((pll_p >> 1) - 1U) << 16) | (pll_src) | (pll_q << 24); }else{ /* return status */ return ERROR; } /* return status */ return SUCCESS; } /*! \brief configure the PLLI2S clock \param[in] plli2s_n: the PLLI2S VCO clock multi factor \arg this parameter should be selected between 50 and 500 \param[in] plli2s_r: the PLLI2S R output frequency division factor from PLLI2S VCO clock \arg this parameter should be selected between 2 and 7 \param[out] none \retval ErrStatus: SUCCESS or ERROR */ ErrStatus rcu_plli2s_config(uint32_t plli2s_n, uint32_t plli2s_r) { /* check the function parameter */ if(CHECK_PLLI2S_N_VALID(plli2s_n) && CHECK_PLLI2S_R_VALID(plli2s_r)){ RCU_PLLI2S = (plli2s_n << 6) | (plli2s_r << 28); }else{ /* return status */ return ERROR; } /* return status */ return SUCCESS; } /*! \brief configure the PLLSAI clock \param[in] pllsai_n: the PLLSAI VCO clock multi factor \arg this parameter should be selected between 50 and 500 \param[in] pllsai_p: the PLLSAI P output frequency division factor from PLL VCO clock \arg this parameter should be selected 2,4,6,8 \param[in] pllsai_r: the PLLSAI R output frequency division factor from PLL VCO clock \arg this parameter should be selected between 2 and 7 \param[out] none \retval ErrStatus: SUCCESS or ERROR */ ErrStatus rcu_pllsai_config(uint32_t pllsai_n, uint32_t pllsai_p, uint32_t pllsai_r) { /* check the function parameter */ if(CHECK_PLLSAI_N_VALID(pllsai_n) && CHECK_PLLSAI_P_VALID(pllsai_p) && CHECK_PLLSAI_R_VALID(pllsai_r)){ RCU_PLLSAI = (pllsai_n << 6U) | (((pllsai_p >> 1U) - 1U) << 16U) | (pllsai_r << 28U); }else{ /* return status */ return ERROR; } /* return status */ return SUCCESS; } /*! \brief configure the RTC clock source selection \param[in] rtc_clock_source: RTC clock source selection only one parameter can be selected which is shown as below: \arg RCU_RTCSRC_NONE: no clock selected \arg RCU_RTCSRC_LXTAL: CK_LXTAL selected as RTC source clock \arg RCU_RTCSRC_IRC32K: CK_IRC32K selected as RTC source clock \arg RCU_RTCSRC_HXTAL_DIV_RTCDIV: CK_HXTAL/RTCDIV selected as RTC source clock \param[out] none \retval none */ void rcu_rtc_clock_config(uint32_t rtc_clock_source) { uint32_t reg; reg = RCU_BDCTL; /* reset the RTCSRC bits and set according to rtc_clock_source */ reg &= ~RCU_BDCTL_RTCSRC; RCU_BDCTL = (reg | rtc_clock_source); } /*! \brief configure the frequency division of RTC clock when HXTAL was selected as its clock source \param[in] rtc_div: RTC clock frequency division only one parameter can be selected which is shown as below: \arg RCU_RTC_HXTAL_NONE: no clock for RTC \arg RCU_RTC_HXTAL_DIVx: RTCDIV clock select CK_HXTAL/x, x = 2....31 \param[out] none \retval none */ void rcu_rtc_div_config(uint32_t rtc_div) { uint32_t reg; reg = RCU_CFG0; /* reset the RTCDIV bits and set according to rtc_div value */ reg &= ~RCU_CFG0_RTCDIV; RCU_CFG0 = (reg | rtc_div); } /*! \brief configure the I2S clock source selection \param[in] i2s_clock_source: I2S clock source selection only one parameter can be selected which is shown as below: \arg RCU_I2SSRC_PLLI2S: CK_PLLI2S selected as I2S source clock \arg RCU_I2SSRC_I2S_CKIN: external i2s_ckin pin selected as I2S source