/* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2006-03-17 Bernard the first version * 2006-04-28 Bernard fix the scheduler algorthm * 2006-04-30 Bernard add SCHEDULER_DEBUG * 2006-05-27 Bernard fix the scheduler algorthm for same priority * thread schedule * 2006-06-04 Bernard rewrite the scheduler algorithm * 2006-08-03 Bernard add hook support * 2006-09-05 Bernard add 32 priority level support * 2006-09-24 Bernard add rt_system_scheduler_start function * 2009-09-16 Bernard fix _rt_scheduler_stack_check * 2010-04-11 yi.qiu add module feature * 2010-07-13 Bernard fix the maximal number of rt_scheduler_lock_nest * issue found by kuronca * 2010-12-13 Bernard add defunct list initialization even if not use heap. * 2011-05-10 Bernard clean scheduler debug log. * 2013-12-21 Grissiom add rt_critical_level * 2018-11-22 Jesven remove the current task from ready queue * add per cpu ready queue * add _scheduler_get_highest_priority_thread to find highest priority task * rt_schedule_insert_thread won't insert current task to ready queue * in smp version, rt_hw_context_switch_interrupt maybe switch to * new task directly * 2022-01-07 Gabriel Moving __on_rt_xxxxx_hook to scheduler.c * 2023-03-27 rose_man Split into scheduler upc and scheduler_mp.c * 2023-09-15 xqyjlj perf rt_hw_interrupt_disable/enable * 2023-12-10 xqyjlj use rt_hw_spinlock * 2024-01-05 Shell Fixup of data racing in rt_critical_level * 2024-01-18 Shell support rt_sched_thread of scheduling status for better mt protection * 2024-01-18 Shell support rt_hw_thread_self to improve overall performance */ #include #include #define DBG_TAG "kernel.scheduler" #define DBG_LVL DBG_INFO #include rt_list_t rt_thread_priority_table[RT_THREAD_PRIORITY_MAX]; static struct rt_spinlock _mp_scheduler_lock; #define SCHEDULER_LOCK_FLAG(percpu) ((percpu)->sched_lock_flag) #define SCHEDULER_ENTER_CRITICAL(curthr) \ do \ { \ if (curthr) RT_SCHED_CTX(curthr).critical_lock_nest++; \ } while (0) #define SCHEDULER_EXIT_CRITICAL(curthr) \ do \ { \ if (curthr) RT_SCHED_CTX(curthr).critical_lock_nest--; \ } while (0) #define SCHEDULER_CONTEXT_LOCK(percpu) \ do \ { \ RT_ASSERT(SCHEDULER_LOCK_FLAG(percpu) == 0); \ _fast_spin_lock(&_mp_scheduler_lock); \ SCHEDULER_LOCK_FLAG(percpu) = 1; \ } while (0) #define SCHEDULER_CONTEXT_UNLOCK(percpu) \ do \ { \ RT_ASSERT(SCHEDULER_LOCK_FLAG(percpu) == 1); \ SCHEDULER_LOCK_FLAG(percpu) = 0; \ _fast_spin_unlock(&_mp_scheduler_lock); \ } while (0) #define SCHEDULER_LOCK(level) \ do \ { \ rt_thread_t _curthr; \ struct rt_cpu *_percpu; \ level = rt_hw_local_irq_disable(); \ _percpu = rt_cpu_self(); \ _curthr = _percpu->current_thread; \ SCHEDULER_ENTER_CRITICAL(_curthr); \ SCHEDULER_CONTEXT_LOCK(_percpu); \ } while (0) #define SCHEDULER_UNLOCK(level) \ do \ { \ rt_thread_t _curthr; \ struct rt_cpu *_percpu; \ _percpu = rt_cpu_self(); \ _curthr = _percpu->current_thread; \ SCHEDULER_CONTEXT_UNLOCK(_percpu); \ SCHEDULER_EXIT_CRITICAL(_curthr); \ rt_hw_local_irq_enable(level); \ } while (0) #ifdef ARCH_USING_HW_THREAD_SELF #define IS_CRITICAL_SWITCH_PEND(pcpu, curthr) (RT_SCHED_CTX(curthr).critical_switch_flag) #define SET_CRITICAL_SWITCH_FLAG(pcpu, curthr) (RT_SCHED_CTX(curthr).critical_switch_flag = 1) #define CLR_CRITICAL_SWITCH_FLAG(pcpu, curthr) (RT_SCHED_CTX(curthr).critical_switch_flag = 0) #else /* !ARCH_USING_HW_THREAD_SELF */ #define IS_CRITICAL_SWITCH_PEND(pcpu, curthr) ((pcpu)->critical_switch_flag) #define SET_CRITICAL_SWITCH_FLAG(pcpu, curthr) ((pcpu)->critical_switch_flag = 1) #define CLR_CRITICAL_SWITCH_FLAG(pcpu, curthr) ((pcpu)->critical_switch_flag = 0) #endif /* ARCH_USING_HW_THREAD_SELF */ static rt_uint32_t rt_thread_ready_priority_group; #if RT_THREAD_PRIORITY_MAX > 32 /* Maximum priority level, 256 */ static rt_uint8_t rt_thread_ready_table[32]; #endif /* RT_THREAD_PRIORITY_MAX > 32 */ /** * Used only on scheduler for optimization of control flows, where the critical * region is already guaranteed. */ rt_inline void _fast_spin_lock(struct rt_spinlock *lock) { rt_hw_spin_lock(&lock->lock); RT_SPIN_LOCK_DEBUG(lock); } rt_inline void _fast_spin_unlock(struct rt_spinlock *lock) { rt_base_t critical_level; RT_SPIN_UNLOCK_DEBUG(lock, critical_level); /* for the scenario of sched, we don't check critical level */ RT_UNUSED(critical_level); rt_hw_spin_unlock(&lock->lock); } #if defined(RT_USING_HOOK) && defined(RT_HOOK_USING_FUNC_PTR) static void (*rt_scheduler_hook)(struct rt_thread *from, struct rt_thread *to); static void (*rt_scheduler_switch_hook)(struct rt_thread *tid); /** * @addtogroup Hook */ /**@{*/ /** * @brief This function will set a hook function, which will be invoked when thread * switch happens. * * @param hook is the hook function. */ void rt_scheduler_sethook(void (*hook)(struct rt_thread *from, struct rt_thread *to)) { rt_scheduler_hook = hook; } /** * @brief This function will set a hook function, which will be invoked when context * switch happens. * * @param hook is the hook function. */ void rt_scheduler_switch_sethook(void (*hook)(struct rt_thread *tid)) { rt_scheduler_switch_hook = hook; } /**@}*/ #endif /* RT_USING_HOOK */ #if RT_THREAD_PRIORITY_MAX > 32 rt_inline rt_base_t _get_global_highest_ready_prio(void) { rt_ubase_t number; rt_ubase_t highest_ready_priority; number = __rt_ffs(rt_thread_ready_priority_group) - 1; if (number != -1) { highest_ready_priority = (number << 3) + __rt_ffs(rt_thread_ready_table[number]) - 1; } else { highest_ready_priority = -1; } return highest_ready_priority; } rt_inline rt_base_t _get_local_highest_ready_prio(struct rt_cpu* pcpu) { rt_ubase_t number; rt_ubase_t local_highest_ready_priority; number = __rt_ffs(pcpu->priority_group) - 1; if (number != -1) { local_highest_ready_priority = (number << 3) + __rt_ffs(pcpu->ready_table[number]) - 1; } else { local_highest_ready_priority = -1; } return local_highest_ready_priority; } #else /* if RT_THREAD_PRIORITY_MAX <= 32 */ rt_inline rt_base_t _get_global_highest_ready_prio(void) { return __rt_ffs(rt_thread_ready_priority_group) - 1; } rt_inline rt_base_t _get_local_highest_ready_prio(struct rt_cpu* pcpu) { return __rt_ffs(pcpu->priority_group) - 1; } #endif /* RT_THREAD_PRIORITY_MAX > 32 */ /* * get the highest priority thread in ready queue */ static struct rt_thread* _scheduler_get_highest_priority_thread(rt_ubase_t *highest_prio) { struct rt_thread *highest_priority_thread; rt_ubase_t highest_ready_priority, local_highest_ready_priority; struct rt_cpu* pcpu = rt_cpu_self(); highest_ready_priority = _get_global_highest_ready_prio(); local_highest_ready_priority = _get_local_highest_ready_prio(pcpu); /* get highest ready priority thread */ if (highest_ready_priority < local_highest_ready_priority) { *highest_prio = highest_ready_priority; highest_priority_thread = RT_THREAD_LIST_NODE_ENTRY( rt_thread_priority_table[highest_ready_priority].next); } else { *highest_prio = local_highest_ready_priority; if (local_highest_ready_priority != -1) { highest_priority_thread = RT_THREAD_LIST_NODE_ENTRY( pcpu->priority_table[local_highest_ready_priority].next); } else { highest_priority_thread = RT_NULL; } } RT_ASSERT(!highest_priority_thread || rt_object_get_type(&highest_priority_thread->parent) == RT_Object_Class_Thread); return highest_priority_thread; } /** * @brief set READY and insert thread to ready queue * * @note caller must holding the `_mp_scheduler_lock` lock */ static void _sched_insert_thread_locked(struct rt_thread *thread) { int cpu_id; int bind_cpu; rt_uint32_t cpu_mask; if ((RT_SCHED_CTX(thread).stat & RT_THREAD_STAT_MASK) == RT_THREAD_READY) { /* already in ready queue */ return ; } else if (RT_SCHED_CTX(thread).oncpu != RT_CPU_DETACHED) { /** * only YIELD -> READY, SUSPEND -> READY is allowed by this API. However, * this is a RUNNING thread. So here we reset it's status and let it go. */ RT_SCHED_CTX(thread).stat = RT_THREAD_RUNNING | (RT_SCHED_CTX(thread).stat & ~RT_THREAD_STAT_MASK); return ; } /* READY thread, insert to ready queue */ RT_SCHED_CTX(thread).stat = RT_THREAD_READY | (RT_SCHED_CTX(thread).stat & ~RT_THREAD_STAT_MASK); cpu_id = rt_hw_cpu_id(); bind_cpu = RT_SCHED_CTX(thread).bind_cpu; /* insert thread to ready list */ if (bind_cpu == RT_CPUS_NR) { #if RT_THREAD_PRIORITY_MAX > 32 rt_thread_ready_table[RT_SCHED_PRIV(thread).number] |= RT_SCHED_PRIV(thread).high_mask; #endif /* RT_THREAD_PRIORITY_MAX > 32 */ rt_thread_ready_priority_group |= RT_SCHED_PRIV(thread).number_mask; /* there is no time slices left(YIELD), inserting thread before ready list*/ if((RT_SCHED_CTX(thread).stat & RT_THREAD_STAT_YIELD_MASK) != 0) { rt_list_insert_before(&(rt_thread_priority_table[RT_SCHED_PRIV(thread).current_priority]), &RT_THREAD_LIST_NODE(thread)); } /* there are some time slices left, inserting thread after ready list to schedule it firstly at next time*/ else { rt_list_insert_after(&(rt_thread_priority_table[RT_SCHED_PRIV(thread).current_priority]), &RT_THREAD_LIST_NODE(thread)); } cpu_mask = RT_CPU_MASK ^ (1 << cpu_id); rt_hw_ipi_send(RT_SCHEDULE_IPI, cpu_mask); } else { struct rt_cpu *pcpu = rt_cpu_index(bind_cpu); #if RT_THREAD_PRIORITY_MAX > 32 pcpu->ready_table[RT_SCHED_PRIV(thread).number] |= RT_SCHED_PRIV(thread).high_mask; #endif /* RT_THREAD_PRIORITY_MAX > 32 */ pcpu->priority_group |= RT_SCHED_PRIV(thread).number_mask; /* there is no time slices left(YIELD), inserting thread before ready list*/ if((RT_SCHED_CTX(thread).stat & RT_THREAD_STAT_YIELD_MASK) != 0) { rt_list_insert_before(&(rt_cpu_index(bind_cpu)->priority_table[RT_SCHED_PRIV(thread).current_priority]), &RT_THREAD_LIST_NODE(thread)); } /* there are some time slices left, inserting thread after ready list to schedule it firstly at next time*/ else { rt_list_insert_after(&(rt_cpu_index(bind_cpu)->priority_table[RT_SCHED_PRIV(thread).current_priority]), &RT_THREAD_LIST_NODE(thread)); } if (cpu_id != bind_cpu) { cpu_mask = 1 << bind_cpu; rt_hw_ipi_send(RT_SCHEDULE_IPI, cpu_mask); } } LOG_D("insert thread[%.*s], the priority: %d", RT_NAME_MAX, thread->parent.name, RT_SCHED_PRIV(thread).current_priority); } /* remove thread from ready queue */ static void _sched_remove_thread_locked(struct rt_thread *thread) { LOG_D("%s [%.*s], the priority: %d", __func__, RT_NAME_MAX, thread->parent.name, RT_SCHED_PRIV(thread).current_priority); /* remove thread from ready list */ rt_list_remove(&RT_THREAD_LIST_NODE(thread)); if (RT_SCHED_CTX(thread).bind_cpu == RT_CPUS_NR) { if (rt_list_isempty(&(rt_thread_priority_table[RT_SCHED_PRIV(thread).current_priority]))) { #if RT_THREAD_PRIORITY_MAX > 32 rt_thread_ready_table[RT_SCHED_PRIV(thread).number] &= ~RT_SCHED_PRIV(thread).high_mask; if (rt_thread_ready_table[RT_SCHED_PRIV(thread).number] == 0) { rt_thread_ready_priority_group &= ~RT_SCHED_PRIV(thread).number_mask; } #else rt_thread_ready_priority_group &= ~RT_SCHED_PRIV(thread).number_mask; #endif /* RT_THREAD_PRIORITY_MAX > 32 */ } } else { struct rt_cpu *pcpu = rt_cpu_index(RT_SCHED_CTX(thread).bind_cpu); if (rt_list_isempty(&(pcpu->priority_table[RT_SCHED_PRIV(thread).current_priority]))) { #if RT_THREAD_PRIORITY_MAX > 32 pcpu->ready_table[RT_SCHED_PRIV(thread).number] &= ~RT_SCHED_PRIV(thread).high_mask; if (pcpu->ready_table[RT_SCHED_PRIV(thread).number] == 0) { pcpu->priority_group &= ~RT_SCHED_PRIV(thread).number_mask; } #else pcpu->priority_group &= ~RT_SCHED_PRIV(thread).number_mask; #endif /* RT_THREAD_PRIORITY_MAX > 32 */ } } } /** * @brief This function will initialize the system scheduler. */ void rt_system_scheduler_init(void) { int cpu; rt_base_t offset; LOG_D("start scheduler: max priority 0x%02x", RT_THREAD_PRIORITY_MAX); rt_spin_lock_init(&_mp_scheduler_lock); for (offset = 0; offset < RT_THREAD_PRIORITY_MAX; offset ++) { rt_list_init(&rt_thread_priority_table[offset]); } for (cpu = 0; cpu < RT_CPUS_NR; cpu++) { struct rt_cpu *pcpu = rt_cpu_index(cpu); for (offset = 0; offset < RT_THREAD_PRIORITY_MAX; offset ++) { rt_list_init(&pcpu->priority_table[offset]); } pcpu->irq_switch_flag = 0; pcpu->current_priority = RT_THREAD_PRIORITY_MAX - 1; pcpu->current_thread = RT_NULL; pcpu->priority_group = 0; #if RT_THREAD_PRIORITY_MAX > 32 rt_memset(pcpu->ready_table, 0, sizeof(pcpu->ready_table)); #endif /* RT_THREAD_PRIORITY_MAX > 32 */ #ifdef RT_USING_SMART rt_spin_lock_init(&(pcpu->spinlock)); #endif } /* initialize ready priority group */ rt_thread_ready_priority_group = 0; #if RT_THREAD_PRIORITY_MAX > 32 /* initialize ready table */ rt_memset(rt_thread_ready_table, 0, sizeof(rt_thread_ready_table)); #endif /* RT_THREAD_PRIORITY_MAX > 32 */ } /** * @brief This function will startup the scheduler. It will select one thread * with the highest priority level, then switch to it. */ void rt_system_scheduler_start(void) { struct rt_thread *to_thread; rt_ubase_t highest_ready_priority; /** * legacy rt_cpus_lock. some bsp codes