/* * Copyright (c) 2006-2018, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2019-04-28 tyustli first version * 2019-07-15 Magicoe The first version for LPC55S6x, we can also use SCT as PWM * */ #include #ifdef RT_USING_PWM #if !defined(BSP_USING_CTIMER2_MAT0) && !defined(BSP_USING_CTIMER2_MAT1) && \ !defined(BSP_USING_CTIMER2_MAT2) #error "Please define at least one BSP_USING_CTIMERx_MATx" #else #define BSP_USING_CTIMER2 #endif #define LOG_TAG "drv.pwm" #include #include #include "fsl_ctimer.h" #include "drv_pwm.h" #define DEFAULT_DUTY 50 #define DEFAULT_FREQ 1000 static rt_err_t lpc_drv_pwm_control(struct rt_device_pwm *device, int cmd, void *arg); static struct rt_pwm_ops lpc_drv_ops = { .control = lpc_drv_pwm_control }; static rt_err_t lpc_drv_pwm_enable(struct rt_device_pwm *device, struct rt_pwm_configuration *configuration, rt_bool_t enable) { CTIMER_Type *base; base = (CTIMER_Type *)device->parent.user_data; if (!enable) { /* Stop the timer */ CTIMER_StopTimer(base); } else { /* Start the timer */ CTIMER_StartTimer(base); } return RT_EOK; } static rt_err_t lpc_drv_pwm_get(struct rt_device_pwm *device, struct rt_pwm_configuration *configuration) { uint8_t get_duty; uint32_t get_frequence; uint32_t pwmClock = 0; CTIMER_Type *base; base = (CTIMER_Type *)device->parent.user_data; #ifdef BSP_USING_CTIMER2 /* get frequence */ pwmClock = CLOCK_GetFreq(kCLOCK_CTimer2) ; #endif get_frequence = pwmClock / (base->MR[kCTIMER_Match_3] + 1); if(configuration->channel == 1) { /* get dutycycle */ get_duty = (100*(base->MR[kCTIMER_Match_3] + 1 - base->MR[kCTIMER_Match_1]))/(base->MR[kCTIMER_Match_3] + 1); } /* get dutycycle */ /* conversion */ configuration->period = 1000000000 / get_frequence; configuration->pulse = get_duty * configuration->period / 100; rt_kprintf("*** PWM period %d, pulse %d\r\n", configuration->period, configuration->pulse); return RT_EOK; } static rt_err_t lpc_drv_pwm_set(struct rt_device_pwm *device, struct rt_pwm_configuration *configuration) { RT_ASSERT(configuration->period > 0); RT_ASSERT(configuration->pulse <= configuration->period); ctimer_config_t config; CTIMER_Type *base; base = (CTIMER_Type *)device->parent.user_data; uint32_t pwmPeriod, pulsePeriod; /* Run as a timer */ config.mode = kCTIMER_TimerMode; /* This field is ignored when mode is timer */ config.input = kCTIMER_Capture_0; /* Timer counter is incremented on every APB bus clock */ config.prescale = 0; if(configuration->channel == 1) { /* Get the PWM period match value and pulse width match value of DEFAULT_FREQ PWM signal with DEFAULT_DUTY dutycycle */ /* Calculate PWM period match value */ pwmPeriod = (( CLOCK_GetFreq(kCLOCK_CTimer2) / (config.prescale + 1) ) / DEFAULT_FREQ) - 1; /* Calculate pulse width match value */ if (DEFAULT_DUTY == 0) { pulsePeriod = pwmPeriod + 1; } else { pulsePeriod = (pwmPeriod * (100 - DEFAULT_DUTY)) / 100; } /* Match on channel 3 will define the PWM period */ base->MR[kCTIMER_Match_3] = pwmPeriod; /* This will define the PWM pulse period */ base->MR[kCTIMER_Match_1] = pulsePeriod; } return RT_EOK; } static rt_err_t lpc_drv_pwm_control(struct rt_device_pwm *device, int cmd, void *arg) { struct rt_pwm_configuration *configuration = (struct rt_pwm_configuration *)arg; switch (cmd) { case PWM_CMD_ENABLE: return lpc_drv_pwm_enable(device, configuration, RT_TRUE); case PWM_CMD_DISABLE: return lpc_drv_pwm_enable(device, configuration, RT_FALSE); case PWM_CMD_SET: return lpc_drv_pwm_set(device, configuration); case PWM_CMD_GET: return lpc_drv_pwm_get(device, configuration); default: return RT_EINVAL; } } int rt_hw_pwm_init(void) { rt_err_t ret = RT_EOK; #ifdef BSP_USING_CTIMER2 static struct rt_device_pwm pwm1_device; ctimer_config_t config; uint32_t pwmPeriod, pulsePeriod; /* Use 12 MHz clock for some of the Ctimers */ CLOCK_AttachClk(kMAIN_CLK_to_CTIMER2); /* Run as a timer */ config.mode = kCTIMER_TimerMode; /* This field is ignored when mode is timer */ config.input = kCTIMER_Capture_0; /* Timer counter is incremented on every APB bus clock */ config.prescale = 0; CTIMER_Init(CTIMER2, &config); #ifdef BSP_USING_CTIMER2_MAT1 /* Get the PWM period match value and pulse width match value of DEFAULT_FREQ PWM signal with DEFAULT_DUTY dutycycle */ /* Calculate PWM period match value */ pwmPeriod = (( CLOCK_GetFreq(kCLOCK_CTimer2) / (config.prescale + 1) ) / DEFAULT_FREQ) - 1; /* Calculate pulse width match value */ if (DEFAULT_DUTY == 0) { pulsePeriod = pwmPeriod + 1; } else { pulsePeriod = (pwmPeriod * (100 - DEFAULT_DUTY)) / 100; } CTIMER_SetupPwmPeriod(CTIMER2, kCTIMER_Match_1 , pwmPeriod, pulsePeriod, false); #endif ret = rt_device_pwm_register(&pwm1_device, "pwm1", &lpc_drv_ops, CTIMER2); if (ret != RT_EOK) { LOG_E("%s register failed", "pwm1"); } #endif /* BSP_USING_CTIMER2 */ return ret; } INIT_DEVICE_EXPORT(rt_hw_pwm_init); #ifdef RT_USING_FINSH #include #ifdef FINSH_USING_MSH rt_err_t rt_pwm_get(struct rt_device_pwm *device, int channel) { rt_err_t result = RT_EOK; struct rt_pwm_configuration configuration = {0}; if (!device) { return -RT_EIO; } configuration.channel = channel; result = rt_device_control(&device->parent, PWM_CMD_GET, &configuration); return result; } static int pwm_get(int argc, char **argv) { int result = 0; struct rt_device_pwm *device = RT_NULL; if (argc != 3) { rt_kprintf("Usage: pwm_get pwm1 1\n"); result = -RT_ERROR; goto _exit; } device = (struct rt_device_pwm *)rt_device_find(argv[1]); if (!device) { result = -RT_EIO; goto _exit; } result = rt_pwm_get(device, atoi(argv[2])); _exit: return result; } MSH_CMD_EXPORT(pwm_get, pwm_get pwm1 1); #endif /* FINSH_USING_MSH */ #endif /* RT_USING_FINSH */ #endif /* RT_USING_PWM */