/* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2015-06-15 hichard first version */ #include #include #define DBG_TAG "SDIO" #ifdef RT_SDIO_DEBUG #define DBG_LVL DBG_LOG #else #define DBG_LVL DBG_INFO #endif /* RT_SDIO_DEBUG */ #include static const rt_uint32_t tran_unit[] = { 10000, 100000, 1000000, 10000000, 0, 0, 0, 0 }; static const rt_uint8_t tran_value[] = { 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, }; static const rt_uint32_t tacc_uint[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, }; static const rt_uint8_t tacc_value[] = { 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, }; rt_inline rt_uint32_t GET_BITS(rt_uint32_t *resp, rt_uint32_t start, rt_uint32_t size) { const rt_int32_t __size = size; const rt_uint32_t __mask = (__size < 32 ? 1 << __size : 0) - 1; const rt_int32_t __off = 3 - ((start) / 32); const rt_int32_t __shft = (start) & 31; rt_uint32_t __res; __res = resp[__off] >> __shft; if (__size + __shft > 32) __res |= resp[__off - 1] << ((32 - __shft) % 32); return __res & __mask; } /* * Given a 128-bit response, decode to our card CSD structure. */ static rt_int32_t mmcsd_parse_csd(struct rt_mmcsd_card *card) { rt_uint32_t a, b; struct rt_mmcsd_csd *csd = &card->csd; rt_uint32_t *resp = card->resp_csd; /* * We only understand CSD structure v1.1 and v1.2. * v1.2 has extra information in bits 15, 11 and 10. * We also support eMMC v4.4 & v4.41. */ csd->csd_structure = GET_BITS(resp, 126, 2); if (csd->csd_structure == 0) { LOG_E("unrecognised CSD structure version %d!", csd->csd_structure); return -RT_ERROR; } csd->taac = GET_BITS(resp, 112, 8); csd->nsac = GET_BITS(resp, 104, 8); csd->tran_speed = GET_BITS(resp, 96, 8); csd->card_cmd_class = GET_BITS(resp, 84, 12); csd->rd_blk_len = GET_BITS(resp, 80, 4); csd->rd_blk_part = GET_BITS(resp, 79, 1); csd->wr_blk_misalign = GET_BITS(resp, 78, 1); csd->rd_blk_misalign = GET_BITS(resp, 77, 1); csd->dsr_imp = GET_BITS(resp, 76, 1); csd->c_size = GET_BITS(resp, 62, 12); csd->c_size_mult = GET_BITS(resp, 47, 3); csd->r2w_factor = GET_BITS(resp, 26, 3); csd->wr_blk_len = GET_BITS(resp, 22, 4); csd->wr_blk_partial = GET_BITS(resp, 21, 1); csd->csd_crc = GET_BITS(resp, 1, 7); card->card_blksize = 1 << csd->rd_blk_len; card->tacc_clks = csd->nsac * 100; card->tacc_ns = (tacc_uint[csd->taac & 0x07] * tacc_value[(csd->taac & 0x78) >> 3] + 9) / 10; card->max_data_rate = tran_unit[csd->tran_speed & 0x07] * tran_value[(csd->tran_speed & 0x78) >> 3]; if (csd->wr_blk_len >= 9) { a = GET_BITS(resp, 42, 5); b = GET_BITS(resp, 37, 5); card->erase_size = (a + 1) * (b + 1); card->erase_size <<= csd->wr_blk_len - 9; } return 0; } /* * Read extended CSD. */ static int mmc_get_ext_csd(struct rt_mmcsd_card *card, rt_uint8_t **new_ext_csd) { void *ext_csd; struct rt_mmcsd_req req; struct rt_mmcsd_cmd cmd; struct rt_mmcsd_data data; *new_ext_csd = RT_NULL; if (GET_BITS(card->resp_csd, 122, 4) < 4) return 0; /* * As the ext_csd is so large and mostly unused, we don't store the * raw block in mmc_card. */ ext_csd = rt_malloc(512); if (!ext_csd) { LOG_E("alloc memory failed when get ext csd!"); return -RT_ENOMEM; } rt_memset(&req, 0, sizeof(struct rt_mmcsd_req)); rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd)); rt_memset(&data, 0, sizeof(struct rt_mmcsd_data)); req.cmd = &cmd; req.data = &data; cmd.cmd_code = SEND_EXT_CSD; cmd.arg = 0; /* NOTE HACK: the RESP_SPI_R1 is always correct here, but we * rely on callers to never use this with "native" calls for reading * CSD or CID. Native versions of those commands use the R2 type, * not R1 plus a data block. */ cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_ADTC; data.blksize = 512; data.blks = 1; data.flags = DATA_DIR_READ; data.buf = ext_csd; /* * Some cards require longer data read timeout than indicated in CSD. * Address this by setting the read timeout to a "reasonably high" * value. For the cards tested, 300ms has proven enough. If necessary, * this value can be increased if other problematic cards require this. */ data.timeout_ns = 300000000; data.timeout_clks = 0; mmcsd_send_request(card->host, &req); if (cmd.err) return cmd.err; if (data.err) return data.err; *new_ext_csd = ext_csd; return 0; } /* * Decode extended CSD. */ static int mmc_parse_ext_csd(struct rt_mmcsd_card *card, rt_uint8_t *ext_csd) { rt_uint64_t card_capacity = 0; struct rt_mmcsd_host *host; if (card == RT_NULL || ext_csd == RT_NULL) { LOG_E("emmc parse ext csd fail, invaild args"); return -1; } host = card->host; if (host->flags & MMCSD_SUP_HS200) { card->flags |= CARD_FLAG_HS200; card->hs_max_data_rate = 200000000; } else if (host->flags & MMCSD_SUP_HIGHSPEED_DDR) { card->flags |= CARD_FLAG_HIGHSPEED_DDR; card->hs_max_data_rate = 52000000; } else { card->flags |= CARD_FLAG_HIGHSPEED; card->hs_max_data_rate = 52000000; } card->ext_csd.cache_size = ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 | ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 | ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 | ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24; card_capacity = *((rt_uint32_t *)&ext_csd[EXT_CSD_SEC_CNT]); card->card_sec_cnt = card_capacity; card_capacity *= card->card_blksize; card_capacity >>= 10; /* unit:KB */ card->card_capacity = card_capacity; LOG_I("emmc card capacity %d KB, card sec count:%d.", card->card_capacity, card->card_sec_cnt); return 0; } /** * mmc_switch - modify EXT_CSD register * @card: the MMC card associated with the data transfer * @set: cmd set values * @index: EXT_CSD register index * @value: value to program into EXT_CSD register * * Modifies the EXT_CSD register for selected card. */ static int mmc_switch(struct rt_mmcsd_card *card, rt_uint8_t set, rt_uint8_t index, rt_uint8_t value) { int err; struct rt_mmcsd_host *host = card->host; struct rt_mmcsd_cmd cmd = {0}; cmd.cmd_code = SWITCH; cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (index << 16) | (value << 8) | set; cmd.flags = RESP_R1B | CMD_AC; err = mmcsd_send_cmd(host, &cmd, 3); if (err) return err; return 0; } static int mmc_compare_ext_csds(struct rt_mmcsd_card *card, rt_uint8_t *ext_csd, rt_uint32_t bus_width) { rt_uint8_t *bw_ext_csd; int err; if (bus_width == MMCSD_BUS_WIDTH_1) return 0; err = mmc_get_ext_csd(card, &bw_ext_csd); if (err || bw_ext_csd == RT_NULL) { err = -RT_ERROR; goto out; } /* only compare read only fields */ err = !