still use it as for it's critical * region. Since scheduler is never touching this, here we just release it * on the entry. */ rt_hw_spin_unlock(&_cpus_lock); /* ISR will corrupt the coherency of running frame */ rt_hw_local_irq_disable(); /** * for the accessing of the scheduler context. Noted that we don't have * current_thread at this point */ _fast_spin_lock(&_mp_scheduler_lock); /* get the thread scheduling to */ to_thread = _scheduler_get_highest_priority_thread(&highest_ready_priority); RT_ASSERT(to_thread); /* to_thread is picked to running on current core, so remove it from ready queue */ _sched_remove_thread_locked(to_thread); /* dedigate current core to `to_thread` */ RT_SCHED_CTX(to_thread).oncpu = rt_hw_cpu_id(); RT_SCHED_CTX(to_thread).stat = RT_THREAD_RUNNING; LOG_D("[cpu#%d] switch to priority#%d thread:%.*s(sp:0x%08x)", rt_hw_cpu_id(), RT_SCHED_PRIV(to_thread).current_priority, RT_NAME_MAX, to_thread->parent.name, to_thread->sp); _fast_spin_unlock(&_mp_scheduler_lock); /* switch to new thread */ rt_hw_context_switch_to((rt_ubase_t)&to_thread->sp, to_thread); /* never come back */ } /** * @addtogroup Thread * @cond */ /**@{*/ /** * @brief This function will handle IPI interrupt and do a scheduling in system. * * @param vector is the number of IPI interrupt for system scheduling. * * @param param is not used, and can be set to RT_NULL. * * @note this function should be invoke or register as ISR in BSP. */ void rt_scheduler_ipi_handler(int vector, void *param) { rt_schedule(); } /** * @brief Lock the system scheduler * * @param plvl pointer to the object where lock level stores to * * @return rt_err_t RT_EOK */ rt_err_t rt_sched_lock(rt_sched_lock_level_t *plvl) { rt_base_t level; if (!plvl) return -RT_EINVAL; SCHEDULER_LOCK(level); *plvl = level; return RT_EOK; } /** * @brief Unlock the system scheduler * @note this will not cause the scheduler to do a reschedule * * @param level the lock level of previous call to rt_sched_lock() * * @return rt_err_t RT_EOK */ rt_err_t rt_sched_unlock(rt_sched_lock_level_t level) { SCHEDULER_UNLOCK(level); return RT_EOK; } rt_bool_t rt_sched_is_locked(void) { rt_bool_t rc; rt_base_t level; struct rt_cpu *pcpu; level = rt_hw_local_irq_disable(); pcpu = rt_cpu_self(); /* get lock stat which is a boolean value */ rc = pcpu->sched_lock_flag; rt_hw_local_irq_enable(level); return rc; } /** * @brief Pick the highest runnable thread, and pass the control to it * * @note caller should hold the scheduler context lock. lock will be released * before return from this routine */ static rt_thread_t _prepare_context_switch_locked(int cpu_id, struct rt_cpu *pcpu, rt_thread_t current_thread) { rt_thread_t to_thread = RT_NULL; rt_ubase_t highest_ready_priority; /* quickly check if any other ready threads queuing */ if (rt_thread_ready_priority_group != 0 || pcpu->priority_group != 0) { /* pick the highest ready thread */ to_thread = _scheduler_get_highest_priority_thread(&highest_ready_priority); /* detach current thread from percpu scheduling context */ RT_SCHED_CTX(current_thread).oncpu = RT_CPU_DETACHED; /* check if current thread should be put to ready queue, or scheduling again */ if ((RT_SCHED_CTX(current_thread).stat & RT_THREAD_STAT_MASK) == RT_THREAD_RUNNING) { /* check if current thread can be running on current core again */ if (RT_SCHED_CTX(current_thread).bind_cpu == RT_CPUS_NR || RT_SCHED_CTX(current_thread).bind_cpu == cpu_id) { /* if current_thread is the highest runnable thread */ if (RT_SCHED_PRIV(current_thread).current_priority < highest_ready_priority) { to_thread = current_thread; } /* or no higher-priority thread existed and it has remaining ticks */ else if (RT_SCHED_PRIV(current_thread).current_priority == highest_ready_priority && (RT_SCHED_CTX(current_thread).stat & RT_THREAD_STAT_YIELD_MASK) == 0) { to_thread = current_thread; } /* otherwise give out the core */ else { _sched_insert_thread_locked(current_thread); } } else { /* put current_thread to ready queue of another core */ _sched_insert_thread_locked(current_thread); } /* consume the yield flags after scheduling */ RT_SCHED_CTX(current_thread).stat &= ~RT_THREAD_STAT_YIELD_MASK; } /** * Now destination thread is determined, core is passed to it. Though * the percpu scheduling