/* * Copyright (c) 2006-2022, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2019-07-31 Zero-Free first implementation * 2020-07-02 thread-liu Porting for STM32MP1 */ #include "board.h" #ifdef BSP_USING_AUDIO #include "drv_wm8994.h" #include #define DRV_DEBUG #define LOG_TAG "drv.sound" #include #define SOUND_BUS_NAME "i2c2" #define TX_FIFO_SIZE (4096) #if defined(__CC_ARM) || defined(__CLANG_ARM) __attribute__((at(0x2FFC2000))) static rt_uint8_t AUDIO_TX_FIFO[TX_FIFO_SIZE]; #elif defined ( __GNUC__ ) static rt_uint8_t AUDIO_TX_FIFO[TX_FIFO_SIZE] __attribute__((section(".AudioSection"))); #elif defined(__ICCARM__) #pragma location = 0x2FFC2000 __no_init static rt_uint8_t AUDIO_TX_FIFO[TX_FIFO_SIZE]; #endif struct sound_device { struct rt_audio_device audio; struct rt_audio_configure replay_config; rt_device_t decoder; rt_uint8_t *tx_fifo; rt_uint8_t volume; }; static struct sound_device snd_dev = {0}; SAI_HandleTypeDef hsai_BlockA2 = {0}; extern DMA_HandleTypeDef hdma_sai2_a; static void rt_hw_sai2a_init(void) { hsai_BlockA2.Instance = SAI2_Block_A; hsai_BlockA2.Init.Protocol = SAI_FREE_PROTOCOL; hsai_BlockA2.Init.AudioMode = SAI_MODEMASTER_TX; hsai_BlockA2.Init.DataSize = SAI_DATASIZE_16; hsai_BlockA2.Init.FirstBit = SAI_FIRSTBIT_MSB; hsai_BlockA2.Init.ClockStrobing = SAI_CLOCKSTROBING_FALLINGEDGE; hsai_BlockA2.Init.Synchro = SAI_ASYNCHRONOUS; hsai_BlockA2.Init.OutputDrive = SAI_OUTPUTDRIVE_ENABLE; hsai_BlockA2.Init.NoDivider = SAI_MASTERDIVIDER_ENABLE; hsai_BlockA2.Init.FIFOThreshold = SAI_FIFOTHRESHOLD_1QF; hsai_BlockA2.Init.AudioFrequency = SAI_AUDIO_FREQUENCY_44K; hsai_BlockA2.Init.SynchroExt = SAI_SYNCEXT_DISABLE; hsai_BlockA2.Init.MonoStereoMode = SAI_STEREOMODE; hsai_BlockA2.Init.CompandingMode = SAI_NOCOMPANDING; hsai_BlockA2.Init.TriState = SAI_OUTPUT_NOTRELEASED; hsai_BlockA2.Init.PdmInit.Activation = DISABLE; hsai_BlockA2.Init.PdmInit.MicPairsNbr = 0; hsai_BlockA2.Init.PdmInit.ClockEnable = SAI_PDM_CLOCK1_ENABLE; hsai_BlockA2.FrameInit.FrameLength = 64; hsai_BlockA2.FrameInit.ActiveFrameLength = 32; hsai_BlockA2.FrameInit.FSDefinition = SAI_FS_CHANNEL_IDENTIFICATION; hsai_BlockA2.FrameInit.FSPolarity = SAI_FS_ACTIVE_LOW; hsai_BlockA2.FrameInit.FSOffset = SAI_FS_BEFOREFIRSTBIT; hsai_BlockA2.SlotInit.FirstBitOffset = 0; hsai_BlockA2.SlotInit.SlotSize = SAI_SLOTSIZE_DATASIZE; hsai_BlockA2.SlotInit.SlotNumber = 2; hsai_BlockA2.SlotInit.SlotActive = (SAI_SLOTACTIVE_0 | SAI_SLOTACTIVE_1 | SAI_SLOTACTIVE_2 | SAI_SLOTACTIVE_3); if(HAL_OK != HAL_SAI_Init(&hsai_BlockA2)) { Error_Handler(); } /* Enable SAI to generate clock used by audio driver */ __HAL_SAI_ENABLE(&hsai_BlockA2); } void DMA1_Stream0_IRQHandler(void) { HAL_DMA_IRQHandler(&hdma_sai2_a); } void HAL_SAI_TxHalfCpltCallback(SAI_HandleTypeDef *hsai) { if (hsai == &hsai_BlockA2) { rt_audio_tx_complete(&snd_dev.audio); } } void HAL_SAI_TxCpltCallback(SAI_HandleTypeDef *hsai) { if (hsai == &hsai_BlockA2) { rt_audio_tx_complete(&snd_dev.audio); } } void SAIA_Frequency_Set(uint32_t frequency) { /* Disable SAI peripheral to