clock \param[out] none \retval none */ void rcu_i2s_clock_config(uint32_t i2s_clock_source) { uint32_t reg; reg = RCU_CFG0; /* reset the I2SSEL bit and set according to i2s_clock_source */ reg &= ~RCU_CFG0_I2SSEL; RCU_CFG0 = (reg | i2s_clock_source); } /*! \brief configure the CK48M clock source selection \param[in] ck48m_clock_source: CK48M clock source selection only one parameter can be selected which is shown as below: \arg RCU_CK48MSRC_PLL48M: CK_PLL48M selected as CK48M source clock \arg RCU_CK48MSRC_IRC48M: CK_IRC48M selected as CK48M source clock \param[out] none \retval none */ void rcu_ck48m_clock_config(uint32_t ck48m_clock_source) { uint32_t reg; reg = RCU_ADDCTL; /* reset the CK48MSEL bit and set according to i2s_clock_source */ reg &= ~RCU_ADDCTL_CK48MSEL; RCU_ADDCTL = (reg | ck48m_clock_source); } /*! \brief configure the PLL48M clock source selection \param[in] pll48m_clock_source: PLL48M clock source selection only one parameter can be selected which is shown as below: \arg RCU_PLL48MSRC_PLLQ: CK_PLLQ selected as PLL48M source clock \arg RCU_PLL48MSRC_PLLSAIP: CK_PLLSAIP selected as PLL48M source clock \param[out] none \retval none */ void rcu_pll48m_clock_config(uint32_t pll48m_clock_source) { uint32_t reg; reg = RCU_ADDCTL; /* reset the PLL48MSEL bit and set according to pll48m_clock_source */ reg &= ~RCU_ADDCTL_PLL48MSEL; RCU_ADDCTL = (reg | pll48m_clock_source); } /*! \brief configure the TIMER clock prescaler selection \param[in] timer_clock_prescaler: TIMER clock selection only one parameter can be selected which is shown as below: \arg RCU_TIMER_PSC_MUL2: if APB1PSC/APB2PSC in RCU_CFG0 register is 0b0xx(CK_APBx = CK_AHB) or 0b100(CK_APBx = CK_AHB/2), the TIMER clock is equal to CK_AHB(CK_TIMERx = CK_AHB). or else, the TIMER clock is twice the corresponding APB clock (TIMER in APB1 domain: CK_TIMERx = 2 x CK_APB1; TIMER in APB2 domain: CK_TIMERx = 2 x CK_APB2) \arg RCU_TIMER_PSC_MUL4: if APB1PSC/APB2PSC in RCU_CFG0 register is 0b0xx(CK_APBx = CK_AHB), 0b100(CK_APBx = CK_AHB/2), or 0b101(CK_APBx = CK_AHB/4), the TIMER clock is equal to CK_AHB(CK_TIMERx = CK_AHB). or else, the TIMER clock is four timers the corresponding APB clock (TIMER in APB1 domain: CK_TIMERx = 4 x CK_APB1; TIMER in APB2 domain: CK_TIMERx = 4 x CK_APB2) \param[out] none \retval none */ void rcu_timer_clock_prescaler_config(uint32_t timer_clock_prescaler) { /* configure the TIMERSEL bit and select the TIMER clock prescaler */ if(timer_clock_prescaler == RCU_TIMER_PSC_MUL2){ RCU_CFG1 &= timer_clock_prescaler; }else{ RCU_CFG1 |= timer_clock_prescaler; } } /*! \brief configure the PLLSAIR divider used as input of TLI \param[in] pllsai_r_div: PLLSAIR divider used as input of TLI only one parameter can be selected which is shown as below: \arg RCU_PLLSAIR_DIVx(x=2,4,8,16): PLLSAIR divided x used as input of TLI \param[out] none \retval none */ void rcu_tli_clock_div_config(uint32_t pllsai_r_div) { uint32_t reg; reg = RCU_CFG1; /* reset the PLLSAIRDIV bit and set according to pllsai_r_div */ reg &= ~RCU_CFG1_PLLSAIRDIV; RCU_CFG1 = (reg | pllsai_r_div); } /*! \brief get the clock stabilization and periphral reset flags \param[in] flag: the clock stabilization and periphral reset flags, refer to rcu_flag_enum only one parameter can be selected which is shown as below: \arg RCU_FLAG_IRC16MSTB: IRC16M stabilization flag \arg RCU_FLAG_HXTALSTB: HXTAL stabilization flag \arg RCU_FLAG_PLLSTB: PLL stabilization flag \arg RCU_FLAG_PLLI2SSTB: PLLI2S stabilization flag \arg RCU_FLAG_PLLSAISTB: PLLSAI stabilization flag \arg RCU_FLAG_LXTALSTB: LXTAL stabilization flag \arg RCU_FLAG_IRC32KSTB: IRC32K stabilization flag \arg RCU_FLAG_IRC48MSTB: IRC48M stabilization flag \arg RCU_FLAG_BORRST: BOR reset flags \arg RCU_FLAG_EPRST: external PIN reset flag \arg RCU_FLAG_PORRST: Power reset flag \arg RCU_FLAG_SWRST: software reset flag \arg RCU_FLAG_FWDGTRST: free watchdog timer reset flag \arg RCU_FLAG_WWDGTRST: window watchdog timer reset flag \arg RCU_FLAG_LPRST: low-power reset flag \param[out] none \retval none */ FlagStatus rcu_flag_get(rcu_flag_enum flag) { /* get the rcu flag */ if(RESET != (RCU_REG_VAL(flag) & BIT(RCU_BIT_POS(flag)))){ return SET; }else{ return RESET; } } /*! \brief clear all the reset flag \param[in] none \param[out] none \retval none */ void rcu_all_reset_flag_clear(void) { RCU_RSTSCK |= RCU_RSTSCK_RSTFC; } /*! \brief get the clock stabilization interrupt and ckm flags \param[in] int_flag: interrupt and ckm flags, refer to rcu_int_flag_enum only one parameter can be selected which is shown as below: \arg RCU_INT_FLAG_IRC32KSTB: IRC32K stabilization interrupt flag \arg RCU_INT_FLAG_LXTALSTB: LXTAL stabilization interrupt flag \arg RCU_INT_FLAG_IRC16MSTB: IRC16M stabilization interrupt flag \arg RCU_INT_FLAG_HXTALSTB: HXTAL stabilization interrupt flag \arg RCU_INT_FLAG_PLLSTB: PLL stabilization interrupt flag \arg RCU_INT_FLAG_PLLI2SSTB: PLLI2S stabilization interrupt flag \arg RCU_INT_FLAG_PLLSAISTB: PLLSAI stabilization interrupt flag \arg RCU_INT_FLAG_CKM: HXTAL clock stuck interrupt flag \arg RCU_INT_FLAG_IRC48MSTB: IRC48M stabilization interrupt flag \param[out] none \retval FlagStatus: SET or RESET */ FlagStatus rcu_interrupt_flag_get(rcu_int_flag_enum int_flag) { /* get the rcu interrupt flag */ if(RESET != (RCU_REG_VAL(int_flag) & BIT(RCU_BIT_POS(int_flag)))){ return SET; }else{ return RESET; } } /*! \brief clear the interrupt flags \param[in] int_flag: clock stabilization and stuck interrupt flags clear, refer to rcu_int_flag_clear_enum only one parameter can be selected which is shown as below: \arg RCU_INT_FLAG_IRC32KSTB_CLR: IRC32K stabilization interrupt flag clear \arg RCU_INT_FLAG_LXTALSTB_CLR: LXTAL stabilization interrupt flag clear \arg RCU_INT_FLAG_IRC16MSTB_CLR: IRC16M stabilization interrupt flag clear \arg RCU_INT_FLAG_HXTALSTB_CLR: HXTAL stabilization interrupt flag clear \arg RCU_INT_FLAG_PLLSTB_CLR: PLL stabilization interrupt flag clear \arg RCU_INT_FLAG_PLLI2SSTB_CLR: PLLI2S stabilization interrupt flag clear \arg RCU_INT_FLAG_PLLSAISTB_CLR: PLLSAI stabilization interrupt flag clear \arg RCU_INT_FLAG_CKM_CLR: clock stuck interrupt flag clear \arg RCU_INT_FLAG_IRC48MSTB_CLR: IRC48M stabilization interrupt flag clear \param[out] none \retval none */ void rcu_interrupt_flag_clear(rcu_int_flag_clear_enum