context is not updated here, since the cpu * is locked contiguously before all the scheduling works are done, it's * safe to observe that current thread as the running thread on this * core for any observers if they properly do the synchronization * (take the SCHEDULER_LOCK). */ RT_SCHED_CTX(to_thread).oncpu = cpu_id; /* check if context switch is required */ if (to_thread != current_thread) { pcpu->current_priority = (rt_uint8_t)highest_ready_priority; RT_OBJECT_HOOK_CALL(rt_scheduler_hook, (current_thread, to_thread)); /* remove to_thread from ready queue and update its status to RUNNING */ _sched_remove_thread_locked(to_thread); RT_SCHED_CTX(to_thread).stat = RT_THREAD_RUNNING | (RT_SCHED_CTX(to_thread).stat & ~RT_THREAD_STAT_MASK); RT_SCHEDULER_STACK_CHECK(to_thread); RT_OBJECT_HOOK_CALL(rt_scheduler_switch_hook, (current_thread)); } else { /* current thread is still the best runnable thread */ to_thread = RT_NULL; } } else { /* no ready threads */ to_thread = RT_NULL; } return to_thread; } #ifdef RT_USING_SIGNALS static void _sched_thread_preprocess_signal(struct rt_thread *current_thread) { /* should process signal? */ if (rt_sched_thread_is_suspended(current_thread)) { /* if current_thread signal is in pending */ if ((RT_SCHED_CTX(current_thread).stat & RT_THREAD_STAT_SIGNAL_MASK) & RT_THREAD_STAT_SIGNAL_PENDING) { #ifdef RT_USING_SMART rt_thread_wakeup(current_thread); #else rt_thread_resume(current_thread); #endif } } } static void _sched_thread_process_signal(struct rt_thread *current_thread) { rt_base_t level; SCHEDULER_LOCK(level); /* check stat of thread for signal */ if (RT_SCHED_CTX(current_thread).stat & RT_THREAD_STAT_SIGNAL_PENDING) { extern void rt_thread_handle_sig(rt_bool_t clean_state); RT_SCHED_CTX(current_thread).stat &= ~RT_THREAD_STAT_SIGNAL_PENDING; SCHEDULER_UNLOCK(level); /* check signal status */ rt_thread_handle_sig(RT_TRUE); } else { SCHEDULER_UNLOCK(level); } /* lock is released above */ } #define SCHED_THREAD_PREPROCESS_SIGNAL(pcpu, curthr) \ do \ { \ SCHEDULER_CONTEXT_LOCK(pcpu); \ _sched_thread_preprocess_signal(curthr); \ SCHEDULER_CONTEXT_UNLOCK(pcpu); \ } while (0) #define SCHED_THREAD_PREPROCESS_SIGNAL_LOCKED(curthr) \ _sched_thread_preprocess_signal(curthr) #define SCHED_THREAD_PROCESS_SIGNAL(curthr) _sched_thread_process_signal(curthr) #else /* ! RT_USING_SIGNALS */ #define SCHED_THREAD_PREPROCESS_SIGNAL(pcpu, curthr) #define SCHED_THREAD_PREPROCESS_SIGNAL_LOCKED(curthr) #define SCHED_THREAD_PROCESS_SIGNAL(curthr) #endif /* RT_USING_SIGNALS */ rt_err_t rt_sched_unlock_n_resched(rt_sched_lock_level_t level) { struct rt_thread *to_thread; struct rt_thread *current_thread; struct rt_cpu *pcpu; int cpu_id; rt_err_t error = RT_EOK; cpu_id = rt_hw_cpu_id(); pcpu = rt_cpu_index(cpu_id); current_thread = pcpu->current_thread; if (!current_thread) { /* scheduler is unavailable yet */ SCHEDULER_CONTEXT_UNLOCK(pcpu); SCHEDULER_EXIT_CRITICAL(current_thread); rt_hw_local_irq_enable(level); return -RT_EBUSY; } /* whether do switch in interrupt */ if (rt_atomic_load(&(pcpu->irq_nest))) { pcpu->irq_switch_flag = 1; SCHEDULER_CONTEXT_UNLOCK(pcpu); SCHEDULER_EXIT_CRITICAL(current_thread); rt_hw_local_irq_enable(level); return -RT_ESCHEDISR; } /* prepare current_thread for processing if signals existed */ SCHED_THREAD_PREPROCESS_SIGNAL_LOCKED(current_thread); /* whether caller had locked the local scheduler already */ if (RT_SCHED_CTX(current_thread).critical_lock_nest > 1) { /* leaving critical region of global context since we can't schedule */ SCHEDULER_CONTEXT_UNLOCK(pcpu); SET_CRITICAL_SWITCH_FLAG(pcpu, current_thread); error = -RT_ESCHEDLOCKED; SCHEDULER_EXIT_CRITICAL(current_thread); } else { /* flush critical switch flag since a scheduling is done */ CLR_CRITICAL_SWITCH_FLAG(pcpu, current_thread); /* pick the highest runnable thread, and pass the control to it */ to_thread = _prepare_context_switch_locked(cpu_id, pcpu, current_thread); if (to_thread) { /* switch to new thread */ LOG_D("[cpu#%d] UNLOCK switch to priority#%d " "thread:%.*s(sp:0x%08x), " "from thread:%.