allow access to SAI internal registers */ __HAL_SAI_DISABLE(&hsai_BlockA2); /* Update the SAI audio frequency configuration */ hsai_BlockA2.Init.AudioFrequency = frequency; HAL_SAI_Init(&hsai_BlockA2); /* Enable SAI peripheral to generate MCLK */ __HAL_SAI_ENABLE(&hsai_BlockA2); } void SAIA_Channels_Set(uint8_t channels) { if (channels == 1) { hsai_BlockA2.Init.MonoStereoMode = SAI_MONOMODE; } else { hsai_BlockA2.Init.MonoStereoMode = SAI_STEREOMODE; } __HAL_SAI_DISABLE(&hsai_BlockA2); HAL_SAI_Init(&hsai_BlockA2); __HAL_SAI_ENABLE(&hsai_BlockA2); } /** * RT-Thread Audio Device Driver Interface */ static rt_err_t sound_getcaps(struct rt_audio_device *audio, struct rt_audio_caps *caps) { rt_err_t result = RT_EOK; struct sound_device *snd_dev; RT_ASSERT(audio != RT_NULL); snd_dev = (struct sound_device *)audio->parent.user_data; switch (caps->main_type) { case AUDIO_TYPE_QUERY: /* qurey the types of hw_codec device */ { switch (caps->sub_type) { case AUDIO_TYPE_QUERY: caps->udata.mask = AUDIO_TYPE_OUTPUT | AUDIO_TYPE_MIXER; break; default: result = -RT_ERROR; break; } break; } case AUDIO_TYPE_OUTPUT: /* Provide capabilities of OUTPUT unit */ { switch (caps->sub_type) { case AUDIO_DSP_PARAM: caps->udata.config.samplerate = snd_dev->replay_config.samplerate; caps->udata.config.channels = snd_dev->replay_config.channels; caps->udata.config.samplebits = snd_dev->replay_config.samplebits; break; case AUDIO_DSP_SAMPLERATE: caps->udata.config.samplerate = snd_dev->replay_config.samplerate; break; case AUDIO_DSP_CHANNELS: caps->udata.config.channels = snd_dev->replay_config.channels; break; case AUDIO_DSP_SAMPLEBITS: caps->udata.config.samplebits = snd_dev->replay_config.samplebits; break; default: result = -RT_ERROR; break; } break; } case AUDIO_TYPE_MIXER: /* report the Mixer Units */ { switch (caps->sub_type) { case AUDIO_MIXER_QUERY: caps->udata.mask = AUDIO_MIXER_VOLUME; break; case AUDIO_MIXER_VOLUME: rt_device_control(snd_dev->decoder, GET_VOLUME, &(caps->udata.value)); break; default: result = -RT_ERROR; break; } break; } default: result = -RT_ERROR; break; } return result; } static rt_err_t sound_configure(struct rt_audio_device *audio, struct rt_audio_caps *caps) { rt_err_t result = RT_EOK; struct sound_device *snd_dev; RT_ASSERT(audio != RT_NULL); snd_dev = (struct sound_device *)audio->parent.user_data; switch (caps->main_type) { case AUDIO_TYPE_MIXER: { switch (caps->sub_type) { case AUDIO_MIXER_VOLUME: { rt_uint8_t volume = caps->udata.value; rt_device_control(snd_dev->decoder, SET_VOLUME, &volume); snd_dev->volume = volume; LOG_D("set volume %d", volume); break; } default: result = -RT_ERROR; break; } break; } case AUDIO_TYPE_OUTPUT: { switch (caps->sub_type) { case AUDIO_DSP_PARAM: { /* set samplerate */ SAIA_Frequency_Set(caps->udata.config.samplerate); /* set channels */ SAIA_Channels_Set(caps->udata.config.channels); /* save configs */ snd_dev->replay_config.samplerate = caps->udata.config.samplerate; snd_dev->replay_config.channels = caps->udata.config.channels; snd_dev->replay_config.samplebits = caps->udata.config.samplebits; LOG_D("set samplerate %d", snd_dev->replay_config.samplerate); break; } case AUDIO_DSP_SAMPLERATE: { SAIA_Frequency_Set(caps->udata.config.samplerate); snd_dev->replay_config.samplerate = caps->udata.config.samplerate; LOG_D("set samplerate %d", snd_dev->replay_config.samplerate); break; } case AUDIO_DSP_CHANNELS: { SAIA_Channels_Set(caps->udata.config.channels); snd_dev->replay_config.channels = caps->udata.config.channels; LOG_D("set channels %d", snd_dev->replay_config.channels); break; } case AUDIO_DSP_SAMPLEBITS: { /* not support */ snd_dev->replay_config.samplebits = caps->udata.config.samplebits; break; } default: result = -RT_ERROR; break; } break; } default: break; } return result; } static rt_err_t sound_init(struct rt_audio_device *audio) { rt_err_t result = RT_EOK; struct sound_device *snd_dev; rt_uint16_t play_type = OUTPUT_DEVICE_HEADPHONE; RT_ASSERT(audio != RT_NULL); snd_dev = (struct sound_device *)audio->parent.user_data; rt_hw_sai2a_init(); /* set default params */ SAIA_Frequency_Set(snd_dev->replay_config.samplerate); SAIA_Channels_Set(snd_dev->replay_config.channels); /* set audio play type */ rt_device_control(snd_dev->decoder, SET_PLAY_TYPE, &play_type); /* open lowlevel audio device */ rt_device_open(snd_dev->decoder, RT_DEVICE_OFLAG_WRONLY); rt_device_init(snd_dev->decoder); /* check device id */ result = rt_device_control(snd_dev->decoder, GET_ID, RT_NULL); if (result != RT_EOK) { LOG_E("can't find low level audio device!"); return RT_ERROR; } return result; } static rt_err_t sound_start(struct rt_audio_device *audio, int stream) { struct sound_device *snd_dev; rt_uint16_t play_type = OUTPUT_DEVICE_HEADPHONE; RT_ASSERT(audio != RT_NULL); snd_dev = (struct sound_device *)audio->parent.user_data; if (stream == AUDIO_STREAM_REPLAY) { LOG_D("open sound device"); rt_device_control(snd_dev->decoder, SET_PLAY_TYPE, &play_type); rt_device_control(snd_dev->decoder, START_PLAY, RT_NULL); if (HAL_SAI_Transmit_DMA(&hsai_BlockA2, snd_dev->tx_fifo, TX_FIFO_SIZE / 2) != HAL_OK) { return RT_ERROR; } } return RT_EOK; } static rt_err_t sound_stop(struct rt_audio_device *audio, int stream) { RT_ASSERT(audio != RT_NULL); if (stream == AUDIO_STREAM_REPLAY) { HAL_SAI_DMAStop(&hsai_BlockA2); LOG_D("close sound device"); } return RT_EOK; } static void sound_buffer_info(struct rt_audio_device *audio, struct rt_audio_buf_info *info) { struct sound_device *device; RT_ASSERT(audio != RT_NULL); device = (struct sound_device *)audio->parent.user_data; info->buffer = device->tx_fifo; info->total_size = TX_FIFO_SIZE; info->block_size = TX_FIFO_SIZE / 2; info->block_count = 2; } static struct rt_audio_ops snd_ops = { .getcaps = sound_getcaps, .configure = sound_configure, .init = sound_init, .start = sound_start, .stop = sound_stop, .transmit = RT_NULL, .buffer_info = sound_buffer_info, }; int rt_hw_sound_init(void) { rt_err_t result = RT_EOK; struct rt_device *device = RT_NULL; rt_memset(AUDIO_TX_FIFO, 0, TX_FIFO_SIZE); snd_dev.tx_fifo = AUDIO_TX_FIFO; /* init default configuration */ snd_dev.replay_config.samplerate = 44100; snd_dev.replay_config.channels = 2; snd_dev.replay_config.samplebits = 16; snd_dev.volume = 55; /* find lowlevel decoder device*/ snd_dev.decoder = rt_device_find("decoder"); if (snd_dev.decoder == RT_NULL) { LOG_E("cant't find lowlevel decoder deivce!"); return RT_ERROR; } /* register sound device */ snd_dev.audio.ops = &snd_ops; result = rt_audio_register(&snd_dev.audio, "sound0", RT_DEVICE_FLAG_WRONLY, &snd_dev); /* check sound device register success or not */ if (result != RT_EOK) { device = &(snd_dev.audio.parent); rt_device_unregister(device); LOG_E("sound device init error!"); return RT_ERROR; } return RT_EOK; } INIT_APP_EXPORT(rt_hw_sound_init); struct RIFF_HEADER_DEF { char riff_id[4]; // 'R','I','F','F' uint32_t riff_size; char riff_format[4]; // 'W','A','V','E' }; struct WAVE_FORMAT_DEF { uint16_t FormatTag; uint16_t Channels; uint32_t SamplesPerSec; uint32_t AvgBytesPerSec; uint16_t BlockAlign; uint16_t BitsPerSample; }; struct FMT_BLOCK_DEF { char fmt_id[4]; // 'f','m','t',' ' uint32_t fmt_size; struct WAVE_FORMAT_DEF wav_format; }; struct DATA_BLOCK_DEF { char data_id[4]; // 'R','I','F','F' uint32_t data_size; }; struct wav_info { struct RIFF_HEADER_DEF header; struct FMT_BLOCK_DEF fmt_block; struct DATA_BLOCK_DEF data_block; }; int wavplay_sample(int argc, char **argv) { #define BUFSZ 1024 #define SOUND_DEVICE_NAME "sound0" static rt_device_t sound_dev; int fd = -1; uint8_t *buffer = NULL; struct wav_info *info = NULL; struct rt_audio_caps caps = {0}; if (argc != 2) { rt_kprintf("Usage:\n"); rt_kprintf("wavplay_sample song.wav\n"); return 0; } fd = open(argv[1], O_WRONLY); if (fd < 0) { rt_kprintf("open file failed!\n"); goto __exit; } buffer = rt_malloc(BUFSZ); if (buffer == RT_NULL) goto __exit; info = (struct wav_info *) rt_malloc(sizeof * info); if (info == RT_NULL) goto __exit; if (read(fd, &(info->header), sizeof(struct RIFF_HEADER_DEF)) <= 0) goto __exit; if (read(fd, &(info->fmt_block), sizeof(struct FMT_BLOCK_DEF)) <= 0) goto __exit; if (read(fd, &(info->data_block), sizeof(struct DATA_BLOCK_DEF)) <= 0) goto __exit; rt_kprintf("wav information:\n"); rt_kprintf("samplerate %d\n", info->fmt_block.wav_format.SamplesPerSec); rt_kprintf("channel %d\n", info->fmt_block.wav_format.Channels); sound_dev = rt_device_find(SOUND_DEVICE_NAME); rt_device_open(sound_dev, RT_DEVICE_OFLAG_WRONLY); caps.main_type = AUDIO_TYPE_OUTPUT; caps.sub_type = AUDIO_DSP_PARAM; caps.udata.config.samplerate = info->fmt_block.wav_format.SamplesPerSec; caps.udata.config.channels = info->fmt_block.wav_format.Channels; caps.udata.config.samplebits = 16; rt_device_control(sound_dev, AUDIO_CTL_CONFIGURE, &caps); while (1) { int length; length = read(fd, buffer, BUFSZ); if (length <= 0) break; rt_device_write(sound_dev, 0, buffer, length); } rt_device_close(sound_dev); __exit: if (fd >= 0) close(fd); if (buffer) rt_free(buffer); if (info) rt_free(info); return 0; } MSH_CMD_EXPORT(wavplay_sample, play wav file); #endif