((ext_csd[EXT_CSD_PARTITION_SUPPORT] == bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) && (ext_csd[EXT_CSD_ERASED_MEM_CONT] == bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) && (ext_csd[EXT_CSD_REV] == bw_ext_csd[EXT_CSD_REV]) && (ext_csd[EXT_CSD_STRUCTURE] == bw_ext_csd[EXT_CSD_STRUCTURE]) && (ext_csd[EXT_CSD_CARD_TYPE] == bw_ext_csd[EXT_CSD_CARD_TYPE]) && (ext_csd[EXT_CSD_S_A_TIMEOUT] == bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) && (ext_csd[EXT_CSD_HC_WP_GRP_SIZE] == bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) && (ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT] == bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) && (ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] == bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) && (ext_csd[EXT_CSD_SEC_TRIM_MULT] == bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) && (ext_csd[EXT_CSD_SEC_ERASE_MULT] == bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) && (ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT] == bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) && (ext_csd[EXT_CSD_TRIM_MULT] == bw_ext_csd[EXT_CSD_TRIM_MULT]) && (ext_csd[EXT_CSD_SEC_CNT + 0] == bw_ext_csd[EXT_CSD_SEC_CNT + 0]) && (ext_csd[EXT_CSD_SEC_CNT + 1] == bw_ext_csd[EXT_CSD_SEC_CNT + 1]) && (ext_csd[EXT_CSD_SEC_CNT + 2] == bw_ext_csd[EXT_CSD_SEC_CNT + 2]) && (ext_csd[EXT_CSD_SEC_CNT + 3] == bw_ext_csd[EXT_CSD_SEC_CNT + 3]) && (ext_csd[EXT_CSD_PWR_CL_52_195] == bw_ext_csd[EXT_CSD_PWR_CL_52_195]) && (ext_csd[EXT_CSD_PWR_CL_26_195] == bw_ext_csd[EXT_CSD_PWR_CL_26_195]) && (ext_csd[EXT_CSD_PWR_CL_52_360] == bw_ext_csd[EXT_CSD_PWR_CL_52_360]) && (ext_csd[EXT_CSD_PWR_CL_26_360] == bw_ext_csd[EXT_CSD_PWR_CL_26_360]) && (ext_csd[EXT_CSD_PWR_CL_200_195] == bw_ext_csd[EXT_CSD_PWR_CL_200_195]) && (ext_csd[EXT_CSD_PWR_CL_200_360] == bw_ext_csd[EXT_CSD_PWR_CL_200_360]) && (ext_csd[EXT_CSD_PWR_CL_DDR_52_195] == bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) && (ext_csd[EXT_CSD_PWR_CL_DDR_52_360] == bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) && (ext_csd[EXT_CSD_PWR_CL_DDR_200_360] == bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360])); if (err) err = -RT_ERROR; out: rt_free(bw_ext_csd); return err; } /* * Select the bus width among 4-bit and 8-bit(SDR). * If the bus width is changed successfully, return the selected width value. * Zero is returned instead of error value if the wide width is not supported. */ static int mmc_select_bus_width(struct rt_mmcsd_card *card, rt_uint8_t *ext_csd) { rt_uint32_t ext_csd_bits[][2] = { {EXT_CSD_BUS_WIDTH_8, EXT_CSD_DDR_BUS_WIDTH_8}, {EXT_CSD_BUS_WIDTH_4, EXT_CSD_DDR_BUS_WIDTH_4}, {EXT_CSD_BUS_WIDTH_1, EXT_CSD_BUS_WIDTH_1}, }; rt_uint32_t bus_widths[] = { MMCSD_BUS_WIDTH_8, MMCSD_BUS_WIDTH_4, MMCSD_BUS_WIDTH_1 }; struct rt_mmcsd_host *host = card->host; unsigned idx, bus_width = 0; int err = 0, ddr = 0; if (GET_BITS(card->resp_csd, 122, 4) < 4) return 0; if (card->flags & CARD_FLAG_HIGHSPEED_DDR) { ddr = 