*s(sp: 0x%08x)", cpu_id, RT_SCHED_PRIV(to_thread).current_priority, RT_NAME_MAX, to_thread->parent.name, to_thread->sp, RT_NAME_MAX, current_thread->parent.name, current_thread->sp); rt_hw_context_switch((rt_ubase_t)¤t_thread->sp, (rt_ubase_t)&to_thread->sp, to_thread); } else { SCHEDULER_CONTEXT_UNLOCK(pcpu); SCHEDULER_EXIT_CRITICAL(current_thread); } } /* leaving critical region of percpu scheduling context */ rt_hw_local_irq_enable(level); /* process signals on thread if any existed */ SCHED_THREAD_PROCESS_SIGNAL(current_thread); return error; } /** * @brief This function will perform one scheduling. It will select one thread * with the highest priority level in global ready queue or local ready queue, * then switch to it. */ void rt_schedule(void) { rt_base_t level; struct rt_thread *to_thread; struct rt_thread *current_thread; struct rt_cpu *pcpu; int cpu_id; /* enter ciritical region of percpu scheduling context */ level = rt_hw_local_irq_disable(); /* get percpu scheduling context */ cpu_id = rt_hw_cpu_id(); pcpu = rt_cpu_index(cpu_id); current_thread = pcpu->current_thread; /* whether do switch in interrupt */ if (rt_atomic_load(&(pcpu->irq_nest))) { pcpu->irq_switch_flag = 1; rt_hw_local_irq_enable(level); return ; /* -RT_ESCHEDISR */ } /* forbid any recursive entries of schedule() */ SCHEDULER_ENTER_CRITICAL(current_thread); /* prepare current_thread for processing if signals existed */ SCHED_THREAD_PREPROCESS_SIGNAL(pcpu, current_thread); /* whether caller had locked the local scheduler already */ if (RT_SCHED_CTX(current_thread).critical_lock_nest > 1) { SET_CRITICAL_SWITCH_FLAG(pcpu, current_thread); SCHEDULER_EXIT_CRITICAL(current_thread); /* -RT_ESCHEDLOCKED */ } else { /* flush critical switch flag since a scheduling is done */ CLR_CRITICAL_SWITCH_FLAG(pcpu, current_thread); pcpu->irq_switch_flag = 0; /** * take the context lock before we do the real scheduling works. Context * lock will be released before returning from this _schedule_locked() */ SCHEDULER_CONTEXT_LOCK(pcpu); /* pick the highest runnable thread, and pass the control to it */ to_thread = _prepare_context_switch_locked(cpu_id, pcpu, current_thread); if (to_thread) { LOG_D("[cpu#%d] switch to priority#%d " "thread:%.*s(sp:0x%08x), " "from thread:%.*s(sp: 0x%08x)", cpu_id, RT_SCHED_PRIV(to_thread).current_priority, RT_NAME_MAX, to_thread->parent.name, to_thread->sp, RT_NAME_MAX, current_thread->parent.name, current_thread->sp); rt_hw_context_switch((rt_ubase_t)¤t_thread->sp, (rt_ubase_t)&to_thread->sp, to_thread); } else { /* current thread continue to take the core */ SCHEDULER_CONTEXT_UNLOCK(pcpu); SCHEDULER_EXIT_CRITICAL(current_thread); } } /* leaving critical region of percpu scheduling context */ rt_hw_local_irq_enable(level); /* process signals on thread if any existed */ SCHED_THREAD_PROCESS_SIGNAL(current_thread); } /** * @brief This function checks whether a scheduling is needed after an IRQ context switching. If yes, * it will select one thread with the highest priority level, and then switch * to it. */ void rt_scheduler_do_irq_switch(void *context) { int cpu_id; rt_base_t level; struct rt_cpu *pcpu; struct rt_thread *to_thread; struct rt_thread *current_thread; level = rt_hw_local_irq_disable(); cpu_id = rt_hw_cpu_id(); pcpu = rt_cpu_index(cpu_id); current_thread = pcpu->current_thread; /* forbid any recursive entries of schedule() */ SCHEDULER_ENTER_CRITICAL(current_thread); SCHED_THREAD_PREPROCESS_SIGNAL(pcpu, current_thread); /* any pending scheduling existed? */ if (pcpu->irq_switch_flag == 0) { /* if no, just continue execution of current_thread */ SCHEDULER_EXIT_CRITICAL(current_thread); rt_hw_local_irq_enable(level); return; } /* whether caller had locked the local scheduler already */ if (RT_SCHED_CTX(current_thread).critical_lock_nest > 1) { SET_CRITICAL_SWITCH_FLAG(pcpu, current_thread); SCHEDULER_EXIT_CRITICAL(current_thread); } else if (rt_atomic_load(&(pcpu->irq_nest)) == 0) { /* flush critical & irq switch flag since a scheduling is done */ CLR_CRITICAL_SWITCH_FLAG(pcpu, current_thread); pcpu->irq_switch_flag = 0; SCHEDULER_CONTEXT_LOCK(pcpu); /* pick the highest runnable thread, and pass the control to it */ to_thread = _prepare_context_switch_locked(cpu_id, pcpu, current_thread); if (to_thread) { LOG_D("[cpu#%d] IRQ switch to priority#%d " "thread:%.*s(sp:0x%08x), " "from thread:%.