Compare commits

...

9 Commits

Author SHA1 Message Date
chinky e395a06b62 fix error 2023-04-28 13:59:13 +08:00
chinky 3ce14027eb fix error 2023-04-27 20:24:24 +08:00
Meco Man 5a36203ade create serialX-doc folder 2023-04-27 19:38:09 +08:00
thewon86 f586a59240 add serialX user manual (#6964) 2023-04-27 19:38:09 +08:00
thewon86 a1bfcd00b9 add serialX hardware driver for bluetrum gd32 n32 nuc980 renesas (#6952)
add serialX hardware driver for bluetrum gd32 n32 nuc980 renesas
2023-04-27 19:38:04 +08:00
thewon86 0c1b0545c3 add init ops (stm32 serialX) 2023-04-27 19:36:48 +08:00
thewon86 2a55b6144f separate init & configure of uart ops 2023-04-27 18:16:02 +08:00
thewon86 2a1a014d10 implement serialX UART device framework 2023-04-27 18:03:35 +08:00
Man, Jianting (Meco) f13d7c62d7 Update action.yml 2023-04-27 17:53:43 +08:00
32 changed files with 6539 additions and 10 deletions

View File

@ -8,7 +8,7 @@ on:
- cron: '0 16 1 * *'
push:
branches:
- master
- serialX-dev
paths-ignore:
- documentation/**
- '**/README.md'

View File

@ -12,7 +12,10 @@ if GetDepend('RT_USING_PIN'):
src += ['drv_gpio.c']
if GetDepend('RT_USING_SERIAL'):
src += ['drv_usart.c']
if GetDepend(['RT_USING_SERIAL_X']):
src += ['drv_usartX.c']
else:
src += ['drv_usart.c']
if GetDepend('RT_USING_SDIO'):
src += ['drv_sdio.c']

View File

@ -0,0 +1,348 @@
/*
* Copyright (c) 2020-2022, Bluetrum Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-11-20 greedyhao first version
* 2022-06-08 THEWON first version for serialX
*/
#include "board.h"
#include <drv_usartX.h>
#ifdef RT_USING_SERIAL
//#define DRV_DEBUG
#define LOG_TAG "drv.usart"
#include <drv_log.h>
enum
{
#ifdef BSP_USING_UART0
UART0_INDEX,
#endif
#ifdef BSP_USING_UART1
UART1_INDEX,
#endif
#ifdef BSP_USING_UART2
UART2_INDEX,
#endif
};
static struct ab32_uart_config uart_config[] =
{
#ifdef BSP_USING_UART0
{
.name = "uart0",
.instance = UART0_BASE,
.mode = UART_MODE_TX_RX | UART_MODE_1LINE,
},
#endif
#ifdef BSP_USING_UART1
{
.name = "uart1",
.instance = UART1_BASE,
.mode = UART_MODE_TX_RX,
},
#endif
#ifdef BSP_USING_UART2
{
.name = "uart2",
.instance = UART2_BASE,
.mode = UART_MODE_TX_RX,
}
#endif
};
static struct ab32_uart uart_obj[sizeof(uart_config) / sizeof(uart_config[0])] = {0};
static rt_err_t ab32_init(struct rt_serial_device *serial)
{
struct ab32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct ab32_uart, serial);
uart->handle.instance = uart->uart_config->instance;
uart->handle.init.baud = serial->config->baud_rate;
uart->handle.init.mode = uart->uart_config->mode;
switch (serial->config->data_bits)
{
case DATA_BITS_8:
uart->handle.init.word_len = UART_WORDLENGTH_8B;
break;
case DATA_BITS_9:
uart->handle.init.word_len = UART_WORDLENGTH_9B;
break;
default:
uart->handle.init.word_len = UART_WORDLENGTH_8B;
break;
}
switch (serial->config->stop_bits)
{
case STOP_BITS_1:
uart->handle.init.stop_bits = UART_STOPBITS_1;
break;
case STOP_BITS_2:
uart->handle.init.stop_bits = UART_STOPBITS_2;
break;
default:
uart->handle.init.stop_bits = UART_STOPBITS_1;
break;
}
hal_uart_init(&uart->handle);
return RT_EOK;
}
static rt_err_t ab32_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
struct ab32_uart *uart;
RT_ASSERT(serial != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
uart = rt_container_of(serial, struct ab32_uart, serial);
uart->handle.instance = uart->uart_config->instance;
uart->handle.init.baud = cfg->baud_rate;
uart->handle.init.mode = uart->uart_config->mode;
switch (cfg->data_bits)
{
case DATA_BITS_8:
uart->handle.init.word_len = UART_WORDLENGTH_8B;
break;
case DATA_BITS_9:
uart->handle.init.word_len = UART_WORDLENGTH_9B;
break;
default:
uart->handle.init.word_len = UART_WORDLENGTH_8B;
break;
}
switch (cfg->stop_bits)
{
case STOP_BITS_1:
uart->handle.init.stop_bits = UART_STOPBITS_1;
break;
case STOP_BITS_2:
uart->handle.init.stop_bits = UART_STOPBITS_2;
break;
default:
uart->handle.init.stop_bits = UART_STOPBITS_1;
break;
}
hal_uart_init(&uart->handle);
return RT_EOK;
}
static rt_err_t ab32_control(struct rt_serial_device *serial, int cmd, void *arg)
{
struct ab32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct ab32_uart, serial);
switch (cmd)
{
case RT_DEVICE_CTRL_OPEN:
uart->intTxing = RT_FALSE;
break;
/* disable interrupt */
case RT_DEVICE_CTRL_CLR_INT:
hal_uart_control(uart->handle.instance, UART_RXIT_ENABLE, HAL_DISABLE);
break;
/* enable interrupt */
case RT_DEVICE_CTRL_SET_INT:
hal_uart_clrflag(uart->handle.instance, UART_FLAG_RXPND);
hal_uart_control(uart->handle.instance, UART_RXIT_ENABLE, HAL_ENABLE);
break;
case RT_DEVICE_CTRL_CLOSE:
hal_uart_deinit(uart->handle.instance);
break;
}
return RT_EOK;
}
static int ab32_putc(struct rt_serial_device *serial, char ch)
{
struct ab32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct ab32_uart, serial);
hal_uart_write(uart->handle.instance, ch);
return 1;
}
static int ab32_getc(struct rt_serial_device *serial)
{
int ch;
struct ab32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct ab32_uart, serial);
ch = -1;
if (hal_uart_getflag(UART0_BASE, UART_FLAG_RXPND)) {
ch = hal_uart_read(uart->handle.instance);
hal_uart_clrflag(UART0_BASE, UART_FLAG_RXPND);
}
return ch;
}
static int ab32_flush(struct rt_serial_device *serial)
{
struct ab32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct ab32_uart, serial);
while(hal_uart_getflag(uart->handle.instance, UART_FLAG_TXPND) == 0);
}
rt_bool_t ab32_int_txing(struct rt_serial_device *serial)
{
struct ab32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct ab32_uart, serial);
return uart->intTxing;
}
static void ab32_start_tx(struct rt_serial_device *serial, rt_uint8_t ch)
{
struct ab32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct ab32_uart, serial);
uart->intTxing = RT_TRUE;
hal_uart_control(uart->handle.instance, UART_TXIT_ENABLE, HAL_ENABLE);
hal_uart_write(uart->handle.instance, ch);
}
static void ab32_stop_tx(struct rt_serial_device *serial)
{
struct ab32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct ab32_uart, serial);
hal_uart_control(uart->handle.instance, UART_TXIT_ENABLE, HAL_DISABLE);
uart->intTxing = RT_FALSE;
}
RT_SECTION(".irq.usart")
static void uart_isr(int vector, void *param)
{
rt_interrupt_enter();
#ifdef BSP_USING_UART0
if(hal_uart_getflag(UART0_BASE, UART_FLAG_RXPND)) //RX one byte finish
{
rt_hw_serial_isr(&(uart_obj[UART0_INDEX].serial), RT_SERIAL_EVENT_RX_IND);
hal_uart_clrflag(UART0_BASE, UART_FLAG_RXPND);
}
if(hal_uart_getflag(UART0_BASE, UART_FLAG_TXPND)) //TX one byte finish
{
rt_hw_serial_isr(&(uart_obj[UART0INDEX].serial), RT_SERIAL_EVENT_TX_DONE);
hal_uart_clrflag(UART0_BASE, UART_FLAG_TXPND);
}
#endif
#ifdef BSP_USING_UART1
if(hal_uart_getflag(UART1_BASE, UART_FLAG_RXPND)) //RX one byte finish
{
rt_hw_serial_isr(&(uart_obj[UART1_INDEX].serial), RT_SERIAL_EVENT_RX_IND);
hal_uart_clrflag(UART1_BASE, UART_FLAG_RXPND);
}
if(hal_uart_getflag(UART1_BASE, UART_FLAG_TXPND)) //TX one byte finish
{
rt_hw_serial_isr(&(uart_obj[UART1_INDEX].serial), RT_SERIAL_EVENT_TX_DONE);
hal_uart_clrflag(UART1_BASE, UART_FLAG_TXPND);
}
#endif
#ifdef BSP_USING_UART2
if(hal_uart_getflag(UART2_BASE, UART_FLAG_RXPND)) //RX one byte finish
{
rt_hw_serial_isr(&(uart_obj[UART2_INDEX].serial), RT_SERIAL_EVENT_RX_IND);
hal_uart_clrflag(UART2_BASE, UART_FLAG_RXPND);
}
if(hal_uart_getflag(UART2_BASE, UART_FLAG_TXPND)) //TX one byte finish
{
rt_hw_serial_isr(&(uart_obj[UART2_INDEX].serial), RT_SERIAL_EVENT_TX_DONE);
hal_uart_clrflag(UART2_BASE, UART_FLAG_TXPND);
}
#endif
rt_interrupt_leave();
}
#ifdef HUART_ENABLE
RT_SECTION(".irq.huart")
void huart_timer_isr(void)
{
huart_if_rx_ovflow();
if (0 == huart_get_rxcnt()) {
return;
}
}
#else
RT_SECTION(".irq.huart")
void huart_timer_isr(void)
{
}
#endif
static const struct rt_uart_ops ab32_uart_ops =
{
.init = ab32_init,
.configure = ab32_configure,
.control = ab32_control,
.putc = ab32_putc,
.getc = ab32_getc,
.flush = ab32_flush,
.is_int_txing = ab32_int_txing,
.start_tx = ab32_start_tx,
.stop_tx = ab32_stop_tx,
};
int rt_hw_usart_init(void)
{
rt_size_t obj_num = sizeof(uart_obj) / sizeof(struct ab32_uart);
rt_err_t result = 0;
rt_hw_interrupt_install(IRQ_UART0_2_VECTOR, uart_isr, RT_NULL, "ut_isr");
for (int i = 0; i < obj_num; i++)
{
/* init UART object */
uart_obj[i].uart_config = &uart_config[i];
uart_obj[i].serial.ops = &ab32_uart_ops;
/* register UART device */
result = rt_hw_serial_register(&uart_obj[i].serial, uart_obj[i].uart_config->name,
RT_DEVICE_FLAG_RDWR
| RT_DEVICE_FLAG_INT_RX
| RT_DEVICE_FLAG_INT_TX
, RT_NULL);
RT_ASSERT(result == RT_EOK);
}
return result;
}
#endif

