/* * Copyright (c) 2020-2021, Bluetrum Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2020-11-20 greedyhao first version */ #include "board.h" #include "drv_usart.h" #include "api_huart.h" #ifdef RT_USING_SERIAL //#define DRV_DEBUG #define LOG_TAG "drv.usart" #include #undef RT_SERIAL_USING_DMA enum { #ifdef BSP_USING_UART0 UART0_INDEX, #endif #ifdef BSP_USING_UART1 UART1_INDEX, #endif #ifdef BSP_USING_UART2 UART2_INDEX, #endif }; static struct ab32_uart_config uart_config[] = { #ifdef BSP_USING_UART0 { .name = "uart0", .instance = UART0_BASE, .mode = UART_MODE_TX_RX | UART_MODE_1LINE, .fifo_size = BSP_UART0_FIFO_SIZE, }, #endif #ifdef BSP_USING_UART1 { .name = "uart1", .instance = UART1_BASE, .mode = UART_MODE_TX_RX, .fifo_size = BSP_UART1_FIFO_SIZE, }, #endif #ifdef BSP_USING_UART2 { .name = "uart2", .instance = UART2_BASE, .mode = UART_MODE_TX_RX, .fifo_size = BSP_UART2_FIFO_SIZE, } #endif }; static struct ab32_uart uart_obj[sizeof(uart_config) / sizeof(uart_config[0])] = {0}; #ifdef HUART_ENABLE static rt_uint8_t huart_dma[512]; #endif static rt_err_t ab32_configure(struct rt_serial_device *serial, struct serial_configure *cfg) { struct ab32_uart *uart; RT_ASSERT(serial != RT_NULL); RT_ASSERT(cfg != RT_NULL); uart = rt_container_of(serial, struct ab32_uart, serial); uart->handle.instance = uart->config->instance; uart->handle.init.baud = cfg->baud_rate; uart->handle.init.mode = uart->config->mode; switch (cfg->data_bits) { case DATA_BITS_8: uart->handle.init.word_len = UART_WORDLENGTH_8B; break; case DATA_BITS_9: uart->handle.init.word_len = UART_WORDLENGTH_9B; break; default: uart->handle.init.word_len = UART_WORDLENGTH_8B; break; } switch (cfg->stop_bits) { case STOP_BITS_1: uart->handle.init.stop_bits = UART_STOPBITS_1; break; case STOP_BITS_2: uart->handle.init.stop_bits = UART_STOPBITS_2; break; default: uart->handle.init.stop_bits = UART_STOPBITS_1; break; } #ifdef RT_SERIAL_USING_DMA uart->dma_rx.last_index = 0; #endif if (!uart->uart_dma_flag) { hal_uart_init(&uart->handle); } #ifdef HUART_ENABLE else { huart_init_do(HUART_TR_PB3, HUART_TR_PB4, uart->handle.init.baud, huart_dma, 512); } #endif return RT_EOK; } static rt_err_t ab32_control(struct rt_serial_device *serial, int cmd, void *arg) { struct ab32_uart *uart; #ifdef RT_SERIAL_USING_DMA rt_ubase_t ctrl_arg = (rt_ubase_t)arg; #endif RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct ab32_uart, serial); switch (cmd) { /* disable interrupt */ case RT_DEVICE_CTRL_CLR_INT: hal_uart_control(uart->handle.instance, UART_RXIT_ENABLE, HAL_DISABLE); break; /* enable interrupt */ case RT_DEVICE_CTRL_SET_INT: hal_uart_clrflag(uart->handle.instance, UART_FLAG_RXPND); hal_uart_control(uart->handle.instance, UART_RXIT_ENABLE, HAL_ENABLE); break; case RT_DEVICE_CTRL_CLOSE: hal_uart_deinit(uart->handle.instance); break; } return RT_EOK; } static int ab32_putc(struct rt_serial_device *serial, char ch) { struct ab32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct ab32_uart, serial); if (!uart->uart_dma_flag) { hal_uart_clrflag(uart->handle.instance, UART_FLAG_TXPND); hal_uart_write(uart->handle.instance, ch); while(hal_uart_getflag(uart->handle.instance, UART_FLAG_TXPND) == 0); } #ifdef HUART_ENABLE else { huart_putchar(ch); } #endif return 1; } static int ab32_getc(struct rt_serial_device *serial) { int ch; struct