*s(sp: 0x%08x)", cpu_id, RT_SCHED_PRIV(to_thread).current_priority, RT_NAME_MAX, to_thread->parent.name, to_thread->sp, RT_NAME_MAX, current_thread->parent.name, current_thread->sp); rt_hw_context_switch_interrupt(context, (rt_ubase_t)¤t_thread->sp, (rt_ubase_t)&to_thread->sp, to_thread); } else { /* current thread continue to take the core */ SCHEDULER_CONTEXT_UNLOCK(pcpu); SCHEDULER_EXIT_CRITICAL(current_thread); } } else { SCHEDULER_EXIT_CRITICAL(current_thread); } /* leaving critical region of percpu scheduling context */ rt_hw_local_irq_enable(level); } /** * @brief This function will insert a thread to the system ready queue. The state of * thread will be set as READY and the thread will be removed from suspend queue. * * @param thread is the thread to be inserted. * * @note Please do not invoke this function in user application. * Caller must hold the scheduler lock */ void rt_sched_insert_thread(struct rt_thread *thread) { RT_ASSERT(thread != RT_NULL); RT_SCHED_DEBUG_IS_LOCKED; /* set READY and insert thread to ready queue */ _sched_insert_thread_locked(thread); } /** * @brief This function will remove a thread from system ready queue. * * @param thread is the thread to be removed. * * @note Please do not invoke this function in user application. */ void rt_sched_remove_thread(struct rt_thread *thread) { RT_ASSERT(thread != RT_NULL); RT_SCHED_DEBUG_IS_LOCKED; /* remove thread from scheduler ready list */ _sched_remove_thread_locked(thread); RT_SCHED_CTX(thread).stat = RT_THREAD_SUSPEND_UNINTERRUPTIBLE; } /* thread status initialization and setting up on startup */ void rt_sched_thread_init_priv(struct rt_thread *thread, rt_uint32_t tick, rt_uint8_t priority) { rt_list_init(&RT_THREAD_LIST_NODE(thread)); /* priority init */ RT_ASSERT(priority < RT_THREAD_PRIORITY_MAX); RT_SCHED_PRIV(thread).init_priority = priority; RT_SCHED_PRIV(thread).current_priority = priority; /* don't add to scheduler queue as init thread */ RT_SCHED_PRIV(thread).number_mask = 0; #if RT_THREAD_PRIORITY_MAX > 32 RT_SCHED_PRIV(thread).number = 0; RT_SCHED_PRIV(thread).high_mask = 0; #endif /* RT_THREAD_PRIORITY_MAX > 32 */ /* tick init */ RT_SCHED_PRIV(thread).init_tick = tick; RT_SCHED_PRIV(thread).remaining_tick = tick; #ifdef RT_USING_SMP /* lock init */ RT_SCHED_CTX(thread).critical_lock_nest = 0; #endif /* RT_USING_SMP */ } /* Normally, there isn't anyone racing with us so this operation is lockless */ void rt_sched_thread_startup(struct rt_thread *thread) { #if RT_THREAD_PRIORITY_MAX > 32 RT_SCHED_PRIV(thread).number = RT_SCHED_PRIV(thread).current_priority >> 3; /* 5bit */ RT_SCHED_PRIV(thread).number_mask = 1L << RT_SCHED_PRIV(thread).number; RT_SCHED_PRIV(thread).high_mask = 1L << (RT_SCHED_PRIV(thread).current_priority & 0x07); /* 3bit */ #else RT_SCHED_PRIV(thread).number_mask = 1L << RT_SCHED_PRIV(thread).current_priority; #endif /* RT_THREAD_PRIORITY_MAX > 32 */ /* change thread stat, so we can resume it */ RT_SCHED_CTX(thread).stat = RT_THREAD_SUSPEND; } /** * @brief Update scheduling status of thread. this operation is taken as an * atomic operation of the update of SP. Since the local irq is disabled, * it's okay to assume that the stack will not be modified meanwhile. */ void rt_sched_post_ctx_switch(struct rt_thread *thread) { struct rt_cpu* pcpu = rt_cpu_self(); rt_thread_t from_thread = pcpu->current_thread; RT_ASSERT(rt_hw_interrupt_is_disabled()); if (from_thread) { RT_ASSERT(RT_SCHED_CTX(from_thread).critical_lock_nest == 1); /* release the scheduler lock since we are done with critical region */ RT_SCHED_CTX(from_thread).critical_lock_nest = 0; SCHEDULER_CONTEXT_UNLOCK(pcpu); } /* safe to access since irq is masked out */ pcpu->current_thread = thread; } #ifdef RT_DEBUGING_CRITICAL static volatile int _critical_error_occurred = 0; void rt_exit_critical_safe(rt_base_t critical_level) { struct rt_cpu *pcpu = rt_cpu_self(); rt_thread_t current_thread = pcpu->current_thread; if (current_thread && !