View File

@ -0,0 +1,40 @@
/*
* Copyright (c) 2020-2022, Bluetrum Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-11-20 greedyhao first version
* 2022-06-08 THEWON first version for serialX
*/
#ifndef DRV_USART_H__
#define DRV_USART_H__
#include "drv_common.h"
#ifdef RT_USING_SERIAL
/* an32 config class */
struct ab32_uart_config
{
const char *name;
hal_sfr_t instance;
uint8_t mode;
};
/* ab32 uart driver class */
struct ab32_uart
{
struct uart_handle handle;
struct rt_serial_device serial;
struct ab32_uart_config *uart_config;
rt_bool_t intTxing;
};
#endif
int rt_hw_usart_init(void);
#endif

View File

@ -14,7 +14,10 @@ if GetDepend('RT_USING_PIN'):
# add usart drivers.
if GetDepend(['RT_USING_SERIAL']):
src += ['drv_usart.c']
if GetDepend(['RT_USING_SERIAL_X']):
src += ['drv_usartX.c']
else:
src += ['drv_usart.c']
# add i2c drivers.
if GetDepend(['RT_USING_I2C', 'RT_USING_I2C_BITOPS']):

View File

@ -0,0 +1,848 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2009-01-05 Bernard the first version
* 2010-03-29 Bernard remove interrupt Tx and DMA Rx mode
* 2012-02-08 aozima update for F4.
* 2012-07-28 aozima update for ART board.
* 2016-05-28 armink add DMA Rx mode
* 2022-06-09 THEWON first version for serialX
*/
#include <gd32f4xx.h>
#include <drv_usartX.h>
#include <board.h>
#ifdef RT_USING_SERIAL
#if !defined(BSP_USING_UART0) && !defined(BSP_USING_UART1) && \
!defined(BSP_USING_UART2) && !defined(BSP_USING_UART3) && \
!defined(BSP_USING_UART4) && !defined(BSP_USING_UART5) && \
!defined(BSP_USING_UART6) && !defined(BSP_USING_UART7)
#error "Please define at least one UARTx"
#endif
enum
{
#ifdef BSP_USING_UART0
UART0_INDEX,
#endif
#ifdef BSP_USING_UART1
UART1_INDEX,
#endif
#ifdef BSP_USING_UART2
UART2_INDEX,
#endif
#ifdef BSP_USING_UART3
UART3_INDEX,
#endif
#ifdef BSP_USING_UART4
UART4_INDEX,
#endif
#ifdef BSP_USING_UART5
UART5_INDEX,
#endif
#ifdef BSP_USING_UART6
UART6_INDEX,
#endif
#ifdef BSP_USING_UART7
UART7_INDEX,
#endif
};
/* GD32 uart driver */
static void uart_isr(struct rt_serial_device *serial);
#ifdef RT_SERIAL_USING_DMA
static void DMA_RX_Configuration(struct rt_serial_device *serial);
static void DMA_TX_Configuration(struct rt_serial_device *serial);
#endif
static struct gd32_uart uarts[] = {
#ifdef BSP_USING_UART0
{
.uart_periph = USART0, // uart peripheral index
.uart_config = {
.name = "uart0",
.irqn = USART0_IRQn, // uart iqrn
RCU_USART0, RCU_GPIOA, RCU_GPIOA, // periph clock, tx gpio clock, rt gpio clock
GPIOA, GPIO_AF_7, GPIO_PIN_9, // tx port, tx alternate, tx pin
GPIOA, GPIO_AF_7, GPIO_PIN_10, // rx port, rx alternate, rx pin
},
#ifdef RT_SERIAL_USING_DMA
.dmaTxing = RT_FALSE,
.dma_rx = {
.dma_periph = DMA1,
.dma_channel = DMA_CH2,
.dma_subperi = DMA_SUBPERI4,
.dma_irq = DMA1_Channel2_IRQn,
},
.dma_tx = {
.dma_periph = DMA1,
.dma_channel = DMA_CH7,
.dma_subperi = DMA_SUBPERI4,
.dma_irq = DMA1_Channel7_IRQn,
},
#endif
},
#endif
#ifdef BSP_USING_UART1
{
.uart_periph = USART1, // uart peripheral index
.uart_config = {
.name = "uart1",
.irqn = USART1_IRQn, // uart iqrn
RCU_USART1, RCU_GPIOA, RCU_GPIOA, // periph clock, tx gpio clock, rt gpio clock
GPIOA, GPIO_AF_7, GPIO_PIN_2, // tx port, tx alternate, tx pin
GPIOA, GPIO_AF_7, GPIO_PIN_3, // rx port, rx alternate, rx pin
}
},
#endif
#ifdef BSP_USING_UART2
{
.uart_periph = USART2, // uart peripheral index
.uart_config = {
.name = "uart2",
.irqn = USART2_IRQn, // uart iqrn
RCU_USART2, RCU_GPIOB, RCU_GPIOB, // periph clock, tx gpio clock, rt gpio clock
GPIOB, GPIO_AF_7, GPIO_PIN_10, // tx port, tx alternate, tx pin
GPIOB, GPIO_AF_7, GPIO_PIN_11, // rx port, rx alternate, rx pin
}
},
#endif
#ifdef BSP_USING_UART3
{
.uart_periph = UART3, // uart peripheral index
.uart_config = {
.name = "uart3",
.irqn = UART3_IRQn, // uart iqrn
RCU_UART3, RCU_GPIOC, RCU_GPIOC, // periph clock, tx gpio clock, rt gpio clock
GPIOC, GPIO_AF_8, GPIO_PIN_10, // tx port, tx alternate, tx pin
GPIOC, GPIO_AF_8, GPIO_PIN_11, // rx port, rx alternate, rx pin
}
},
#endif
#ifdef BSP_USING_UART4
{
.uart_periph = UART4, // uart peripheral index
.uart_config = {
.name = "uart4",
.irqn = UART4_IRQn, // uart iqrn
RCU_UART4, RCU_GPIOC, RCU_GPIOD, // periph clock, tx gpio clock, rt gpio clock
GPIOC, GPIO_AF_8, GPIO_PIN_12, // tx port, tx alternate, tx pin
GPIOD, GPIO_AF_8, GPIO_PIN_2, // rx port, rx alternate, rx pin
}
},
#endif
#ifdef BSP_USING_UART5
{
.uart_periph = USART5, // uart peripheral index
.uart_config = {
.name = "uart5",
.irqn = USART5_IRQn, // uart iqrn
RCU_USART5, RCU_GPIOC, RCU_GPIOC, // periph clock, tx gpio clock, rt gpio clock
GPIOC, GPIO_AF_8, GPIO_PIN_6, // tx port, tx alternate, tx pin
GPIOC, GPIO_AF_8, GPIO_PIN_7, // rx port, rx alternate, rx pin
}
},
#endif
#ifdef BSP_USING_UART6
{
.uart_periph = UART6, // uart peripheral index
.uart_config = {
.name = "uart6",
.irqn = UART6_IRQn, // uart iqrn
RCU_UART6, RCU_GPIOE, RCU_GPIOE, // periph clock, tx gpio clock, rt gpio clock
GPIOE, GPIO_AF_8, GPIO_PIN_7, // tx port, tx alternate, tx pin
GPIOE, GPIO_AF_8, GPIO_PIN_8, // rx port, rx alternate, rx pin
}
},
#endif
#ifdef BSP_USING_UART7
{
.uart_periph = UART7, // uart peripheral index
.uart_config = {
.name = "uart7",
.irqn = UART7_IRQn, // uart iqrn
RCU_UART7, RCU_GPIOE, RCU_GPIOE, // periph clock, tx gpio clock, rt gpio clock
GPIOE, GPIO_AF_8, GPIO_PIN_0, // tx port, tx alternate, tx pin
GPIOE, GPIO_AF_8, GPIO_PIN_1, // rx port, rx alternate, rx pin
}
},
#endif
};
/**
* @brief UART MSP Initialization
* This function configures the hardware resources used in this example:
* - Peripheral's clock enable
* - Peripheral's GPIO Configuration
* - NVIC configuration for UART interrupt request enable
* @param huart: UART handle pointer
* @retval None
*/
void gd32_uart_gpio_init(struct gd32_uart *uart)
{
/* enable USART clock */
rcu_periph_clock_enable(uart->uart_config.tx_gpio_clk);
rcu_periph_clock_enable(uart->uart_config.rx_gpio_clk);
rcu_periph_clock_enable(uart->uart_config.per_clk);
/* connect port to USARTx_Tx */
gpio_af_set(uart->uart_config.tx_port, uart->uart_config.tx_af, uart->uart_config.tx_pin);
/* connect port to USARTx_Rx */
gpio_af_set(uart->uart_config.rx_port, uart->uart_config.rx_af, uart->uart_config.rx_pin);
/* configure USART Tx as alternate function push-pull */
gpio_mode_set(uart->uart_config.tx_port, GPIO_MODE_AF, GPIO_PUPD_PULLUP, uart->uart_config.tx_pin);
gpio_output_options_set(uart->uart_config.tx_port, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ, uart->uart_config.tx_pin);
/* configure USART Rx as alternate function push-pull */
gpio_mode_set(uart->uart_config.rx_port, GPIO_MODE_AF, GPIO_PUPD_NONE, uart->uart_config.rx_pin);
gpio_output_options_set(uart->uart_config.rx_port, GPIO_OTYPE_PP, GPIO_OSPEED_50MHZ, uart->uart_config.rx_pin);
}
static rt_err_t gd32_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
struct gd32_uart *uart;
RT_ASSERT(serial != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
usart_baudrate_set(uart->uart_periph, cfg->baud_rate);
switch (cfg->data_bits)
{
case DATA_BITS_9:
usart_word_length_set(uart->uart_periph, USART_WL_9BIT);
break;
default:
usart_word_length_set(uart->uart_periph, USART_WL_8BIT);
break;
}
switch (cfg->stop_bits)
{
case STOP_BITS_2:
usart_stop_bit_set(uart->uart_periph, USART_STB_2BIT);
break;