int_flag) { RCU_REG_VAL(int_flag) |= BIT(RCU_BIT_POS(int_flag)); } /*! \brief enable the stabilization interrupt \param[in] interrupt: clock stabilization interrupt, refer to rcu_int_enum Only one parameter can be selected which is shown as below: \arg RCU_INT_IRC32KSTB: IRC32K stabilization interrupt enable \arg RCU_INT_LXTALSTB: LXTAL stabilization interrupt enable \arg RCU_INT_IRC16MSTB: IRC16M stabilization interrupt enable \arg RCU_INT_HXTALSTB: HXTAL stabilization interrupt enable \arg RCU_INT_PLLSTB: PLL stabilization interrupt enable \arg RCU_INT_PLLI2SSTB: PLLI2S stabilization interrupt enable \arg RCU_INT_PLLSAISTB: PLLSAI stabilization interrupt enable \arg RCU_INT_IRC48MSTB: IRC48M stabilization interrupt enable \param[out] none \retval none */ void rcu_interrupt_enable(rcu_int_enum interrupt) { RCU_REG_VAL(interrupt) |= BIT(RCU_BIT_POS(interrupt)); } /*! \brief disable the stabilization interrupt \param[in] interrupt: clock stabilization interrupt, refer to rcu_int_enum only one parameter can be selected which is shown as below: \arg RCU_INT_IRC32KSTB: IRC32K stabilization interrupt disable \arg RCU_INT_LXTALSTB: LXTAL stabilization interrupt disable \arg RCU_INT_IRC16MSTB: IRC16M stabilization interrupt disable \arg RCU_INT_HXTALSTB: HXTAL stabilization interrupt disable \arg RCU_INT_PLLSTB: PLL stabilization interrupt disable \arg RCU_INT_PLLI2SSTB: PLLI2S stabilization interrupt disable \arg RCU_INT_PLLSAISTB: PLLSAI stabilization interrupt disable \arg RCU_INT_IRC48MSTB: IRC48M stabilization interrupt disable \param[out] none \retval none */ void rcu_interrupt_disable(rcu_int_enum interrupt) { RCU_REG_VAL(interrupt) &= ~BIT(RCU_BIT_POS(interrupt)); } /*! \brief configure the LXTAL drive capability \param[in] lxtal_dricap: drive capability of LXTAL only one parameter can be selected which is shown as below: \arg RCU_LXTALDRI_LOWER_DRIVE: lower driving capability \arg RCU_LXTALDRI_HIGHER_DRIVE: higher driving capability \param[out] none \retval none */ void rcu_lxtal_drive_capability_config(uint32_t lxtal_dricap) { uint32_t reg; reg = RCU_BDCTL; /* reset the LXTALDRI bits and set according to lxtal_dricap */ reg &= ~RCU_BDCTL_LXTALDRI; RCU_BDCTL = (reg | lxtal_dricap); } /*! \brief wait for oscillator stabilization flags is SET or oscillator startup is timeout \param[in] osci: oscillator types, refer to rcu_osci_type_enum only one parameter can be selected which is shown as below: \arg RCU_HXTAL: HXTAL \arg RCU_LXTAL: LXTAL \arg RCU_IRC16M: IRC16M \arg RCU_IRC48M: IRC48M \arg RCU_IRC32K: IRC32K \arg RCU_PLL_CK: PLL \arg RCU_PLLI2S_CK: PLLI2S \arg RCU_PLLSAI_CK: PLLSAI \param[out] none \retval ErrStatus: SUCCESS or ERROR */ ErrStatus rcu_osci_stab_wait(rcu_osci_type_enum osci) { uint32_t stb_cnt = 0U; ErrStatus reval = ERROR; FlagStatus osci_stat = RESET; switch(osci){ /* wait HXTAL stable */ case RCU_HXTAL: while((RESET == osci_stat) && (HXTAL_STARTUP_TIMEOUT != stb_cnt)){ osci_stat = rcu_flag_get(RCU_FLAG_HXTALSTB); stb_cnt++; } /* check whether flag is set */ if(RESET != rcu_flag_get(RCU_FLAG_HXTALSTB)){ reval = SUCCESS; } break; /* wait LXTAL stable */ case RCU_LXTAL: while((RESET == osci_stat) && (LXTAL_STARTUP_TIMEOUT != stb_cnt)){ osci_stat = rcu_flag_get(RCU_FLAG_LXTALSTB); stb_cnt++; } /* check whether flag is set */ if(RESET != rcu_flag_get(RCU_FLAG_LXTALSTB)){ reval = SUCCESS; } break; /* wait IRC16M stable */ case RCU_IRC16M: while((RESET == osci_stat) && (IRC16M_STARTUP_TIMEOUT != stb_cnt)){ osci_stat = rcu_flag_get(RCU_FLAG_IRC16MSTB); stb_cnt++; } /* check whether flag is set */ if(RESET != rcu_flag_get(RCU_FLAG_IRC16MSTB)){ reval = SUCCESS; } break; /* wait IRC48M stable */ case RCU_IRC48M: while((RESET == osci_stat) && (OSC_STARTUP_TIMEOUT != stb_cnt)){ osci_stat = rcu_flag_get(RCU_FLAG_IRC48MSTB); stb_cnt++; } /* check whether flag is set */ if (RESET != rcu_flag_get(RCU_FLAG_IRC48MSTB)){ reval = SUCCESS; } break; /* wait IRC32K stable */ case RCU_IRC32K: while((RESET == osci_stat) && (OSC_STARTUP_TIMEOUT != stb_cnt)){ osci_stat = rcu_flag_get(RCU_FLAG_IRC32KSTB); stb_cnt++; } /* check whether flag is set */ if(RESET != rcu_flag_get(RCU_FLAG_IRC32KSTB)){ reval = SUCCESS; } break; /* wait PLL stable */ case RCU_PLL_CK: while((RESET == osci_stat) && (OSC_STARTUP_TIMEOUT != stb_cnt)){ osci_stat = rcu_flag_get(RCU_FLAG_PLLSTB); stb_cnt++; } /* check whether flag is set */ if(RESET != rcu_flag_get(RCU_FLAG_PLLSTB)){ reval = SUCCESS; } break; /* wait PLLI2S stable */ case RCU_PLLI2S_CK: while((RESET == osci_stat) && (OSC_STARTUP_TIMEOUT != stb_cnt)){ osci_stat = rcu_flag_get(RCU_FLAG_PLLI2SSTB); stb_cnt++; } /* check whether flag is set */ if(RESET != rcu_flag_get(RCU_FLAG_PLLI2SSTB)){ reval = SUCCESS; } break; /* wait PLLSAI stable */ case RCU_PLLSAI_CK: while((RESET == osci_stat) && (OSC_STARTUP_TIMEOUT != stb_cnt)){ osci_stat = rcu_flag_get(RCU_FLAG_PLLSAISTB); stb_cnt++; } /* check whether flag is set */ if(RESET != rcu_flag_get(RCU_FLAG_PLLSAISTB)){ reval = SUCCESS; } break; default: break; } /* return value */ return reval; } /*! \brief turn on the oscillator \param[in] osci: oscillator types, refer to rcu_osci_type_enum only one parameter can be selected which is shown as below: \arg RCU_HXTAL: HXTAL \arg RCU_LXTAL: LXTAL \arg RCU_IRC16M: IRC16M \arg RCU_IRC48M: IRC48M \arg RCU_IRC32K: IRC32K \arg RCU_PLL_CK: PLL \arg RCU_PLLI2S_CK: PLLI2S \arg RCU_PLLSAI_CK: PLLSAI \param[out] none \retval none */ void rcu_osci_on(rcu_osci_type_enum osci) { RCU_REG_VAL(osci) |= BIT(RCU_BIT_POS(osci)); } /*! \brief turn off the oscillator \param[in] osci: oscillator types, refer to rcu_osci_type_enum only one parameter can be selected which is shown as below: \arg RCU_HXTAL: HXTAL \arg RCU_LXTAL: LXTAL \arg RCU_IRC16M: IRC16M \arg RCU_IRC48M: IRC48M \arg RCU_IRC32K: IRC32K \arg RCU_PLL_CK: PLL \arg RCU_PLLI2S_CK: PLLI2S \arg RCU_PLLSAI_CK: PLLSAI \param[out] none \retval none */ void rcu_osci_off(rcu_osci_type_enum osci) { RCU_REG_VAL(osci) &= ~BIT(RCU_BIT_POS(osci)); } /*! \brief enable the oscillator bypass mode, HXTALEN or LXTALEN must be reset before it \param[in] osci: oscillator types, refer to rcu_osci_type_enum only one parameter can be selected which is shown as below: \arg RCU_HXTAL: high speed crystal oscillator(HXTAL) \arg RCU_LXTAL: low speed crystal oscillator(LXTAL) \param[out] none \retval none */ void rcu_osci_bypass_mode_enable(rcu_osci_type_enum osci) { uint32_t reg; switch(osci){ /* enable HXTAL to bypass mode */ case RCU_HXTAL: reg = RCU_CTL; RCU_CTL &= ~RCU_CTL_HXTALEN; RCU_CTL = (reg | RCU_CTL_HXTALBPS); break; /* enable LXTAL to bypass mode */ case RCU_LXTAL: reg = RCU_BDCTL; RCU_BDCTL &= ~RCU_BDCTL_LXTALEN; RCU_BDCTL = (reg | RCU_BDCTL_LXTALBPS); break; case RCU_IRC16M: case RCU_IRC48M: case RCU_IRC32K: case RCU_PLL_CK: case RCU_PLLI2S_CK: case RCU_PLLSAI_CK: break; default: break; } } /*! \brief disable the oscillator bypass mode, HXTALEN or LXTALEN must be reset before it \param[in] osci: oscillator types, refer to rcu_osci_type_enum only one parameter can be selected which is shown as below: \arg RCU_HXTAL: high speed crystal oscillator(HXTAL) \arg RCU_LXTAL: low speed crystal oscillator(LXTAL) \param[out] none \retval none */ void rcu_osci_bypass_mode_disable(rcu_osci_type_enum osci) { uint32_t reg; switch(osci){ /* disable HXTAL to bypass mode */ case RCU_HXTAL: reg = RCU_CTL; RCU_CTL &= ~RCU_CTL_HXTALEN; RCU_CTL = (reg & ~RCU_CTL_HXTALBPS); break; /* disable LXTAL to bypass mode */ case RCU_LXTAL: reg = RCU_BDCTL; RCU_BDCTL &= ~RCU_BDCTL_LXTALEN; RCU_BDCTL = (reg & ~RCU_BDCTL_LXTALBPS); break; case RCU_IRC16M: case RCU_IRC48M: case RCU_IRC32K: case RCU_PLL_CK: case RCU_PLLI2S_CK: case RCU_PLLSAI_CK: break; default: break; } } /*! \brief enable the HXTAL clock monitor \param[in] none \param[out] none \retval none */ void rcu_hxtal_clock_monitor_enable(void) { RCU_CTL |= RCU_CTL_CKMEN; } /*! \brief disable the HXTAL clock monitor \param[in] none \param[out] none \retval none */ void rcu_hxtal_clock_monitor_disable(void) { RCU_CTL &= ~RCU_CTL_CKMEN; } /*! \brief set the IRC16M adjust value \param[in] irc16m_adjval: IRC16M adjust value, must be between 0 and 0x1F \arg 0x00 - 0x1F \param[out] none \retval none */ void rcu_irc16m_adjust_value_set(uint32_t irc16m_adjval) { uint32_t reg; reg = RCU_CTL; /* reset the IRC16MADJ bits and set according to irc16m_adjval */ reg &= ~RCU_CTL_IRC16MADJ; RCU_CTL = (reg | ((irc16m_adjval & RCU_IRC16M_ADJUST_MASK) << RCU_IRC16M_ADJUST_OFFSET)); } /*! \brief unlock the voltage key \param[in] none \param[out] none \retval none */ void rcu_voltage_key_unlock(void) { RCU_VKEY = RCU_VKEY_UNLOCK; } /*! \brief deep-sleep mode voltage select \param[in] dsvol: deep sleep mode voltage only one parameter can be selected which is shown as below: \arg RCU_DEEPSLEEP_V_1_2: the core voltage is 1.2V \arg RCU_DEEPSLEEP_V_1_1: the core voltage is 1.1V \arg RCU_DEEPSLEEP_V_1_0: the core voltage is 1.0V \arg RCU_DEEPSLEEP_V_0_9: the core voltage is 0.9V \param[out] none \retval none */ void rcu_deepsleep_voltage_set(uint32_t dsvol) { dsvol &= RCU_DSV_DSLPVS; RCU_DSV = dsvol; } /*! \brief configure the spread spectrum modulation for the main PLL clock \param[in] spread_spectrum_type: PLL spread spectrum modulation type select \arg RCU_SS_TYPE_CENTER: center spread type is selected \arg RCU_SS_TYPE_DOWN: down spread type is selected \param[in] modstep: configure PLL spread spectrum modulation profile amplitude and frequency \arg This parameter should be selected between 0 and 7FFF.The