/* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2023-03-24 spaceman the first version */ #include "board.h" #include "drv_dcmi.h" #ifdef BSP_USING_DCMI #define DRV_DEBUG #define LOG_TAG "drv.dcmi" #include static struct stm32_dcmi rt_dcmi_dev = {0}; static volatile uint8_t ov2640_fps; // 帧率 static void rt_hw_dmci_dma_init(struct stm32_dcmi *dcmi_dev) { RT_ASSERT(dcmi_dev != RT_NULL); DCMI_HandleTypeDef *_dcmi_handle = &dcmi_dev->dcmi_handle; DMA_HandleTypeDef *_dma_handle = &dcmi_dev->dma_handle; RT_ASSERT(_dcmi_handle != RT_NULL); RT_ASSERT(_dma_handle != RT_NULL); __HAL_RCC_DMA2_CLK_ENABLE(); // 使能DMA2时钟 _dma_handle->Instance = DMA2_Stream7; // DMA2数据流7 _dma_handle->Init.Request = DMA_REQUEST_DCMI; // DMA请求来自DCMI _dma_handle->Init.Direction = DMA_PERIPH_TO_MEMORY; // 外设到存储器模式 _dma_handle->Init.PeriphInc = DMA_PINC_DISABLE; // 外设地址禁止自增 _dma_handle->Init.MemInc = DMA_MINC_ENABLE; // 存储器地址自增 _dma_handle->Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD; // DCMI数据位宽,32位 _dma_handle->Init.MemDataAlignment = DMA_MDATAALIGN_WORD; // 存储器数据位宽,32位 _dma_handle->Init.Mode = DMA_CIRCULAR; // 循环模式 _dma_handle->Init.Priority = DMA_PRIORITY_LOW; // 优先级低 _dma_handle->Init.FIFOMode = DMA_FIFOMODE_ENABLE; // 使能fifo _dma_handle->Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL; // 全fifo模式,4*32bit大小 _dma_handle->Init.MemBurst = DMA_MBURST_SINGLE; // 单次传输 _dma_handle->Init.PeriphBurst = DMA_PBURST_SINGLE; // 单次传输 if (HAL_DMA_Init(_dma_handle) != HAL_OK) { Error_Handler(); } HAL_DMA_Init(_dma_handle); // 配置DMA __HAL_LINKDMA(_dcmi_handle, DMA_Handle, *_dma_handle); // 关联DCMI句柄 HAL_NVIC_SetPriority(DMA2_Stream7_IRQn, 0, 0); // 设置中断优先级 HAL_NVIC_EnableIRQ(DMA2_Stream7_IRQn); // 使能中断 } static rt_err_t rt_hw_dcmi_init(struct stm32_dcmi *dcmi_dev) { RT_ASSERT(dcmi_dev != RT_NULL); DCMI_HandleTypeDef *_dcmi_handle = &dcmi_dev->dcmi_handle; RT_ASSERT(_dcmi_handle != RT_NULL); _dcmi_handle->Instance = DCMI; _dcmi_handle->Init.SynchroMode = DCMI_SYNCHRO_HARDWARE; // 硬件同步模式,即使用外部的VS、HS信号进行同步 _dcmi_handle->Init.PCKPolarity = DCMI_PCKPOLARITY_RISING; // 像素时钟上升沿有效 _dcmi_handle->Init.VSPolarity = DCMI_VSPOLARITY_LOW; // VS低电平有效 _dcmi_handle->Init.HSPolarity = DCMI_HSPOLARITY_LOW; // HS低电平有效 _dcmi_handle->Init.CaptureRate = DCMI_CR_ALL_FRAME; // 捕获等级,设置每一帧都进行捕获 _dcmi_handle->Init.ExtendedDataMode = DCMI_EXTEND_DATA_8B; // 8位数据模式 _dcmi_handle->Init.JPEGMode = DCMI_JPEG_DISABLE; // 禁止JPEG模式 _dcmi_handle->Init.ByteSelectMode = DCMI_BSM_ALL; // DCMI接口捕捉所有数据 _dcmi_handle->Init.ByteSelectStart = DCMI_OEBS_ODD; // 选择开始字节,从 帧/行 的第一个数据开始捕获 _dcmi_handle->Init.LineSelectMode = DCMI_LSM_ALL; // 捕获所有行 _dcmi_handle->Init.LineSelectStart = DCMI_OELS_ODD; // 选择开始行,在帧开始后捕获第一行 if (HAL_DCMI_Init(_dcmi_handle) != HAL_OK) { LOG_E("dcmi init error!"); return -RT_ERROR; } HAL_NVIC_SetPriority(DCMI_IRQn, 0, 5); // 设置中断优先级 HAL_NVIC_EnableIRQ(DCMI_IRQn); // 开启DCMI中断 DCMI->IER = 0x0; // 在JPG模式下,一定要单独使能该中断 __HAL_DCMI_ENABLE_IT(_dcmi_handle, DCMI_IT_FRAME); __HAL_DCMI_ENABLE(_dcmi_handle); rt_hw_dmci_dma_init(dcmi_dev); return RT_EOK; } /*************************************************************************************************************************************** * 函 数 名: ov2640_dcmi_crop * * 入口参数: displey_xsize 、displey_ysize - 显示器的长宽 * sensor_xsize、sensor_ysize - 摄像头传感器输出图像的长宽 * * 函数功能: 使用DCMI的裁剪功能,将传感器输出的图像裁剪成适应屏幕的大小 * * 说 明: 1. 因为摄像头输出的画面比例固定为4:3,不一定匹配显示器 * 2. 需要注意的是,摄像头输出的图像长、宽必须要能被4整除!( 使用OV2640_Set_Framesize函数进行设置 ) * 3. DCMI的水平有效像素也必须要能被4整除! * 4. 函数会计算水平和垂直偏移,尽量让画面居中裁剪 *****************************************************************************************************************************************/ static rt_err_t ov2640_dcmi_crop(struct stm32_dcmi *dcmi_dev, uint16_t displey_xsize, uint16_t displey_ysize, uint16_t sensor_xsize, uint16_t sensor_ysize) { RT_ASSERT(dcmi_dev != RT_NULL); DCMI_HandleTypeDef *_dcmi_handle = &dcmi_dev->dcmi_handle; RT_ASSERT(_dcmi_handle != RT_NULL); uint16_t dcmi_x_offset, dcmi_y_offset; // 水平和垂直偏移,垂直代表的是行数,水平代表的是像素时钟数(pclk周期数) uint16_t dcmi_capcnt; // 水平有效像素,代表的是像素时钟数(pclk周期数) uint16_t dcmi_vline; // 垂直有效行数 if ((displey_xsize >= sensor_xsize) || (displey_ysize >= sensor_ysize)) { LOG_E("actual displayed size (%d, %d) >= camera output size (%d, %d), exit dcmi cropping", displey_xsize, displey_ysize, sensor_xsize, sensor_ysize); return -RT_ERROR; // 如果实际显示的尺寸大于或等于摄像头输出的尺寸,则退出当前函数,不进行裁剪 } // 在设置为rgb565格式时,水平偏移,必须是奇数,否则画面色彩不正确, // 因为一个有效像素是2个字节,需要2个pclk周期,所以必须从奇数位开始,不然数据会错乱, // 需要注意的是,寄存器值是从0开始算起的 ! dcmi_x_offset = sensor_xsize - displey_xsize; // 实际计算过程为(sensor_xsize - lcd_xsize)/2*2 // 计算垂直偏移,尽量让画面居中裁剪,该值代表的是行数, dcmi_y_offset = (sensor_ysize - displey_ysize) / 2 - 1; // 寄存器值是从0开始算起的,所以要-1 // 因为一个有效像素是2个字节,需要2个pclk周期,所以要乘2 // 最终得到的寄存器值,必须要能被4整除! dcmi_capcnt = displey_xsize * 2 - 1; // 寄存器值是从0开始算起的,所以要-1 dcmi_vline = displey_ysize - 1; // 垂直有效行数 // LOG_D("%d %d %d %d", dcmi_x_offset, dcmi_y_offset, dcmi_capcnt, dcmi_vline); HAL_DCMI_ConfigCrop(_dcmi_handle, dcmi_x_offset, dcmi_y_offset, dcmi_capcnt, dcmi_vline); // 设置裁剪窗口 HAL_DCMI_EnableCrop(_dcmi_handle); // 使能裁剪 return RT_EOK; } /*************************************************************************************************************************************** * 函 数 名: ov2640_dma_transmit_continuous * * 入口参数: dma_buffer - DMA将要传输的地址,即用于存储摄像头数据的存储区地址 * dma_buffersize - 传输的数据大小,32位宽 * * 函数功能: 启动DMA传输,连续模式 * * 说 明: 1. 开启连续模式之后,会一直进行传输,除非挂起或者停止DCMI * 2. OV2640使用RGB565模式时,1个像素点需要2个字节来存储 * 3. 因为DMA配置传输数据为32位宽,计算 dma_buffersize 时,需要除以4,例如: * 要获取 240*240分辨率 的图像,需要传输 240*240*2 = 115200 字节的数据, * 则 dma_buffersize = 115200 / 4 = 28800 。 * *****************************************************************************************************************************************/ static void ov2640_dma_transmit_continuous(struct stm32_dcmi *dcmi_dev, uint32_t dma_buffer, uint32_t dma_buffersize) { RT_ASSERT(dcmi_dev != RT_NULL); DCMI_HandleTypeDef *_dcmi_handle = &dcmi_dev->dcmi_handle; DMA_HandleTypeDef *_dma_handle = &dcmi_dev->dma_handle; RT_ASSERT(_dcmi_handle != RT_NULL); RT_ASSERT(_dma_handle != RT_NULL); _dma_handle->Init.Mode = DMA_CIRCULAR; // 循环模式 HAL_DMA_Init(_dma_handle); // 配置DMA // 使能DCMI采集数据,连续采集模式 HAL_DCMI_Start_DMA(_dcmi_handle, DCMI_MODE_CONTINUOUS, (uint32_t)dma_buffer, dma_buffersize); } /*************************************************************************************************************************************** * 函 数 名: ov2640_dma_transmit_snapshot * * 入口参数: dma_buffer - DMA将要传输的地址,即用于存储摄像头数据的存储区地址 * dma_buffersize - 传输的数据大小,32位宽 * * 函数功能: 启动DMA传输,快照模式,传输一帧图像后停止 * * 说 明: 1. 快照模式,只传输一帧的数据 * 2. OV2640使用RGB565模式时,1个像素点需要2个字节来存储 * 3. 因为DMA配置传输数据为32位宽,计算 dma_buffersize 时,需要除以4,例如: * 要获取 240*240分辨率 的图像,需要传输 240*240*2 = 115200 字节的数据, * 则 dma_buffersize = 115200 / 4 = 28800 。 * 4. 使用该模式传输完成之后,DCMI会被挂起,再次启用传输之前,需要调用 OV2640_DCMI_Resume() 恢复DCMI * *****************************************************************************************************************************************/ static void ov2640_dma_transmit_snapshot(struct stm32_dcmi *dcmi_dev, uint32_t dma_buffer, uint32_t dma_buffersize) { RT_ASSERT(dcmi_dev != RT_NULL); DCMI_HandleTypeDef *_dcmi_handle = &dcmi_dev->dcmi_handle; DMA_HandleTypeDef *_dma_handle = &dcmi_dev->dma_handle; RT_ASSERT(_dcmi_handle != RT_NULL); RT_ASSERT(_dma_handle != RT_NULL); _dma_handle->Init.Mode = DMA_NORMAL; // 正常模式 HAL_DMA_Init(_dma_handle); // 配置DMA HAL_DCMI_Start_DMA(_dcmi_handle, DCMI_MODE_SNAPSHOT, (uint32_t)dma_buffer, dma_buffersize); } /*************************************************************************************************************************************** * 函 数 名: ov2640_dcmi_suspend * * 函数功能: 挂起dcmi,停止捕获数据 * * 说 明: 1. 开启连续模式之后,再调用该函数,会停止捕获dcmi的数据 * 2. 可以调用 ov2640_dcmi_resume() 恢复dcmi * 3. 需要注意的,挂起dcmi期间,dma是没有停止工作的 *fanke *****************************************************************************************************************************************/ static void ov2640_dcmi_suspend(struct stm32_dcmi *dcmi_dev) { RT_ASSERT(dcmi_dev != RT_NULL); DCMI_HandleTypeDef *_dcmi_handle = &dcmi_dev->dcmi_handle; RT_ASSERT(_dcmi_handle != RT_NULL); HAL_DCMI_Suspend(_dcmi_handle); // 挂起dcmi } /*************************************************************************************************************************************** * 函 数 名: ov2640_dcmi_resume * * 函数功能: 恢复dcmi,开始捕获数据 * * 说 明: 1. 