default:
usart_stop_bit_set(uart->uart_periph, USART_STB_1BIT);
break;
}
switch (cfg->parity)
{
case PARITY_ODD:
usart_parity_config(uart->uart_periph, USART_PM_ODD);
break;
case PARITY_EVEN:
usart_parity_config(uart->uart_periph, USART_PM_EVEN);
break;
default:
usart_parity_config(uart->uart_periph, USART_PM_NONE);
break;
}
return RT_EOK;
}
static rt_err_t gd32_init(struct rt_serial_device *serial)
{
struct gd32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
gd32_uart_gpio_init(uart);
if (gd32_configure(serial, &serial->config) != RT_EOK)
{
return -RT_ERROR;
}
usart_receive_config(uart->uart_periph, USART_RECEIVE_ENABLE);
usart_transmit_config(uart->uart_periph, USART_TRANSMIT_ENABLE);
return RT_EOK;
}
static rt_err_t gd32_control(struct rt_serial_device *serial, int cmd, void *arg)
{
struct gd32_uart *uart;
rt_ubase_t ctrl_arg = (rt_ubase_t)arg;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
switch (cmd) {
case RT_DEVICE_CTRL_OPEN:
usart_interrupt_disable(uart->uart_periph, USART_INT_TBE);
usart_interrupt_disable(uart->uart_periph, USART_INT_TC);
usart_flag_clear(uart->uart_periph, USART_FLAG_RBNE);
usart_flag_clear(uart->uart_periph, USART_FLAG_TBE);
usart_flag_clear(uart->uart_periph, USART_FLAG_TC);
/* enable rx irq */
NVIC_SetPriority(uart->uart_config.irqn, 0);
NVIC_EnableIRQ(uart->uart_config.irqn);
usart_enable(uart->uart_periph);
#ifdef RT_SERIAL_USING_DMA
uart->dmaTxing = RT_FALSE;
#endif
break;
case RT_DEVICE_CTRL_CLOSE:
NVIC_DisableIRQ(uart->uart_config.irqn);
usart_interrupt_disable(uart->uart_periph, USART_INT_RBNE);
usart_interrupt_disable(uart->uart_periph, USART_INT_TBE);
usart_interrupt_disable(uart->uart_periph, USART_INT_IDLE);
usart_interrupt_disable(uart->uart_periph, USART_INT_TC);
usart_disable(uart->uart_periph);
usart_deinit(uart->uart_periph);
#ifdef RT_SERIAL_USING_DMA
NVIC_DisableIRQ(uart->dma_rx.dma_irq);
dma_interrupt_disable(uart->dma_rx.dma_periph, uart->dma_rx.dma_channel, DMA_CHXCTL_HTFIE);
dma_interrupt_disable(uart->dma_rx.dma_periph, uart->dma_rx.dma_channel, DMA_CHXCTL_FTFIE);
dma_channel_disable(uart->dma_rx.dma_periph, uart->dma_rx.dma_channel);
dma_deinit(uart->dma_rx.dma_periph, uart->dma_rx.dma_channel);
NVIC_DisableIRQ(uart->dma_tx.dma_irq);
dma_interrupt_disable(uart->dma_tx.dma_periph, uart->dma_tx.dma_channel, DMA_CHXCTL_FTFIE);
dma_channel_disable(uart->dma_tx.dma_periph, uart->dma_tx.dma_channel);
dma_deinit(uart->dma_tx.dma_periph, uart->dma_tx.dma_channel);
#endif
break;
case RT_DEVICE_CTRL_CLR_INT:
/* disable interrupt */
if (ctrl_arg & RT_DEVICE_FLAG_INT_RX) {
usart_interrupt_disable(uart->uart_periph, USART_INT_RBNE);
}
#ifdef RT_SERIAL_USING_DMA
/* disable DMA */
if (ctrl_arg & RT_DEVICE_FLAG_DMA_RX) {
NVIC_DisableIRQ(uart->dma_rx.dma_irq);
dma_interrupt_disable(uart->dma_rx.dma_periph, uart->dma_rx.dma_channel, DMA_CHXCTL_HTFIE);
dma_interrupt_disable(uart->dma_rx.dma_periph, uart->dma_rx.dma_channel, DMA_CHXCTL_FTFIE);
}
if(ctrl_arg & RT_DEVICE_FLAG_DMA_TX) {
NVIC_DisableIRQ(uart->dma_tx.dma_irq);
dma_interrupt_disable(uart->dma_tx.dma_periph, uart->dma_tx.dma_channel, DMA_CHXCTL_FTFIE);
}
#endif
break;
case RT_DEVICE_CTRL_SET_INT:
/* enable interrupt */
if (ctrl_arg & RT_DEVICE_FLAG_INT_RX) {
usart_interrupt_enable(uart->uart_periph, USART_INT_RBNE);
}
break;
/* USART config */
case RT_DEVICE_CTRL_CONFIG :
#ifdef RT_SERIAL_USING_DMA
if (ctrl_arg & RT_DEVICE_FLAG_DMA_RX) {
DMA_RX_Configuration(serial);
} else if (ctrl_arg & RT_DEVICE_FLAG_DMA_TX) {
DMA_TX_Configuration(serial);
}
#endif
break;
default :
break;
}
return RT_EOK;
}
static int gd32_putc(struct rt_serial_device *serial, char ch)
{
struct gd32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
while((usart_flag_get(uart->uart_periph, USART_FLAG_TBE) == RESET));
usart_data_transmit(uart->uart_periph, ch);
return 1;
}
static int gd32_getc(struct rt_serial_device *serial)
{
int ch;
struct gd32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
ch = -1;
if (usart_flag_get(uart->uart_periph, USART_FLAG_RBNE) != RESET) {
ch = usart_data_receive(uart->uart_periph);
}
return ch;
}
static int gd32_flush(struct rt_serial_device *serial)
{
struct gd32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
while (!(usart_flag_get(uart->uart_periph, USART_FLAG_TBE) == SET && usart_flag_get(uart->uart_periph, USART_FLAG_TC) == SET));
return 1;
}
static void gd32_start_tx(struct rt_serial_device *serial)
{
struct gd32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
usart_interrupt_enable(uart->uart_periph, USART_INT_TBE);
}
static void gd32_stop_tx(struct rt_serial_device *serial)
{
struct gd32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
usart_interrupt_disable(uart->uart_periph, USART_INT_TBE);
}
#ifdef RT_SERIAL_USING_DMA
static rt_bool_t gd32_is_dma_txing(struct rt_serial_device *serial)
{
struct gd32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
return uart->dmaTxing; //RT_FALSE;
}
static void gd32_start_dma_tx(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size)
{
struct gd32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
// TODO: 启用 DMA 发送
DMA_CHM0ADDR(uart->dma_tx.dma_periph, uart->dma_tx.dma_channel) = (uint32_t)(buf);
DMA_CHCNT(uart->dma_tx.dma_periph, uart->dma_tx.dma_channel) = (uint32_t)(size);
dma_channel_enable(uart->dma_tx.dma_periph, uart->dma_tx.dma_channel);
uart->dmaTxing = RT_TRUE;
}
static void gd32_stop_dma_tx(struct rt_serial_device *serial)
{
struct gd32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
// TODO: 禁用 DMA 发送
dma_channel_disable(uart->dma_tx.dma_periph, uart->dma_tx.dma_channel);
uart->dmaTxing = RT_FALSE;
}
#endif
static void gd32_enable_interrupt(struct rt_serial_device *serial)
{
struct gd32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
NVIC_EnableIRQ(uart->uart_config.irqn);
}
static void gd32_disable_interrupt(struct rt_serial_device *serial)
{
struct gd32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
NVIC_DisableIRQ(uart->uart_config.irqn);
}
#ifdef RT_SERIAL_USING_DMA
/**
* DMA receive done process. This need add to DMA receive done ISR.
*
* @param serial serial device
*/
static void dma_rx_done_isr(struct rt_serial_device *serial)
{
struct gd32_uart *uart;
rt_size_t dma_cnt;
uart = rt_container_of(serial, struct gd32_uart, serial);
dma_cnt = RT_SERIAL_DMA_BUFSZ - DMA_CHCNT(uart->dma_rx.dma_periph, uart->dma_rx.dma_channel);
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (dma_cnt << 8));
dma_interrupt_flag_clear(uart->dma_rx.dma_periph, uart->dma_rx.dma_channel, DMA_INT_FLAG_HTF);
dma_interrupt_flag_clear(uart->dma_rx.dma_periph, uart->dma_rx.dma_channel, DMA_INT_FLAG_FTF);
}
/**
* DMA transmit done process. This need add to DMA transmit done ISR.
*
* @param serial serial device
*/
static void dma_tx_done_isr(struct rt_serial_device *serial)
{
struct gd32_uart *uart;
rt_size_t dma_cnt;
uart = rt_container_of(serial, struct gd32_uart, serial);
dma_cnt = DMA_CHCNT(uart->dma_tx.dma_periph, uart->dma_tx.dma_channel);
if (dma_cnt == 0)
{
rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_TX_DMADONE);
}
dma_interrupt_flag_clear(uart->dma_tx.dma_periph, uart->dma_tx.dma_channel, DMA_INT_FLAG_FTF);
}
#endif
/**
* Uart common interrupt process. This need add to uart ISR.
*
* @param serial serial device
*/
