/* * File : eth_driver.c * This file is part of RT-Thread RTOS * COPYRIGHT (C) 2006 - 2012, RT-Thread Development Team * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * http://www.rt-thread.org/license/LICENSE * * Change Logs: * Date Author Notes * 2011-11-30 aozima the first version. * 2011-12-10 aozima support dual ethernet. * 2011-12-21 aozima cleanup code. * 2012-07-13 aozima mask all GMAC MMC Interrupt. * 2012-07-20 aozima fixed mask all GMAC MMC Interrupt,and read clear. * 2012-07-20 aozima use memcpy replace byte copy. */ #include #include #include "lwipopts.h" #include #include #include #include "gd32f4xx.h" #include "synopsys_emac.h" #define ETHERNET_MAC0 ((struct rt_synopsys_eth *)(0x40020000U + 0x00008000U)) //#define EMAC_DEBUG //#define EMAC_RX_DUMP //#define EMAC_TX_DUMP #ifdef EMAC_DEBUG #define EMAC_TRACE rt_kprintf #else #define EMAC_TRACE(...) #endif #define EMAC_RXBUFNB 4 #define EMAC_TXBUFNB 2 #define EMAC_PHY_AUTO 0 #define EMAC_PHY_10MBIT 1 #define EMAC_PHY_100MBIT 2 #define MAX_ADDR_LEN 6 struct gd32_emac { /* inherit from Ethernet device */ struct eth_device parent; rt_uint8_t phy_mode; /* interface address info. */ rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */ struct rt_synopsys_eth * ETHERNET_MAC; IRQn_Type ETHER_MAC_IRQ; ALIGN(RT_ALIGN_SIZE) PRAGMA(data_alignment=RT_ALIGN_SIZE) EMAC_DMADESCTypeDef DMARxDscrTab[EMAC_RXBUFNB], DMATxDscrTab[EMAC_TXBUFNB]; ALIGN(RT_ALIGN_SIZE) rt_uint8_t Rx_Buff[EMAC_RXBUFNB][EMAC_MAX_PACKET_SIZE]; ALIGN(RT_ALIGN_SIZE) rt_uint8_t Tx_Buff[EMAC_TXBUFNB][EMAC_MAX_PACKET_SIZE]; EMAC_DMADESCTypeDef *DMATxDescToSet; EMAC_DMADESCTypeDef *DMARxDescToGet; struct rt_semaphore tx_buf_free; }; static struct gd32_emac gd32_emac_device0; /** * Initializes the DMA Tx descriptors in chain mode. */ static void EMAC_DMA_tx_desc_init(EMAC_DMADESCTypeDef *DMATxDescTab, uint8_t* TxBuff, uint32_t TxBuffCount) { uint32_t i = 0; EMAC_DMADESCTypeDef *DMATxDesc; /* Fill each DMATxDesc descriptor with the right values */ for(i=0; i < TxBuffCount; i++) { /* Get the pointer on the ith member of the Tx Desc list */ DMATxDesc = DMATxDescTab + i; /* Set Second Address Chained bit */ DMATxDesc->Status = EMAC_DMATxDesc_TCH; /* Set Buffer1 address pointer */ DMATxDesc->Buffer1Addr = (uint32_t)(&TxBuff[i*EMAC_MAX_PACKET_SIZE]); /* Initialize the next descriptor with the Next Descriptor Polling Enable */ if(i < (TxBuffCount-1)) { /* Set next descriptor address register with next descriptor base address */ DMATxDesc->Buffer2NextDescAddr = (uint32_t)(DMATxDescTab+i+1); } else { /* For last descriptor, set next descriptor address register equal to the first descriptor base address */ DMATxDesc->Buffer2NextDescAddr = (uint32_t) DMATxDescTab; } } } /** * Initializes the DMA Rx descriptors in chain mode. */ static void