当dcmi被挂起时,可以调用该函数恢复 * 2. 使用 ov2640_dma_transmit_snapshot() 快照模式,传输完成之后,dcmi也会被挂起,再次启用传输之前, * 需要调用本函数恢复dcmi捕获 * *****************************************************************************************************************************************/ static void ov2640_dcmi_resume(struct stm32_dcmi *dcmi_dev) { RT_ASSERT(dcmi_dev != RT_NULL); DCMI_HandleTypeDef *_dcmi_handle = &dcmi_dev->dcmi_handle; RT_ASSERT(_dcmi_handle != RT_NULL); _dcmi_handle->State = HAL_DCMI_STATE_BUSY; // 变更dcmi标志 _dcmi_handle->Instance->CR |= DCMI_CR_CAPTURE; // 开启dcmi捕获 } /*************************************************************************************************************************************** * 函 数 名: ov2640_dcmi_stop * * 函数功能: 禁止dcmi的dma请求,停止dcmi捕获,禁止dcmi外设 * *****************************************************************************************************************************************/ static void ov2640_dcmi_stop(struct stm32_dcmi *dcmi_dev) { RT_ASSERT(dcmi_dev != RT_NULL); DCMI_HandleTypeDef *_dcmi_handle = &dcmi_dev->dcmi_handle; RT_ASSERT(_dcmi_handle != RT_NULL); HAL_DCMI_Stop(_dcmi_handle); } void DCMI_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_DCMI_IRQHandler(&rt_dcmi_dev.dcmi_handle); /* leave interrupt */ rt_interrupt_leave(); } void DMA2_Stream7_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_DMA_IRQHandler(&rt_dcmi_dev.dma_handle); /* leave interrupt */ rt_interrupt_leave(); } /* Capture a frame of the image */ void HAL_DCMI_FrameEventCallback(DCMI_HandleTypeDef *hdcmi) { /* enter interrupt */ rt_interrupt_enter(); static uint32_t dcmi_tick = 0; // 用于保存当前的时间计数值 static uint8_t dcmi_frame_count = 0; // 帧数计数 if (HAL_GetTick() - dcmi_tick >= 1000) // 每隔 1s 计算一次帧率 { dcmi_tick = HAL_GetTick(); // 重新获取当前时间计数值 ov2640_fps = dcmi_frame_count; // 获得fps dcmi_frame_count = 0; // 计数清0 } dcmi_frame_count++; // 没进入一次中断(每次传输完一帧数据),计数值+1 rt_sem_release(&rt_dcmi_dev.cam_semaphore); /* leave interrupt */ rt_interrupt_leave(); } void HAL_DCMI_ErrorCallback(DCMI_HandleTypeDef *hdcmi) { /* enter interrupt */ rt_interrupt_enter(); if (HAL_DCMI_GetError(hdcmi) == HAL_DCMI_ERROR_OVR) { LOG_E("FIFO overflow error"); } LOG_E("error:0x%08x", HAL_DCMI_GetError(hdcmi)); /* leave interrupt */ rt_interrupt_leave(); } static rt_err_t rt_dcmi_init(rt_device_t dev) { RT_ASSERT(dev != RT_NULL); rt_err_t result = RT_EOK; struct stm32_dcmi *_rt_dcmi_dev = DCMI_DEVICE(dev); result = rt_hw_dcmi_init(_rt_dcmi_dev); if (result != RT_EOK) { return result; } return result; } static rt_err_t rt_dcmi_open(rt_device_t dev, rt_uint16_t oflag) { RT_ASSERT(dev != RT_NULL); return RT_EOK; } static rt_err_t rt_dcmi_close(rt_device_t dev) { RT_ASSERT(dev != RT_NULL); return RT_EOK; } static rt_err_t rt_dcmi_control(rt_device_t