static void uart_isr(struct rt_serial_device *serial)
{
struct gd32_uart *uart;
#ifdef RT_SERIAL_USING_DMA
rt_size_t dma_cnt;
#endif
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
/* UART in mode Receiver -------------------------------------------------*/
if ((usart_interrupt_flag_get(uart->uart_periph, USART_INT_FLAG_RBNE) != RESET))
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
/* Clear RXNE interrupt flag */
usart_interrupt_flag_clear(uart->uart_periph, USART_INT_FLAG_RBNE);
}
if ((usart_interrupt_flag_get(uart->uart_periph, USART_INT_FLAG_RBNE_ORERR) != RESET))
{
usart_data_receive(uart->uart_periph);
}
if ((usart_interrupt_flag_get(uart->uart_periph, USART_INT_FLAG_TBE) != RESET))
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DONE);
usart_interrupt_flag_clear(uart->uart_periph, USART_INT_FLAG_TBE);
}
#ifdef RT_SERIAL_USING_DMA
if ((usart_interrupt_flag_get(uart->uart_periph, USART_INT_FLAG_IDLE) != RESET))
{
usart_data_receive(uart->uart_periph);
dma_cnt = RT_SERIAL_DMA_BUFSZ - DMA_CHCNT(uart->dma_rx.dma_periph, uart->dma_rx.dma_channel);
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (dma_cnt << 8));
}
if ((usart_interrupt_flag_get(uart->uart_periph, USART_INT_FLAG_TC) != RESET))
{
usart_interrupt_flag_clear(uart->uart_periph, USART_INT_FLAG_TC);
}
#endif
if ((usart_interrupt_flag_get(uart->uart_periph, USART_INT_FLAG_PERR) != RESET))
{
usart_data_receive(uart->uart_periph);
}
if ((usart_interrupt_flag_get(uart->uart_periph, USART_INT_FLAG_EB) != RESET))
{
usart_interrupt_flag_clear(uart->uart_periph, USART_INT_FLAG_EB);
}
if ((usart_interrupt_flag_get(uart->uart_periph, USART_INT_FLAG_RT) != RESET))
{
usart_interrupt_flag_clear(uart->uart_periph, USART_INT_FLAG_RT);
}
}
#if defined(BSP_USING_UART0)
void USART0_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&uarts[UART0_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#ifdef RT_SERIAL_USING_DMA
void DMA1_Channel2_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
dma_rx_done_isr(&uarts[UART0_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
void DMA1_Channel7_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
dma_tx_done_isr(&uarts[UART0_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#endif /* BSP_USING_UART0 */
#if defined(BSP_USING_UART1)
void USART1_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&uarts[UART1_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART1 */
#if defined(BSP_USING_UART2)
void USART2_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&uarts[UART2_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART2 */
#if defined(BSP_USING_UART3)
void UART3_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&uarts[UART3_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART3 */
#if defined(BSP_USING_UART4)
void UART4_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&uarts[UART4_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART4 */
#if defined(BSP_USING_UART5)
void USART5_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&uarts[UART5_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART5 */
#if defined(BSP_USING_UART6)
void UART6_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&uarts[UART6_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART6 */
#if defined(BSP_USING_UART7)
void UART7_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&uarts[UART7_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART7 */
#ifdef RT_SERIAL_USING_DMA
// TODO: 添加发送 DMA 配置,添加接收 DMA 配置
static void DMA_RX_Configuration(struct rt_serial_device *serial)
{
dma_single_data_parameter_struct dma_init_struct;
struct gd32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
/* enable DMA1 */
rcu_periph_clock_enable(RCU_DMA1);
/* deinitialize DMA channel3(USART0 tx) */
dma_deinit(uart->dma_rx.dma_periph, uart->dma_rx.dma_channel);
dma_init_struct.direction = DMA_PERIPH_TO_MEMORY;
dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_init_struct.memory0_addr = (uint32_t)(serial->serial_dma_rx);
dma_init_struct.number = RT_SERIAL_DMA_BUFSZ;
dma_init_struct.periph_addr = (uint32_t)(uart->uart_periph + 0x04);
dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_init_struct.periph_memory_width = DMA_PERIPH_WIDTH_8BIT;
dma_init_struct.priority = DMA_PRIORITY_ULTRA_HIGH;
dma_init_struct.circular_mode = DMA_CIRCULAR_MODE_ENABLE;
dma_single_data_mode_init(uart->dma_rx.dma_periph, uart->dma_rx.dma_channel, &dma_init_struct);
dma_channel_subperipheral_select(uart->dma_rx.dma_periph, uart->dma_rx.dma_channel, uart->dma_rx.dma_subperi);
dma_interrupt_enable(uart->dma_rx.dma_periph, uart->dma_rx.dma_channel, DMA_CHXCTL_HTFIE);
dma_interrupt_enable(uart->dma_rx.dma_periph, uart->dma_rx.dma_channel, DMA_CHXCTL_FTFIE);
NVIC_SetPriority(uart->dma_rx.dma_irq, 0);
NVIC_EnableIRQ(uart->dma_rx.dma_irq);
dma_channel_enable(uart->dma_rx.dma_periph, uart->dma_rx.dma_channel);
usart_dma_receive_config(uart->uart_periph, USART_DENR_ENABLE);
}
static void DMA_TX_Configuration(struct rt_serial_device *serial)
{
dma_single_data_parameter_struct dma_init_struct;
struct gd32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct gd32_uart, serial);
/* enable DMA1 */
rcu_periph_clock_enable(RCU_DMA1);
/* deinitialize DMA channel3(USART0 tx) */
dma_deinit(uart->dma_tx.dma_periph, uart->dma_tx.dma_channel);
dma_init_struct.direction = DMA_MEMORY_TO_PERIPH;
dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
// dma_init_struct.memory0_addr = (uint32_t)tx_buffer;
// dma_init_struct.number = ARRAYNUM(tx_buffer);
dma_init_struct.periph_addr = (uint32_t)(uart->uart_periph + 0x04);
dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_init_struct.periph_memory_width = DMA_PERIPH_WIDTH_8BIT;
dma_init_struct.priority = DMA_PRIORITY_ULTRA_HIGH;
dma_init_struct.circular_mode = DMA_CIRCULAR_MODE_DISABLE;
dma_single_data_mode_init(uart->dma_tx.dma_periph, uart->dma_tx.dma_channel, &dma_init_struct);
dma_channel_subperipheral_select(uart->dma_tx.dma_periph, uart->dma_tx.dma_channel, uart->dma_tx.dma_subperi);
dma_interrupt_enable(uart->dma_tx.dma_periph, uart->dma_tx.dma_channel, DMA_CHXCTL_FTFIE);
NVIC_SetPriority(uart->dma_tx.dma_irq, 0);
NVIC_EnableIRQ(uart->dma_tx.dma_irq);
usart_interrupt_enable(uart->uart_periph, USART_INT_IDLE);
usart_interrupt_enable(uart->uart_periph, USART_INT_TC);
usart_dma_transmit_config(uart->uart_periph, USART_DENT_ENABLE);
}
#endif
static const struct rt_uart_ops gd32_uart_ops =
{
.init = gd32_init,
.configure = gd32_configure,
.control = gd32_control,
.putc = gd32_putc,
.getc = gd32_getc,
.flush = gd32_flush,
.start_tx = gd32_start_tx,
.stop_tx = gd32_stop_tx,
#ifdef RT_SERIAL_USING_DMA
.is_dma_txing = gd32_is_dma_txing,
.start_dma_tx = gd32_start_dma_tx,
.stop_dma_tx = gd32_stop_dma_tx,
#endif
.enable_interrupt = gd32_enable_interrupt,
.disable_interrupt = gd32_disable_interrupt,
};
int rt_hw_usart_init(void)
{
int i;
for (i = 0; i < sizeof(uarts) / sizeof(uarts[0]); i++)
{
uarts[i].serial.ops = &gd32_uart_ops;
/* register UART1 device */
rt_hw_serial_register(&uarts[i].serial,
uarts[i].uart_config.name,
RT_DEVICE_FLAG_RDWR |
RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_INT_TX
#ifdef RT_SERIAL_USING_DMA
| RT_DEVICE_FLAG_DMA_RX | RT_DEVICE_FLAG_DMA_TX
#endif
, RT_NULL);
}
return 0;
}
#endif // RT_USING_SERIAL