EMAC_DMA_rx_desc_init(EMAC_DMADESCTypeDef *DMARxDescTab, uint8_t *RxBuff, uint32_t RxBuffCount) { uint32_t i = 0; EMAC_DMADESCTypeDef *DMARxDesc; /* Fill each DMARxDesc descriptor with the right values */ for(i=0; i < RxBuffCount; i++) { /* Get the pointer on the ith member of the Rx Desc list */ DMARxDesc = DMARxDescTab+i; /* Set Own bit of the Rx descriptor Status */ DMARxDesc->Status = EMAC_DMARxDesc_OWN; /* Set Buffer1 size and Second Address Chained bit */ DMARxDesc->ControlBufferSize = EMAC_DMARxDesc_RCH | (uint32_t)EMAC_MAX_PACKET_SIZE; /* Set Buffer1 address pointer */ DMARxDesc->Buffer1Addr = (uint32_t)(&RxBuff[i*EMAC_MAX_PACKET_SIZE]); /* Initialize the next descriptor with the Next Descriptor Polling Enable */ if(i < (RxBuffCount-1)) { /* Set next descriptor address register with next descriptor base address */ DMARxDesc->Buffer2NextDescAddr = (uint32_t)(DMARxDescTab+i+1); } else { /* For last descriptor, set next descriptor address register equal to the first descriptor base address */ DMARxDesc->Buffer2NextDescAddr = (uint32_t)(DMARxDescTab); } } } static rt_err_t gd32_emac_init(rt_device_t dev) { struct gd32_emac * gd32_emac_device; struct rt_synopsys_eth * ETHERNET_MAC; gd32_emac_device = (struct gd32_emac *)dev; ETHERNET_MAC = gd32_emac_device->ETHERNET_MAC; /* Software reset */ ETHERNET_MAC->BMR |= (1<<0); /* [bit0]SWR (Software Reset) */ /* Wait for software reset */ while(ETHERNET_MAC->BMR & (1<<0)); /* Configure ETHERNET */ EMAC_init(ETHERNET_MAC, SystemCoreClock); /* mask all GMAC MMC Interrupt.*/ ETHERNET_MAC->mmc_cntl = (1<<3) | (1<<0); /* MMC Counter Freeze and reset. */ ETHERNET_MAC->mmc_intr_mask_rx = 0xFFFFFFFF; ETHERNET_MAC->mmc_intr_mask_tx = 0xFFFFFFFF; ETHERNET_MAC->mmc_ipc_intr_mask_rx = 0xFFFFFFFF; /* Enable DMA Receive interrupt (need to enable in this case Normal interrupt) */ EMAC_INT_config(ETHERNET_MAC, EMAC_DMA_INT_NIS | EMAC_DMA_INT_R | EMAC_DMA_INT_T , ENABLE); /* Initialize Tx Descriptors list: Chain Mode */ EMAC_DMA_tx_desc_init(gd32_emac_device->DMATxDscrTab, &gd32_emac_device->Tx_Buff[0][0], EMAC_TXBUFNB); gd32_emac_device->DMATxDescToSet = gd32_emac_device->DMATxDscrTab; /* Set Transmit Descriptor List Address Register */ ETHERNET_MAC->TDLAR = (uint32_t) gd32_emac_device->DMATxDescToSet; /* Initialize Rx Descriptors list: Chain Mode */ EMAC_DMA_rx_desc_init(gd32_emac_device->DMARxDscrTab, &gd32_emac_device->Rx_Buff[0][0], EMAC_RXBUFNB); gd32_emac_device->DMARxDescToGet = gd32_emac_device->DMARxDscrTab; /* Set Receive Descriptor List Address Register */ ETHERNET_MAC->RDLAR = (uint32_t) gd32_emac_device->DMARxDescToGet; /* MAC address configuration */ EMAC_MAC_Addr_config(ETHERNET_MAC, EMAC_MAC_Address0, (uint8_t*)&gd32_emac_device->dev_addr[0]); NVIC_EnableIRQ( gd32_emac_device->ETHER_MAC_IRQ ); /* Enable MAC and DMA transmission and reception */ EMAC_start(ETHERNET_MAC); return RT_EOK; } static rt_err_t gd32_emac_open(rt_device_t dev, rt_uint16_t oflag) { return RT_EOK; } static rt_err_t gd32_emac_close(rt_device_t dev) { return RT_EOK; } static rt_size_t gd32_emac_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size) { rt_set_errno(-RT_ENOSYS); return 0; } static rt_size_t gd32_emac_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) { rt_set_errno(-RT_ENOSYS); return 0; } static rt_err_t gd32_emac_control(rt_device_t dev, rt_uint8_t cmd, void *args) { struct gd32_emac * gd32_emac_device = (struct gd32_emac *)dev; switch (cmd) { case NIOCTL_GADDR: /* get mac address */ if (args) memcpy(args, &gd32_emac_device->dev_addr[0], MAX_ADDR_LEN); else return -RT_ERROR; break; default : break; } return RT_EOK; } static void EMAC_IRQHandler(struct gd32_emac * gd32_emac_device) { rt_uint32_t status, ier; struct rt_synopsys_eth * ETHERNET_MAC; ETHERNET_MAC = gd32_emac_device->ETHERNET_MAC; /* get DMA IT status */ status = ETHERNET_MAC->SR; ier = ETHERNET_MAC->IER; /* GMAC MMC Interrupt. */ if(status & EMAC_DMA_INT_GMI) { volatile rt_uint32_t dummy; volatile rt_uint32_t * reg; EMAC_TRACE("EMAC_DMA_INT_GMI\r\n"); /* read clear all MMC interrupt. */ reg = ÐERNET_MAC->mmc_cntl; while((uint32_t)reg < (uint32_t)ÐERNET_MAC->rxicmp_err_octets) { dummy = *reg++; } } /* Normal interrupt summary. */ if(status & EMAC_DMA_INT_NIS) { rt_uint32_t nis_clear = EMAC_DMA_INT_NIS; /* [0]:Transmit Interrupt. */ if((status & ier) & EMAC_DMA_INT_T) /* packet transmission */ { rt_sem_release(&gd32_emac_device->tx_buf_free); nis_clear |= EMAC_DMA_INT_T; } /* [2]:Transmit Buffer Unavailable. */ /* [6]:Receive Interrupt. */ if((status & ier) & EMAC_DMA_INT_R) /* packet reception */ { /* a frame has been received */ eth_device_ready(&(gd32_emac_device->parent)); nis_clear |= EMAC_DMA_INT_R; } /* [14]:Early Receive Interrupt. */ EMAC_clear_pending(ETHERNET_MAC, nis_clear); } /* Abnormal interrupt summary. */ if( status & EMAC_DMA_INT_AIS) { rt_uint32_t ais_clear = EMAC_DMA_INT_AIS; /* [1]:Transmit Process Stopped. */ /* [3]:Transmit Jabber Timeout. */ /* [4]: Receive FIFO Overflow. */ /* [5]: Transmit Underflow. */ /* [7]: Receive Buffer Unavailable. */ /* [8]: Receive Process Stopped. */ /* [9]: Receive Watchdog Timeout. */ /* [10]: Early Transmit Interrupt. */ /* [13]: Fatal Bus Error. */ EMAC_clear_pending(ETHERNET_MAC, ais_clear); } } void ENET_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); EMAC_IRQHandler(&gd32_emac_device0); /* leave interrupt */ rt_interrupt_leave(); } /* EtherNet Device Interface */ rt_err_t gd32_emac_tx( rt_device_t dev, struct pbuf* p) { struct pbuf* q; char * to; struct gd32_emac * gd32_emac_device; struct rt_synopsys_eth * ETHERNET_MAC; gd32_emac_device = (struct gd32_emac *)dev; ETHERNET_MAC = gd32_emac_device->ETHERNET_MAC; /* get free tx buffer */ { rt_err_t result; result = rt_sem_take(&gd32_emac_device->tx_buf_free, RT_TICK_PER_SECOND/10); if (result != RT_EOK) return -RT_ERROR; } to = (char *)gd32_emac_device->DMATxDescToSet->Buffer1Addr; for (q = p; q != NULL; q = q->next) { /* Copy the frame to be sent into memory pointed by the current ETHERNET DMA Tx descriptor */ memcpy(to, q->payload, q->len); to += q->len; } #ifdef EMAC_TX_DUMP { rt_uint32_t i; rt_uint8_t *ptr = (rt_uint8_t*)(gd32_emac_device->DMATxDescToSet->Buffer1Addr); EMAC_TRACE("\r\n%c%c tx_dump:", gd32_emac_device->parent.netif->name[0], gd32_emac_device->parent.netif->name[1]); for(i=0; itot_len; i++) { if( (i%8) == 0 ) { EMAC_TRACE(" "); } if( (i%16) == 0 ) { EMAC_TRACE("\r\n"); } EMAC_TRACE("%02x ",*ptr); ptr++; } EMAC_TRACE("\r\ndump done!\r\n"); } #endif /* Setting the Frame Length: bits[12:0] */ gd32_emac_device->DMATxDescToSet->ControlBufferSize = (p->tot_len & EMAC_DMATxDesc_TBS1); /* Setting the last segment and first segment bits (in this case a frame is transmitted in one descriptor) */ gd32_emac_device->DMATxDescToSet->Status |= EMAC_DMATxDesc_LS | EMAC_DMATxDesc_FS; /* Enable TX Completion Interrupt */ gd32_emac_device->DMATxDescToSet->Status |= EMAC_DMATxDesc_IC; #ifdef CHECKSUM_BY_HARDWARE gd32_emac_device->DMATxDescToSet->Status |= EMAC_DMATxDesc_ChecksumTCPUDPICMPFull; /* clean ICMP checksum */ { struct eth_hdr *ethhdr = (struct eth_hdr *)(gd32_emac_device->DMATxDescToSet->Buffer1Addr); /* is IP ? */ if( ethhdr->type == htons(ETHTYPE_IP) ) { struct ip_hdr *iphdr = (struct ip_hdr *)(gd32_emac_device->DMATxDescToSet->Buffer1Addr + SIZEOF_ETH_HDR); /* is ICMP ? */ if( IPH_PROTO(iphdr) == IP_PROTO_ICMP ) { struct icmp_echo_hdr *iecho = (struct icmp_echo_hdr *)(gd32_emac_device->DMATxDescToSet->Buffer1Addr + SIZEOF_ETH_HDR + sizeof(struct ip_hdr) ); iecho->chksum = 0; } } } #endif /* Set Own bit of the Tx descriptor Status: gives the buffer back to ETHERNET DMA */ gd32_emac_device->DMATxDescToSet->Status |= EMAC_DMATxDesc_OWN; /* When Tx Buffer unavailable flag is set: clear it and resume transmission */ if ((ETHERNET_MAC->SR & EMAC_DMASR_TBUS) != (uint32_t)RESET) { /* Clear TBUS ETHERNET DMA flag */ ETHERNET_MAC->SR = EMAC_DMASR_TBUS; /* Transmit Poll Demand to resume DMA transmission*/ ETHERNET_MAC->TPDR = 0; } /* Update the ETHERNET DMA global Tx descriptor with next Tx decriptor */ /* Chained Mode */ /* Selects the next DMA Tx descriptor list for next buffer to send */ gd32_emac_device->DMATxDescToSet = (EMAC_DMADESCTypeDef*) (gd32_emac_device->DMATxDescToSet->Buffer2NextDescAddr); /* Return SUCCESS */ return RT_EOK; } /* reception a Ethernet packet. */ struct pbuf * gd32_emac_rx(rt_device_t dev) { struct pbuf* p; rt_uint32_t framelength = 0; struct gd32_emac * gd32_emac_device; struct