_critical_error_occurred) { if (critical_level != RT_SCHED_CTX(current_thread).critical_lock_nest) { int dummy = 1; _critical_error_occurred = 1; rt_kprintf("%s: un-compatible critical level\n" \ "\tCurrent %d\n\tCaller %d\n", __func__, RT_SCHED_CTX(current_thread).critical_lock_nest, critical_level); rt_backtrace(); while (dummy) ; } } rt_exit_critical(); } #else /* !RT_DEBUGING_CRITICAL */ void rt_exit_critical_safe(rt_base_t critical_level) { RT_UNUSED(critical_level); return rt_exit_critical(); } #endif /* RT_DEBUGING_CRITICAL */ RTM_EXPORT(rt_exit_critical_safe); #ifdef ARCH_USING_HW_THREAD_SELF #define FREE_THREAD_SELF(lvl) #else /* !ARCH_USING_HW_THREAD_SELF */ #define FREE_THREAD_SELF(lvl) \ do \ { \ rt_hw_local_irq_enable(lvl); \ } while (0) #endif /* ARCH_USING_HW_THREAD_SELF */ /** * @brief This function will lock the thread scheduler. */ rt_base_t rt_enter_critical(void) { rt_base_t critical_level; struct rt_thread *current_thread; #ifndef ARCH_USING_HW_THREAD_SELF rt_base_t level; struct rt_cpu *pcpu; /* disable interrupt */ level = rt_hw_local_irq_disable(); pcpu = rt_cpu_self(); current_thread = pcpu->current_thread; #else /* !ARCH_USING_HW_THREAD_SELF */ current_thread = rt_hw_thread_self(); #endif /* ARCH_USING_HW_THREAD_SELF */ if (!current_thread) { FREE_THREAD_SELF(level); /* scheduler unavailable */ return -RT_EINVAL; } /* critical for local cpu */ RT_SCHED_CTX(current_thread).critical_lock_nest++; critical_level = RT_SCHED_CTX(current_thread).critical_lock_nest; FREE_THREAD_SELF(level); return critical_level; } RTM_EXPORT(rt_enter_critical); /** * @brief This function will unlock the thread scheduler. */ void rt_exit_critical(void) { struct rt_thread *current_thread; rt_bool_t need_resched; #ifndef ARCH_USING_HW_THREAD_SELF rt_base_t level; struct rt_cpu *pcpu; /* disable interrupt */ level = rt_hw_local_irq_disable(); pcpu = rt_cpu_self(); current_thread = pcpu->current_thread; #else /* !ARCH_USING_HW_THREAD_SELF */ current_thread = rt_hw_thread_self(); #endif /* ARCH_USING_HW_THREAD_SELF */ if (!current_thread) { FREE_THREAD_SELF(level); return; } /* the necessary memory barrier is done on irq_(dis|en)able */ RT_SCHED_CTX(current_thread).critical_lock_nest--; /* may need a rescheduling */ if (RT_SCHED_CTX(current_thread).critical_lock_nest == 0) { /* is there any scheduling request unfinished? */ need_resched = IS_CRITICAL_SWITCH_PEND(pcpu, current_thread); CLR_CRITICAL_SWITCH_FLAG(pcpu, current_thread); FREE_THREAD_SELF(level); if (need_resched) rt_schedule(); } else { /* each exit_critical is strictly corresponding to an enter_critical */ RT_ASSERT(RT_SCHED_CTX(current_thread).critical_lock_nest > 0); FREE_THREAD_SELF(level); } } RTM_EXPORT(rt_exit_critical); /** * @brief Get the scheduler lock level. * * @return the level of the scheduler lock. 0 means unlocked. */ rt_uint16_t rt_critical_level(void) { rt_base_t level; rt_uint16_t critical_lvl; struct rt_thread *current_thread; level = rt_hw_local_irq_disable(); current_thread = rt_cpu_self()->current_thread; if (current_thread) { /* the necessary memory barrier is done on irq_(dis|en)able */ critical_lvl = RT_SCHED_CTX(current_thread).critical_lock_nest; } else { critical_lvl = 0; } rt_hw_local_irq_enable(level); return critical_lvl; } RTM_EXPORT(rt_critical_level); rt_err_t rt_sched_thread_bind_cpu(struct rt_thread *thread, int cpu) { rt_sched_lock_level_t slvl; rt_uint8_t thread_stat; RT_SCHED_DEBUG_IS_UNLOCKED; if (cpu >= RT_CPUS_NR) { cpu = RT_CPUS_NR; } rt_sched_lock(&slvl); thread_stat = rt_sched_thread_get_stat(thread); if (thread_stat == RT_THREAD_READY) { /* unbind */ /* remove from old ready queue */ rt_sched_remove_thread(thread); /* change thread bind cpu */ RT_SCHED_CTX(thread).bind_cpu = cpu; /* add to new ready queue */ rt_sched_insert_thread(thread); if (rt_thread_self() != RT_NULL) { rt_sched_unlock_n_resched(slvl); } else { rt_sched_unlock(slvl); } } else { RT_SCHED_CTX(thread).bind_cpu = cpu; if (thread_stat == RT_THREAD_RUNNING) { /* thread is running on a cpu */ int current_cpu = rt_hw_cpu_id(); if (cpu != RT_CPUS_NR) { if (RT_SCHED_CTX(thread).oncpu == current_cpu) { /* current thread on current cpu */ if (cpu != current_cpu) { /* bind to other cpu */ rt_hw_ipi_send(RT_SCHEDULE_IPI, 1U << cpu); /* self cpu need reschedule */ rt_sched_unlock_n_resched(slvl); } else { /* else do nothing */ rt_sched_unlock(slvl); } } else { /* no running on self cpu, but dest cpu can be itself */ rt_hw_ipi_send(RT_SCHEDULE_IPI, 1U << RT_SCHED_CTX(thread).oncpu); rt_sched_unlock(slvl); } } else { /* else do nothing */ rt_sched_unlock(slvl); } } else { rt_sched_unlock(slvl); } } return RT_EOK; } /**@}*/ /**@endcond*/