View File

@ -0,0 +1,64 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2009-01-05 Bernard the first version
* 2022-06-09 THEWON first version for serialX
*/
#ifndef __DRV_USARTX_H__
#define __DRV_USARTX_H__
#include <rthw.h>
#include <rtthread.h>
#include <rtdevice.h>
#define UART_ENABLE_IRQ(n) NVIC_EnableIRQ((n))
#define UART_DISABLE_IRQ(n) NVIC_DisableIRQ((n))
/* stm32 config class */
struct gd32_uart_config
{
const char *name;
IRQn_Type irqn;
rcu_periph_enum per_clk;
rcu_periph_enum tx_gpio_clk;
rcu_periph_enum rx_gpio_clk;
uint32_t tx_port;
uint16_t tx_af;
uint16_t tx_pin;
uint32_t rx_port;
uint16_t rx_af;
uint16_t rx_pin;
};
struct gd32_uart_dma
{
/* dma channel */
uint32_t dma_periph;
dma_channel_enum dma_channel;
dma_subperipheral_enum dma_subperi;
/* dma irq channel */
IRQn_Type dma_irq;
};
/* gd32 uart driver class */
struct gd32_uart
{
uint32_t uart_periph;
struct rt_serial_device serial;
struct gd32_uart_config uart_config;
#ifdef RT_SERIAL_USING_DMA
rt_bool_t dmaTxing;
struct gd32_uart_dma dma_rx;
struct gd32_uart_dma dma_tx;
#endif
};
int rt_hw_usart_init(void);
#endif // __DRV_USARTX_H__

View File

@ -14,6 +14,8 @@ if GetDepend(['RT_USING_PIN']):
if GetDepend(['RT_USING_SERIAL']):
if GetDepend(['RT_USING_SERIAL_V2']):
src += ['drv_usart_v2.c']
elif GetDepend(['RT_USING_SERIAL_X']):
src += ['drv_usartX.c']
else:
src += ['drv_usart.c']