rt_synopsys_eth * ETHERNET_MAC; gd32_emac_device = (struct gd32_emac *)dev; ETHERNET_MAC = gd32_emac_device->ETHERNET_MAC; /* init p pointer */ p = RT_NULL; /* Check if the descriptor is owned by the ETHERNET DMA (when set) or CPU (when reset) */ if(((gd32_emac_device->DMARxDescToGet->Status & EMAC_DMARxDesc_OWN) != (uint32_t)RESET)) { return p; } if (((gd32_emac_device->DMARxDescToGet->Status & EMAC_DMARxDesc_ES) == (uint32_t)RESET) && ((gd32_emac_device->DMARxDescToGet->Status & EMAC_DMARxDesc_LS) != (uint32_t)RESET) && ((gd32_emac_device->DMARxDescToGet->Status & EMAC_DMARxDesc_FS) != (uint32_t)RESET)) { /* Get the Frame Length of the received packet: substruct 4 bytes of the CRC */ framelength = ((gd32_emac_device->DMARxDescToGet->Status & EMAC_DMARxDesc_FL) >> EMAC_DMARXDESC_FRAME_LENGTHSHIFT) - 4; /* allocate buffer */ p = pbuf_alloc(PBUF_LINK, framelength, PBUF_RAM); if (p != RT_NULL) { const char * from; struct pbuf* q; from = (const char *)gd32_emac_device->DMARxDescToGet->Buffer1Addr; for (q = p; q != RT_NULL; q= q->next) { /* Copy the received frame into buffer from memory pointed by the current ETHERNET DMA Rx descriptor */ memcpy(q->payload, from, q->len); from += q->len; } #ifdef EMAC_RX_DUMP { rt_uint32_t i; rt_uint8_t *ptr = (rt_uint8_t*)(gd32_emac_device->DMARxDescToGet->Buffer1Addr); EMAC_TRACE("\r\n%c%c rx_dump:", gd32_emac_device->parent.netif->name[0], gd32_emac_device->parent.netif->name[1]); for(i=0; itot_len; i++) { if( (i%8) == 0 ) { EMAC_TRACE(" "); } if( (i%16) == 0 ) { EMAC_TRACE("\r\n"); } EMAC_TRACE("%02x ",*ptr); ptr++; } EMAC_TRACE("\r\ndump done!\r\n"); } #endif } } /* Set Own bit of the Rx descriptor Status: gives the buffer back to ETHERNET DMA */ gd32_emac_device->DMARxDescToGet->Status = EMAC_DMARxDesc_OWN; /* When Rx Buffer unavailable flag is set: clear it and resume reception */ if ((ETHERNET_MAC->SR & EMAC_DMASR_RBUS) != (uint32_t)RESET) { /* Clear RBUS ETHERNET DMA flag */ ETHERNET_MAC->SR = EMAC_DMASR_RBUS; /* Resume DMA reception */ ETHERNET_MAC->RPDR = 0; } /* Update the ETHERNET DMA global Rx descriptor with next Rx decriptor */ /* Chained Mode */ if((gd32_emac_device->DMARxDescToGet->ControlBufferSize & EMAC_DMARxDesc_RCH) != (uint32_t)RESET) { /* Selects the next DMA Rx descriptor list for next buffer to read */ gd32_emac_device->DMARxDescToGet = (EMAC_DMADESCTypeDef*) (gd32_emac_device->DMARxDescToGet->Buffer2NextDescAddr); } else /* Ring Mode */ { if((gd32_emac_device->DMARxDescToGet->ControlBufferSize & EMAC_DMARxDesc_RER) != (uint32_t)RESET) { /* Selects the first DMA Rx descriptor for next buffer to read: last Rx descriptor was used */ gd32_emac_device->DMARxDescToGet = (EMAC_DMADESCTypeDef*) (ETHERNET_MAC->RDLAR); } else { /* Selects the next DMA Rx descriptor list for next buffer to read */ gd32_emac_device->DMARxDescToGet = (EMAC_DMADESCTypeDef*) ((uint32_t)gd32_emac_device->DMARxDescToGet + 0x10 + ((ETHERNET_MAC->BMR & EMAC_DMABMR_DSL) >> 2)); } } return p; } /* GPIO RMII0 RMII1 MII PC0/E_RXER0_RXDV1 ch. 1 CRS_DV ch. 0 RX_ER PC1/E_RX03_RX11 ch. 1 RXD [1] ch. 0 RXD [3] PC2/E_RX02_RX10 ch. 1 RXD [0] ch. 0 RXD [2] PC3/E_RX01 ch. 0 RXD [1] ch. 0 RXD [1] PC4/E_RX00 ch. 0 RXD [0] ch. 0 RXD [0] PC5/E_RXDV0 ch. 0 CRS_DV ch. 0 RX_DV PC6/E_MDIO0 ch. 0 MDIO ch. 0 MDIO PC7/E_MDC0 ch. 0 MDC ch. 0 MDC PC8/E_RXCK0_REFCK ch. 0 REF_CLK ch. 1 REF_CLK ch. 0 RX_CLK PC9/E_COL0 ch. 0 COL PCA/E_CRS0 ch. 0 CRS PCB/E_COUT REF_CLK output(??). PCC/E_MDIO1 ch. 1 MDIO PCD/E_TCK0_MDC1 ch. 1 MDC ch. 0 TX_CLK PCE/E_TXER0_TXEN1 ch. 1 TX_EN ch. 0 TX_ER PCF/E_TX03_TX11 ch. 1 TXD [1] ch. 0 TXD [3] PD0/E_TX02_TX10 ch. 1 TXD [0] ch. 0 TXD [2] PD1/E_TX01 ch. 0 TXD [1] ch. 0 TXD [1] PD2/E_TX00 ch. 0 TXD [0] ch. 0 TXD [0] PD3/E_TXEN0 ch. 0 TX_EN ch. 0 TX_EN */ /*! \brief configures the nested vectored interrupt controller \param[in] none \param[out] none \retval none */ static void nvic_configuration(void) { nvic_vector_table_set(NVIC_VECTTAB_FLASH, 0x0); nvic_priority_group_set(NVIC_PRIGROUP_PRE2_SUB2); nvic_irq_enable(ENET_IRQn, 0, 0); } /*! \brief configures the different GPIO ports \param[in] none \param[out] none \retval none */ static void enet_gpio_config(void) { rcu_periph_clock_enable(RCU_GPIOA); rcu_periph_clock_enable(RCU_GPIOB); rcu_periph_clock_enable(RCU_GPIOC); rcu_periph_clock_enable(RCU_GPIOD); rcu_periph_clock_enable(RCU_GPIOG); rcu_periph_clock_enable(RCU_GPIOH); rcu_periph_clock_enable(RCU_GPIOI); gpio_af_set(GPIOA, GPIO_AF_0, GPIO_PIN_8); gpio_mode_set(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_8); gpio_output_options_set(GPIOA, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_8); /* enable SYSCFG clock */ rcu_periph_clock_enable(RCU_SYSCFG); /* choose DIV2 to get 50MHz from 200MHz on CKOUT0 pin (PA8) to clock the PHY */ rcu_ckout0_config(RCU_CKOUT0SRC_PLLP, RCU_CKOUT0_DIV4); syscfg_enet_phy_interface_config(SYSCFG_ENET_PHY_RMII); /* PA1: ETH_RMII_REF_CLK */ gpio_mode_set(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_1); gpio_output_options_set(GPIOA, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_1); /* PA2: ETH_MDIO */ gpio_mode_set(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_2); gpio_output_options_set(GPIOA, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_2); /* PA7: ETH_RMII_CRS_DV */ gpio_mode_set(GPIOA, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_7); gpio_output_options_set(GPIOA, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_7); gpio_af_set(GPIOA, GPIO_AF_11, GPIO_PIN_1); gpio_af_set(GPIOA, GPIO_AF_11, GPIO_PIN_2); gpio_af_set(GPIOA, GPIO_AF_11, GPIO_PIN_7); /* PB11: ETH_RMII_TX_EN */ gpio_mode_set(GPIOB, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_11); gpio_output_options_set(GPIOB, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_11); /* PB12: ETH_RMII_TXD0 */ gpio_mode_set(GPIOB, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_12); gpio_output_options_set(GPIOB, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_12); /* PB13: ETH_RMII_TXD1 */ gpio_mode_set(GPIOB, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_13); gpio_output_options_set(GPIOB, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_13); gpio_af_set(GPIOB, GPIO_AF_11, GPIO_PIN_11); gpio_af_set(GPIOB, GPIO_AF_11, GPIO_PIN_12); gpio_af_set(GPIOB, GPIO_AF_11, GPIO_PIN_13); /* PC1: ETH_MDC */ gpio_mode_set(GPIOC, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_1); gpio_output_options_set(GPIOC, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_1); /* PC4: ETH_RMII_RXD0 */ gpio_mode_set(GPIOC, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_4); gpio_output_options_set(GPIOC, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_4); /* PC5: ETH_RMII_RXD1 */ gpio_mode_set(GPIOC, GPIO_MODE_AF, GPIO_PUPD_NONE, GPIO_PIN_5); gpio_output_options_set(GPIOC, GPIO_OTYPE_PP, GPIO_OSPEED_200MHZ,GPIO_PIN_5); gpio_af_set(GPIOC, GPIO_AF_11, GPIO_PIN_1); gpio_af_set(GPIOC, GPIO_AF_11, GPIO_PIN_4); gpio_af_set(GPIOC, GPIO_AF_11, GPIO_PIN_5); } int rt_hw_gd32_eth_init(void) { rt_kprintf("rt_gd32_eth_init...\n"); /* enable ethernet clock */ rcu_periph_clock_enable(RCU_ENET); rcu_periph_clock_enable(RCU_ENETTX); rcu_periph_clock_enable(RCU_ENETRX); nvic_configuration(); /* configure the GPIO ports for ethernet pins */ enet_gpio_config(); /* set autonegotiation mode */ gd32_emac_device0.phy_mode = EMAC_PHY_AUTO; gd32_emac_device0.ETHERNET_MAC = ETHERNET_MAC0; gd32_emac_device0.ETHER_MAC_IRQ = ENET_IRQn; // OUI 00-00-0E FUJITSU LIMITED gd32_emac_device0.dev_addr[0] = 0x00; gd32_emac_device0.dev_addr[1] = 0x00; gd32_emac_device0.dev_addr[2] = 0x0E; /* set mac address: (only for test) */ gd32_emac_device0.dev_addr[3] = 0x12; gd32_emac_device0.dev_addr[4] = 0x34; gd32_emac_device0.dev_addr[5] = 0x56; gd32_emac_device0.parent.parent.init = gd32_emac_init; gd32_emac_device0.parent.parent.open = gd32_emac_open; gd32_emac_device0.parent.parent.close = gd32_emac_close; gd32_emac_device0.parent.parent.read = gd32_emac_read; gd32_emac_device0.parent.parent.write = gd32_emac_write; gd32_emac_device0.parent.parent.control = gd32_emac_control; gd32_emac_device0.parent.parent.user_data = RT_NULL; gd32_emac_device0.parent.eth_rx = gd32_emac_rx; gd32_emac_device0.parent.eth_tx = gd32_emac_tx; /* init tx buffer free semaphore */ rt_sem_init(&gd32_emac_device0.tx_buf_free, "tx_buf0", EMAC_TXBUFNB, RT_IPC_FLAG_FIFO); eth_device_init(&(gd32_emac_device0.parent), "e0"); return 0; } INIT_DEVICE_EXPORT(rt_hw_gd32_eth_init);