dev, int cmd, void *args) { RT_ASSERT(dev != RT_NULL); struct stm32_dcmi *_rt_dcmi_dev = DCMI_DEVICE(dev); switch (cmd) { case DCMI_CTRL_CROP: { RT_ASSERT(args != RT_NULL); struct stm32_dcmi_cropsize* cropsize = (struct stm32_dcmi_cropsize*)args; ov2640_dcmi_crop(_rt_dcmi_dev, cropsize->displey_xsize, cropsize->displey_ysize, cropsize->sensor_xsize, cropsize->sensor_ysize); } break; case DCMI_CTRL_TRANSMIT_CONTINUOUS: { RT_ASSERT(args != RT_NULL); struct stm32_dcmi_dma_transmitbuffer* transmitbuffer = (struct stm32_dcmi_dma_transmitbuffer*)args; ov2640_dma_transmit_continuous(_rt_dcmi_dev, transmitbuffer->dma_buffer, transmitbuffer->dma_buffersize); } break; case DCMI_CTRL_TRANSMIT_SNAPSHOT: { RT_ASSERT(args != RT_NULL); struct stm32_dcmi_dma_transmitbuffer* transmitbuffer = (struct stm32_dcmi_dma_transmitbuffer*)args; ov2640_dma_transmit_snapshot(_rt_dcmi_dev, transmitbuffer->dma_buffer, transmitbuffer->dma_buffersize); } break; case DCMI_CTRL_SUSPEND: { ov2640_dcmi_suspend(_rt_dcmi_dev); } break; case DCMI_CTRL_RESUME: { ov2640_dcmi_resume(_rt_dcmi_dev); } break; case DCMI_CTRL_STOP: { ov2640_dcmi_stop(_rt_dcmi_dev); } break; case DCMI_CTRL_GET_FPS: { *(uint8_t*)args = ov2640_fps; } break; default: return -RT_EINVAL; } return RT_EOK; } static rt_ssize_t rt_dcmi_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size) { RT_ASSERT(dev != RT_NULL); return RT_EOK; } static rt_ssize_t rt_dcmi_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size) { RT_ASSERT(dev != RT_NULL); return RT_EOK; } #ifdef RT_USING_DEVICE_OPS const static struct rt_device_ops dcmi_ops = { rt_dcmi_init, rt_dcmi_open, rt_dcmi_close, rt_dcmi_read, rt_dcmi_write, rt_dcmi_control, }; #endif int dcmi_init(void) { int ret = 0; rt_device_t device = &rt_dcmi_dev.parent; /* memset rt_dcmi_dev to zero */ memset(&rt_dcmi_dev, 0x00, sizeof(rt_dcmi_dev)); /* init cam_semaphore semaphore */ ret = rt_sem_init(&rt_dcmi_dev.cam_semaphore, "cam_sem", 0, RT_IPC_FLAG_FIFO); if (ret != RT_EOK) { LOG_E("init semaphore failed!\n"); ret = -RT_ENOMEM; goto __exit; } device->type = RT_Device_Class_Miscellaneous; #ifdef RT_USING_DEVICE_OPS device->ops = &dcmi_ops; #else device->init = rt_dcmi_init; device->open = rt_dcmi_open; device->close = rt_dcmi_close; device->read = rt_dcmi_read; device->write = rt_dcmi_write; device->control = rt_dcmi_control; #endif device->user_data = RT_NULL; ret = rt_device_register(device, "dcmi", RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_REMOVABLE | RT_DEVICE_FLAG_STANDALONE); if (ret != RT_EOK) { LOG_E("dcmi registered fail!\n\r"); return -RT_ERROR; } LOG_I("dcmi init success!"); return RT_EOK; __exit: if (ret != RT_EOK) { rt_sem_delete(&rt_dcmi_dev.cam_semaphore); } return ret; } INIT_BOARD_EXPORT(dcmi_init); #endif /* BSP_USING_DCMI */