View File

@ -0,0 +1,839 @@
/*
* File : usart.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006-2022, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2009-01-05 Bernard the first version
* 2010-03-29 Bernard remove interrupt Tx and DMA Rx mode
* 2013-05-13 aozima update for kehong-lingtai.
* 2015-01-31 armink make sure the serial transmit complete in putc()
* 2016-05-13 armink add DMA Rx mode
* 2017-01-19 aubr.cool add interrupt Tx mode
* 2017-04-13 aubr.cool correct Rx parity err
* 2021-08-20 breo.com first version
* 2022-06-01 THEWON first version for serialX
*/
#include <rtdevice.h>
#include <rthw.h>
#include <board.h>
#include "drv_usartX.h"
#define UART_ENABLE_IRQ(n) NVIC_EnableIRQ((n))
#define UART_DISABLE_IRQ(n) NVIC_DisableIRQ((n))
#ifdef RT_SERIAL_USING_DMA
static void DMA_RX_Configuration(struct rt_serial_device *serial);
static void DMA_TX_Configuration(struct rt_serial_device *serial);
#endif
static rt_err_t n32_uart_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
struct n32_uart *uart;
USART_InitType USART_InitStructure;
RT_ASSERT(serial != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
uart = rt_container_of(serial, struct n32_uart, serial);
USART_InitStructure.BaudRate = cfg->baud_rate;
switch (cfg->data_bits)
{
case DATA_BITS_8 :
USART_InitStructure.WordLength = USART_WL_8B;
break;
case DATA_BITS_9 :
USART_InitStructure.WordLength = USART_WL_9B;
break;
default:
USART_InitStructure.WordLength = USART_WL_8B;
break;
}
switch (cfg->stop_bits)
{
case STOP_BITS_1 :
USART_InitStructure.StopBits = USART_STPB_1;
break;
case STOP_BITS_2 :
USART_InitStructure.StopBits = USART_STPB_2;
break;
default:
USART_InitStructure.StopBits = USART_STPB_1;
break;
}
switch (cfg->parity)
case PARITY_NONE :
USART_InitStructure.Parity = USART_PE_NO;
break;
case PARITY_ODD :
USART_InitStructure.Parity = USART_PE_ODD;
break;
case PARITY_EVEN :
USART_InitStructure.Parity = USART_PE_EVEN;
break;
default:
USART_InitStructure.Parity = USART_PE_NO;
break;
}
USART_InitStructure.HardwareFlowControl = USART_HFCTRL_NONE;
USART_InitStructure.Mode = USART_MODE_RX | USART_MODE_TX;
USART_Init(uart->uart_device, &USART_InitStructure);
return RT_EOK;
}
static rt_err_t n32_uart_init(struct rt_serial_device *serial)
{
struct n32_uart *uart;
USART_InitType USART_InitStructure;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct n32_uart, serial);
n32_msp_usart_init(uart->uart_device);
if (n32_uart_configure(serial, &serial->config) != RT_EOK)
{
return -RT_ERROR;
}
/* Enable USART */
USART_Enable(uart->uart_device, ENABLE);
USART_ClrFlag(uart->uart_device, USART_FLAG_TXDE|USART_FLAG_TXC);
return RT_EOK;
}
static rt_err_t n32_uart_control(struct rt_serial_device *serial, int cmd, void *arg)
{
struct n32_uart *uart;
rt_uint32_t ctrl_arg = (rt_uint32_t)(arg);
NVIC_InitType NVIC_InitStructure;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct n32_uart, serial);
switch (cmd) {
case RT_DEVICE_CTRL_OPEN:
USART_ConfigInt(uart->uart_device, USART_INT_TXDE, DISABLE);
USART_ClrIntPendingBit(uart->uart_device, USART_INT_RXDNE);
USART_ClrIntPendingBit(uart->uart_device, USART_INT_TXDE);
USART_ClrIntPendingBit(uart->uart_device, USART_INT_TXC);
/* enable rx irq */
UART_ENABLE_IRQ(uart->irq);
#ifdef RT_SERIAL_USING_DMA
uart->dmaTxing = RT_FALSE;
#endif
break;
case RT_DEVICE_CTRL_CLOSE:
/* disable rx irq */
UART_DISABLE_IRQ(uart->irq);
USART_ConfigInt(uart->uart_device, USART_INT_RXDNE, DISABLE);
USART_ConfigInt(uart->uart_device, USART_INT_TXDE, DISABLE);
USART_ConfigInt(uart->uart_device, USART_INT_TXC, DISABLE);
USART_ClrIntPendingBit(uart->uart_device, USART_INT_RXDNE);
USART_ClrIntPendingBit(uart->uart_device, USART_INT_TXDE);
USART_ClrIntPendingBit(uart->uart_device, USART_INT_TXC);
#ifdef RT_SERIAL_USING_DMA
NVIC_InitStructure.NVIC_IRQChannel = uart->dma_rx.dma_irq;
NVIC_InitStructure.NVIC_IRQChannelCmd = DISABLE;
NVIC_Init(&NVIC_InitStructure);
DMA_EnableChannel(uart->dma_rx.dma_ch, DISABLE);
DMA_ConfigInt(uart->dma_rx.dma_ch, DMA_INT_HTX, DISABLE);
DMA_ConfigInt(uart->dma_rx.dma_ch, DMA_INT_TXC, DISABLE);
DMA_DeInit(uart->dma_rx.dma_ch);
NVIC_InitStructure.NVIC_IRQChannel = uart->dma_tx.dma_irq;
NVIC_InitStructure.NVIC_IRQChannelCmd = DISABLE;
NVIC_Init(&NVIC_InitStructure);
DMA_EnableChannel(uart->dma_tx.dma_ch, DISABLE);
DMA_ConfigInt(uart->dma_tx.dma_ch, DMA_INT_TXC, DISABLE);
DMA_DeInit(uart->dma_tx.dma_ch);
#endif
break;
case RT_DEVICE_CTRL_CLR_INT:
/* disable interrupt */
if (ctrl_arg & RT_DEVICE_FLAG_INT_RX) {
USART_ConfigInt(uart->uart_device, USART_INT_RXDNE, DISABLE);
}
#ifdef RT_SERIAL_USING_DMA
/* disable DMA */
if (ctrl_arg & RT_DEVICE_FLAG_DMA_RX) {
NVIC_InitStructure.NVIC_IRQChannel = uart->dma_rx.dma_irq;
NVIC_InitStructure.NVIC_IRQChannelCmd = DISABLE;
NVIC_Init(&NVIC_InitStructure);
DMA_ConfigInt(uart->dma_rx.dma_ch, DMA_INT_HTX, DISABLE);
DMA_ConfigInt(uart->dma_rx.dma_ch, DMA_INT_TXC, DISABLE);
}
if(ctrl_arg & RT_DEVICE_FLAG_DMA_TX) {
NVIC_InitStructure.NVIC_IRQChannel = uart->dma_tx.dma_irq;
NVIC_InitStructure.NVIC_IRQChannelCmd = DISABLE;
NVIC_Init(&NVIC_InitStructure);
DMA_ConfigInt(uart->dma_tx.dma_ch, DMA_INT_TXC, DISABLE);
}
#endif