following criteria must be met: MODSTEP*MODCNT <=2^15-1 \param[in] modcnt: configure PLL spread spectrum modulation profile amplitude and frequency \arg This parameter should be selected between 0 and 1FFF.The following criteria must be met: MODSTEP*MODCNT <=2^15-1 \param[out] none \retval none */ void rcu_spread_spectrum_config(uint32_t spread_spectrum_type, uint32_t modstep, uint32_t modcnt) { uint32_t reg; reg = RCU_PLLSSCTL; /* reset the RCU_PLLSSCTL register bits */ reg &= ~(RCU_PLLSSCTL_MODCNT | RCU_PLLSSCTL_MODSTEP | RCU_PLLSSCTL_SS_TYPE); RCU_PLLSSCTL = (reg | spread_spectrum_type | modstep << 13 | modcnt); } /*! \brief enable the PLL spread spectrum modulation \param[in] none \param[out] none \retval none */ void rcu_spread_spectrum_enable(void) { RCU_PLLSSCTL |= RCU_PLLSSCTL_SSCGON; } /*! \brief disable the PLL spread spectrum modulation \param[in] none \param[out] none \retval none */ void rcu_spread_spectrum_disable(void) { RCU_PLLSSCTL &= ~RCU_PLLSSCTL_SSCGON; } /*! \brief get the system clock, bus and peripheral clock frequency \param[in] clock: the clock frequency which to get only one parameter can be selected which is shown as below: \arg CK_SYS: system clock frequency \arg CK_AHB: AHB clock frequency \arg CK_APB1: APB1 clock frequency \arg CK_APB2: APB2 clock frequency \param[out] none \retval clock frequency of system, AHB, APB1, APB2 */ uint32_t rcu_clock_freq_get(rcu_clock_freq_enum clock) { uint32_t sws, ck_freq = 0U; uint32_t cksys_freq, ahb_freq, apb1_freq, apb2_freq; uint32_t pllpsc, plln, pllsel, pllp, ck_src, idx, clk_exp; /* exponent of AHB, APB1 and APB2 clock divider */ const uint8_t ahb_exp[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9}; const uint8_t apb1_exp[8] = {0, 0, 0, 0, 1, 2, 3, 4}; const uint8_t apb2_exp[8] = {0, 0, 0, 0, 1, 2, 3, 4}; sws = GET_BITS(RCU_CFG0, 2, 3); switch(sws){ /* IRC16M is selected as CK_SYS */ case SEL_IRC16M: cksys_freq = IRC16M_VALUE; break; /* HXTAL is selected as CK_SYS */ case SEL_HXTAL: cksys_freq = HXTAL_VALUE; break; /* PLLP is selected as CK_SYS */ case SEL_PLLP: /* get the value of PLLPSC[5:0] */ pllpsc = GET_BITS(RCU_PLL, 0U, 5U); plln = GET_BITS(RCU_PLL, 6U, 14U); pllp = (GET_BITS(RCU_PLL, 16U, 17U) + 1U) * 2U; /* PLL clock source selection, HXTAL or IRC16M/2 */ pllsel = (RCU_PLL & RCU_PLL_PLLSEL); if (RCU_PLLSRC_HXTAL == pllsel) { ck_src = HXTAL_VALUE; } else { ck_src = IRC16M_VALUE; } cksys_freq = ((ck_src / pllpsc) * plln)/pllp; break; /* IRC16M is selected as CK_SYS */ default: cksys_freq = IRC16M_VALUE; break; } /* calculate AHB clock frequency */ idx = GET_BITS(RCU_CFG0, 4, 7); clk_exp = ahb_exp[idx]; ahb_freq = cksys_freq >> clk_exp; /* calculate APB1 clock frequency */ idx = GET_BITS(RCU_CFG0, 10, 12); clk_exp = apb1_exp[idx]; apb1_freq = ahb_freq >> clk_exp; /* calculate APB2 clock frequency */ idx = GET_BITS(RCU_CFG0, 13, 15); clk_exp = apb2_exp[idx]; apb2_freq = ahb_freq >> clk_exp; /* return the clocks frequency */ switch(clock){ case CK_SYS: ck_freq = cksys_freq; break; case CK_AHB: ck_freq = ahb_freq; break; case CK_APB1: ck_freq = apb1_freq; break; case CK_APB2: ck_freq = apb2_freq; break; default: break; } return ck_freq; }