ab32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct ab32_uart, serial); ch = -1; switch ((rt_uint32_t)(uart->handle.instance)) { case (rt_uint32_t)UART0_BASE: if (uart->rx_idx != uart->rx_idx_prev) { ch = (int)(uart->rx_buf[uart->rx_idx_prev++ % 10]); } break; case (rt_uint32_t)UART1_BASE: #ifdef HUART_ENABLE if ((uart->uart_dma_flag) && (huart_get_rxcnt())) { ch = huart_getchar(); } else #endif { if (uart->rx_idx != uart->rx_idx_prev) { ch = (int)(uart->rx_buf[uart->rx_idx_prev++ % 10]); } } break; case (rt_uint32_t)UART2_BASE: if (uart->rx_idx != uart->rx_idx_prev) { ch = (int)(uart->rx_buf[uart->rx_idx_prev++ % 10]); } break; default: break; } return ch; } static rt_size_t ab32_dma_transmit(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size, int direction) { return -1; } void uart0_irq_process(void) { rt_hw_serial_isr(&(uart_obj[UART0_INDEX].serial), RT_SERIAL_EVENT_RX_IND); } #ifdef BSP_USING_UART1 void uart1_irq_process(void) { rt_hw_serial_isr(&(uart_obj[UART1_INDEX].serial), RT_SERIAL_EVENT_RX_IND); } #endif #ifdef BSP_USING_UART2 void uart2_irq_process(void) { rt_hw_serial_isr(&(uart_obj[UART2_INDEX].serial), RT_SERIAL_EVENT_RX_IND); } #endif rt_section(".irq.usart") static void uart_isr(int vector, void *param) { rt_interrupt_enter(); #ifdef BSP_USING_UART0 if(hal_uart_getflag(UART0_BASE, UART_FLAG_RXPND)) //RX one byte finish { uart_obj[0].rx_buf[uart_obj[0].rx_idx++ % 10] = hal_uart_read(UART0_BASE); hal_uart_clrflag(UART0_BASE, UART_FLAG_RXPND); uart0_irq_post(); } #endif #ifdef BSP_USING_UART1 if(hal_uart_getflag(UART1_BASE, UART_FLAG_RXPND)) //RX one byte finish { uart_obj[1].rx_buf[uart_obj[1].rx_idx++ % 10] = hal_uart_read(UART1_BASE); hal_uart_clrflag(UART1_BASE, UART_FLAG_RXPND); uart1_irq_post(); } #endif #ifdef BSP_USING_UART2 if(hal_uart_getflag(UART2_BASE, UART_FLAG_RXPND)) //RX one byte finish { uart_obj[2].rx_buf[uart_obj[2].rx_idx++ % 10] = hal_uart_read(UART2_BASE); hal_uart_clrflag(UART2_BASE, UART_FLAG_RXPND); uart2_irq_post(); } #endif rt_interrupt_leave(); } #ifdef HUART_ENABLE rt_section(".irq.huart") void huart_timer_isr(void) { huart_if_rx_ovflow(); if (0 == huart_get_rxcnt()) { return; } uart1_irq_post(); } #else rt_section(".irq.huart") void huart_timer_isr(void) { } #endif static const struct rt_uart_ops ab32_uart_ops = { .configure = ab32_configure, .control = ab32_control, .putc = ab32_putc, .getc = ab32_getc, .dma_transmit = ab32_dma_transmit }; int rt_hw_usart_init(void) { rt_size_t obj_num = sizeof(uart_obj) / sizeof(struct ab32_uart); struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT; rt_err_t result = 0; rt_hw_interrupt_install(IRQ_UART0_2_VECTOR, uart_isr, RT_NULL, "ut_isr"); for (int i = 0; i < obj_num; i++) { /* init UART object */ uart_obj[i].config = &uart_config[i]; uart_obj[i].rx_idx = 0; uart_obj[i].rx_idx_prev = 0; uart_obj[i].serial.ops = &ab32_uart_ops; uart_obj[i].serial.config = config; uart_obj[i].serial.config.baud_rate = 1500000; uart_obj[i].rx_buf = rt_malloc(uart_config[i].fifo_size); if (uart_obj[i].rx_buf == RT_NULL) { LOG_E("uart%d malloc failed!", i); continue; } /* register UART device */ result = rt_hw_serial_register(&uart_obj[i].serial, uart_obj[i].config->name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_INT_TX | uart_obj[i].uart_dma_flag , RT_NULL); RT_ASSERT(result == RT_EOK); } return result; } #endif