break;
case RT_DEVICE_CTRL_SET_INT:
/* enable interrupt */
if (ctrl_arg & RT_DEVICE_FLAG_INT_RX) {
USART_ConfigInt(uart->uart_device, USART_INT_RXDNE, ENABLE);
}
break;
/* USART config */
case RT_DEVICE_CTRL_CONFIG :
#ifdef RT_SERIAL_USING_DMA
if (ctrl_arg & RT_DEVICE_FLAG_DMA_RX) {
DMA_RX_Configuration(serial);
} else if (ctrl_arg & RT_DEVICE_FLAG_DMA_TX) {
DMA_TX_Configuration(serial);
}
#endif
break;
default :
break;
}
return RT_EOK;
}
static int n32_uart_putc(struct rt_serial_device *serial, char c)
{
struct n32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct n32_uart, serial);
while (!(uart->uart_device->STS & USART_FLAG_TXDE));
uart->uart_device->DAT = c;
return 1;
}
static int n32_uart_getc(struct rt_serial_device *serial)
{
int ch;
struct n32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct n32_uart, serial);
ch = -1;
if (uart->uart_device->STS & USART_FLAG_RXDNE)
{
ch = uart->uart_device->DAT & 0xff;
}
return ch;
}
static int n32_uart_flush(struct rt_serial_device *serial)
{
struct n32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct n32_uart, serial);
while(!((uart->uart_device->STS & USART_FLAG_TXDE) && (uart->uart_device->STS & USART_FLAG_TXC)));
return 0;
}
static void n32_start_tx(struct rt_serial_device *serial)
{
struct n32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct n32_uart, serial);
USART_ConfigInt(uart->uart_device, USART_INT_TXDE, ENABLE);
}
static void n32_stop_tx(struct rt_serial_device *serial)
{
struct n32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct n32_uart, serial);
USART_ConfigInt(uart->uart_device, USART_INT_TXDE, DISABLE);
}
#ifdef RT_SERIAL_USING_DMA
static rt_bool_t n32_is_dma_txing(struct rt_serial_device *serial)
{
struct n32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct n32_uart, serial);
// return uart->dmaTxing; //RT_FALSE;
return (DMA_GetFlagStatus(uart->dma_tx.dma_flag, uart->dma_tx.dma_module) == SET);
}
static void n32_start_dma_tx(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size)
{
struct n32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct n32_uart, serial);
// TODO: 启用 DMA 发送
uart->dma_tx.dma_ch->MADDR = (uint32_t)(buf);
uart->dma_tx.dma_ch->TXNUM = (uint32_t)(size);
DMA_EnableChannel(uart->dma_tx.dma_ch, ENABLE);
uart->dmaTxing = RT_TRUE;
}
static void n32_stop_dma_tx(struct rt_serial_device *serial)
{
struct n32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct n32_uart, serial);
// TODO: 禁用 DMA 发送
DMA_EnableChannel(uart->dma_tx.dma_ch, DISABLE);
uart->dmaTxing = RT_FALSE;
}
#endif
static void n32_enable_interrupt(struct rt_serial_device *serial)
{
struct n32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct n32_uart, serial);
UART_ENABLE_IRQ(uart->irq);
}
static void n32_disable_interrupt(struct rt_serial_device *serial)
{
struct n32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct n32_uart, serial);
UART_DISABLE_IRQ(uart->irq);
}
#ifdef RT_SERIAL_USING_DMA
/**
* DMA receive done process. This need add to DMA receive done ISR.
*
* @param serial serial device
*/
static void dma_rx_done_isr(struct rt_serial_device *serial)
{
struct n32_uart *uart;
rt_size_t dma_cnt;
uart = rt_container_of(serial, struct n32_uart, serial);
dma_cnt = RT_SERIAL_DMA_BUFSZ - DMA_GetCurrDataCounter(uart->dma_rx.dma_ch);
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (dma_cnt << 8));
DMA_ClearFlag(uart->dma_rx.dma_flag, uart->dma_rx.dma_module);
DMA_ClrIntPendingBit(uart->dma_rx.dma_flag, uart->dma_rx.dma_module);
}
/**
* DMA transmit done process. This need add to DMA transmit done ISR.
*
* @param serial serial device
*/
static void dma_tx_done_isr(struct rt_serial_device *serial)
{
struct n32_uart *uart;
rt_size_t dma_cnt;
uart = rt_container_of(serial, struct n32_uart, serial);
dma_cnt = DMA_GetCurrDataCounter(uart->dma_tx.dma_ch);
if (dma_cnt == 0)
{
rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_TX_DMADONE);
}
DMA_ClrIntPendingBit(uart->dma_tx.dma_flag, uart->dma_rx.dma_module);
}
#endif
/**
* Uart common interrupt process. This need add to uart ISR.
*
* @param serial serial device
*/
static void uart_isr(struct rt_serial_device *serial)
{
struct n32_uart *uart;
#ifdef RT_SERIAL_USING_DMA
rt_size_t dma_cnt;
#endif
RT_ASSERT(uart != RT_NULL);
uart = rt_container_of(serial, struct n32_uart, serial);
if(USART_GetIntStatus(uart->uart_device, USART_INT_RXDNE) != RESET)
{
if(USART_GetFlagStatus(uart->uart_device, USART_FLAG_PEF) == RESET)
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
}
/* clear interrupt */
USART_ClrIntPendingBit(uart->uart_device, USART_INT_RXDNE);
}
if(USART_GetIntStatus(uart->uart_device, USART_INT_TXDE) != RESET)
{
if(USART_GetFlagStatus(uart->uart_device, USART_FLAG_PEF) == RESET)
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DONE);
}
/* clear interrupt */
USART_ClrIntPendingBit(uart->uart_device, USART_INT_TXDE);
}
#ifdef RT_SERIAL_USING_DMA
if(USART_GetIntStatus(uart->uart_device, USART_INT_IDLEF) != RESET)
{
/* read a data for clear receive idle interrupt flag */
USART_ReceiveData(uart->uart_device);
dma_cnt = RT_SERIAL_DMA_BUFSZ - DMA_GetCurrDataCounter(uart->dma_rx.dma_ch);