2; } /* * Unlike SD, MMC cards don't have a configuration register to notify * supported bus width. So bus test command should be run to identify * the supported bus width or compare the EXT_CSD values of current * bus width and EXT_CSD values of 1 bit mode read earlier. */ for (idx = 0; idx < sizeof(bus_widths) / sizeof(rt_uint32_t); idx++) { /* * Determine BUS WIDTH mode according to the capability of host */ if (((ext_csd_bits[idx][0] == EXT_CSD_BUS_WIDTH_8) && ((host->flags & MMCSD_BUSWIDTH_8) == 0)) || ((ext_csd_bits[idx][0] == EXT_CSD_BUS_WIDTH_4) && ((host->flags & MMCSD_BUSWIDTH_4) == 0))) { continue; } bus_width = bus_widths[idx]; if (bus_width == MMCSD_BUS_WIDTH_1) { ddr = 0; } err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, ext_csd_bits[idx][0]); if (err) continue; mmcsd_set_bus_width(host, bus_width); err = mmc_compare_ext_csds(card, ext_csd, bus_width); if (!err) { break; } else { switch (ext_csd_bits[idx][0]) { case 0: LOG_E("switch to bus width 1 bit failed!"); break; case 1: LOG_E("switch to bus width 4 bit failed!"); break; case 2: LOG_E("switch to bus width 8 bit failed!"); break; default: break; } } } if (!err && ddr) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, ext_csd_bits[idx][1]); } if (!err) { if (card->flags & (CARD_FLAG_HIGHSPEED | CARD_FLAG_HIGHSPEED_DDR)) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1); } } return err; } rt_err_t mmc_send_op_cond(struct rt_mmcsd_host *host, rt_uint32_t ocr, rt_uint32_t *rocr) { struct rt_mmcsd_cmd cmd; rt_uint32_t i; rt_err_t err = RT_EOK; rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd)); cmd.cmd_code = SEND_OP_COND; cmd.arg = controller_is_spi(host) ? 0 : ocr; cmd.flags = RESP_SPI_R1 | RESP_R3 | CMD_BCR; for (i = 100; i; i--) { err = mmcsd_send_cmd(host, &cmd, 3); if (err) break; /* if we're just probing, do a single pass */ if (ocr == 0) break; /* otherwise wait until reset completes */ if (controller_is_spi(host)) { if (!(cmd.resp[0] & R1_SPI_IDLE)) break; } else { if (cmd.resp[0] & CARD_BUSY) break; } err = -RT_ETIMEOUT; rt_thread_mdelay(10); //delay 10ms } if (rocr && !controller_is_spi(host)) *rocr = cmd.resp[0]; return err; } static rt_err_t mmc_set_card_addr(struct rt_mmcsd_host *host, rt_uint32_t rca) { rt_err_t err; struct rt_mmcsd_cmd cmd; rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd)); cmd.cmd_code = SET_RELATIVE_ADDR; cmd.arg = rca << 16; cmd.flags = RESP_R1 | CMD_AC; err = mmcsd_send_cmd(host, &cmd, 3); if (err) return err; return 0; } static int mmc_select_hs200(struct rt_mmcsd_card *card) { int ret; ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS200); if (ret) return ret; mmcsd_set_timing(card->host, MMCSD_TIMING_MMC_HS200); mmcsd_set_clock(card->host, 200000000); ret = mmcsd_excute_tuning(card); return ret; } static int mmc_select_timing(struct rt_mmcsd_card *card) { int ret = 0; if (card->flags & CARD_FLAG_HS200) { ret = mmc_select_hs200(card); } else if (card->flags & CARD_FLAG_HIGHSPEED_DDR) { mmcsd_set_timing(card->host, MMCSD_TIMING_MMC_DDR52); mmcsd_set_clock(card->host, card->hs_max_data_rate); } else { mmcsd_set_timing(card->host, MMCSD_TIMING_MMC_HS); mmcsd_set_clock(card->host, card->hs_max_data_rate); } return ret; } static rt_int32_t mmcsd_mmc_init_card(struct rt_mmcsd_host *host, rt_uint32_t ocr) { rt_int32_t err; rt_uint32_t resp[4]; rt_uint32_t rocr = 0; rt_uint8_t *ext_csd = RT_NULL; struct rt_mmcsd_card *card = RT_NULL; mmcsd_go_idle(host); /* The extra bit indicates that we support high capacity */ err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr); if (err) goto err; if (controller_is_spi(host)) { err = mmcsd_spi_use_crc(host, 1); if (err) goto err1; } if (controller_is_spi(host)) err = mmcsd_get_cid(host, resp); else err = mmcsd_all_get_cid(host, resp); if (err) goto err; card = rt_malloc(sizeof(struct rt_mmcsd_card)); if (!card) { LOG_E("malloc card failed!"); err = -RT_ENOMEM; goto err; } rt_memset(card, 0, sizeof(struct rt_mmcsd_card)); card->card_type = CARD_TYPE_MMC; card->host = host; card->rca = 1; rt_memcpy(card->resp_cid, resp, sizeof(card->resp_cid)); /* * For native busses: get card RCA and quit open drain mode. */ if (!controller_is_spi(host)) { err = mmc_set_card_addr(host, card->rca); if (err) goto err1; mmcsd_set_bus_mode(host, MMCSD_BUSMODE_PUSHPULL); } err = mmcsd_get_csd(card, card->resp_csd); if (err) goto err1; err = mmcsd_parse_csd(card); if (err) goto err1; if (!controller_is_spi(host)) { err = mmcsd_select_card(card); if (err) goto err1; } /* * Fetch and process extended CSD. */ err = mmc_get_ext_csd(card, &ext_csd); if (err) goto err1; err = mmc_parse_ext_csd(card, ext_csd); if (err) goto err1; /* If doing byte addressing, check if required to do sector * addressing. Handle the case of <2GB cards needing sector * addressing. See section 8.1 JEDEC Standard JED84-A441; * ocr register has bit 30 set for sector addressing. */ if (!(card->flags & CARD_FLAG_SDHC) && (rocr & (1 << 30))) card->flags |= CARD_FLAG_SDHC; /*switch bus width and bus mode*/ err = mmc_select_bus_width(card, ext_csd); if (err) { LOG_E("mmc select buswidth fail"); goto err0; } err = mmc_select_timing(card); if (err) { LOG_E("mmc select timing fail"); goto err0; } if (card->ext_csd.cache_size > 0) { mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CACHE_CTRL, 1); } host->card = card; rt_free(ext_csd); return 0; err0: rt_free(ext_csd); err1: rt_free(card); err: return err; } /* * Starting point for mmc card init. */ rt_int32_t init_mmc(struct rt_mmcsd_host *host, rt_uint32_t ocr) { rt_int32_t err; rt_uint32_t current_ocr; /* * We need to get OCR a different way for SPI. */ if (controller_is_spi(host)) { err = mmcsd_spi_read_ocr(host, 0, &ocr); if (err) goto err; } current_ocr = mmcsd_select_voltage(host, ocr); /* * Can we support the voltage(s) of the card(s)? */ if (!current_ocr) { err = -RT_ERROR; goto err; } /* * Detect and init the card. */ err = mmcsd_mmc_init_card(host, current_ocr); if (err) goto err; mmcsd_host_unlock(host); err = rt_mmcsd_blk_probe(host->card); if (err) goto remove_card; mmcsd_host_lock(host); return 0; remove_card: mmcsd_host_lock(host); rt_mmcsd_blk_remove(host->card); rt_free(host->card); host->card = RT_NULL; err: LOG_E("init MMC card failed!"); return err; }