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (dma_cnt << 8));
}
#endif
if (USART_GetFlagStatus(uart->uart_device, USART_FLAG_OREF) == SET)
{
n32_uart_getc(serial);
}
}
static const struct rt_uart_ops n32_uart_ops =
{
.configure = n32_uart_configure,
.control = n32_uart_control,
.putc = n32_uart_putc,
.getc = n32_uart_getc,
.flush = n32_uart_flush,
.start_tx = n32_start_tx,
.stop_tx = n32_stop_tx,
#ifdef RT_SERIAL_USING_DMA
.is_dma_txing = n32_is_dma_txing,
.start_dma_tx = n32_start_dma_tx,
.stop_dma_tx = n32_stop_dma_tx,
#endif
.enable_interrupt = n32_enable_interrupt,
.disable_interrupt = n32_disable_interrupt,
};
#if defined(BSP_USING_UART1)
/* UART1 device driver structure */
struct n32_uart uart1 =
{
.uart_device = USART1,
.irq = USART1_IRQn,
#ifdef RT_SERIAL_USING_DMA
.dmaTxing = RT_FALSE,
.dma_rx = {
DMA1_CH5,
DMA1,
DMA1_FLAG_TC5 | DMA1_FLAG_HT5,
DMA1_Channel5_IRQn,
},
.dma_tx = {
DMA1_CH4,
DMA1,
DMA1_FLAG_TC4,
DMA1_Channel4_IRQn,
},
#endif
};
void USART1_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&uart1.serial);
/* leave interrupt */
rt_interrupt_leave();
}
#ifdef RT_SERIAL_USING_DMA
void DMA1_Channel5_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
dma_rx_done_isr(&uart1.serial);
/* leave interrupt */
rt_interrupt_leave();
}
void DMA1_Channel4_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
dma_tx_done_isr(&uart1.serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#endif /* BSP_USING_UART1 */
#if defined(BSP_USING_UART2)
/* UART2 device driver structure */
struct n32_uart uart2 =
{
.uart_device = USART2,
.irq = USART2_IRQn,
#ifdef RT_SERIAL_USING_DMA
.dmaTxing = RT_FALSE,
.dma_rx = {
DMA1_CH6,
DMA1,
DMA1_FLAG_TC6 | DMA1_FLAG_HT6,
DMA1_Channel6_IRQn,
},
.dma_tx = {
DMA1_CH7,
DMA1,
DMA1_FLAG_TC7,
DMA1_Channel7_IRQn,
},
#endif
};
void USART2_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&uart2.serial);
/* leave interrupt */
rt_interrupt_leave();
}
#ifdef RT_SERIAL_USING_DMA
void DMA1_Channel6_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
dma_rx_done_isr(&uart2.serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#endif /* BSP_USING_UART2 */
#if defined(BSP_USING_UART3)
/* UART3 device driver structure */
struct n32_uart uart3 =
{
.uart_device = USART3,
.irq = USART3_IRQn,
#ifdef RT_SERIAL_USING_DMA
.dmaTxing = RT_FALSE,
.dma_rx = {
DMA1_CH3,
DMA1,
DMA1_FLAG_TC3 | DMA1_FLAG_HT3,
DMA1_Channel3_IRQn,
},
.dma_tx = {
DMA1_CH2,
DMA1,
DMA1_FLAG_TC2,
DMA1_Channel2_IRQn,
},
#endif
};
void USART3_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&uart3.serial);
/* leave interrupt */
rt_interrupt_leave();
}
#ifdef RT_SERIAL_USING_DMA
void DMA1_Channel3_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
dma_rx_done_isr(&uart3.serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#endif /* BSP_USING_UART3 */
#if defined(BSP_USING_UART4)
/* UART4 device driver structure */
struct n32_uart uart4 =
{
.uart_device = UART4,
.irq = UART4_IRQn,
#ifdef RT_SERIAL_USING_DMA
.dmaTxing = RT_FALSE,
.dma_rx = {
DMA2_CH3,
DMA2,
DMA2_FLAG_TC3 | DMA2_FLAG_HT3,
DMA2_Channel3_IRQn,
},
.dma_tx = {
DMA2_CH5,
DMA2,
DMA2_FLAG_TC5,
DMA2_Channel5_IRQn,
},
#endif
};
void UART4_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&uart4.serial);
/* leave interrupt */
rt_interrupt_leave();
}
#ifdef RT_SERIAL_USING_DMA
void DMA2_Channel3_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
dma_rx_done_isr(&uart4.serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#endif /* BSP_USING_UART4 */
static void NVIC_Configuration(struct n32_uart *uart)
{
NVIC_InitType NVIC_InitStructure;
/* Enable the USART1 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = uart->irq;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelCmd = DISABLE;
NVIC_Init(&NVIC_InitStructure);
}
#ifdef RT_SERIAL_USING_DMA
// TODO: 添加发送 DMA 配置,添加接收 DMA 配置
static void DMA_RX_Configuration(struct rt_serial_device *serial)
{
DMA_InitType DMA_InitStructure;
NVIC_InitType NVIC_InitStructure;
struct n32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct n32_uart, serial);
/* enable transmit idle interrupt */
USART_ConfigInt(uart->uart_device, USART_INT_IDLEF, ENABLE);
/* DMA clock enable */
RCC_EnableAHBPeriphClk(RCC_AHB_PERIPH_DMA1, ENABLE);
RCC_EnableAHBPeriphClk(RCC_AHB_PERIPH_DMA2, ENABLE);
/* rx dma config */
DMA_InitStructure.PeriphAddr = (uint32_t)&(uart->uart_device->DAT);
DMA_InitStructure.MemAddr = (uint32_t)(serial->serial_dma_rx);
DMA_InitStructure.Direction = DMA_DIR_PERIPH_SRC;
DMA_InitStructure.BufSize = RT_SERIAL_DMA_BUFSZ;
DMA_InitStructure.PeriphInc = DMA_PERIPH_INC_DISABLE;
DMA_InitStructure.DMA_MemoryInc = DMA_MEM_INC_ENABLE;
DMA_InitStructure.PeriphDataSize = DMA_PERIPH_DATA_SIZE_BYTE;
DMA_InitStructure.MemDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStructure.CircularMode = DMA_MODE_CIRCULAR;
DMA_InitStructure.Priority = DMA_PRIORITY_HIGH;
DMA_InitStructure.Mem2Mem = DMA_M2M_DISABLE;
DMA_DeInit(uart->dma_rx.dma_ch);
DMA_Init(uart->dma_rx.dma_ch, &DMA_InitStructure);
DMA_ClearFlag(uart->dma_rx.dma_flag, uart->dma_rx.dma_module);
DMA_ConfigInt(uart->dma_rx.dma_ch, DMA_INT_HTX, ENABLE);
DMA_ConfigInt(uart->dma_rx.dma_ch, DMA_INT_TXC, ENABLE);
USART_EnableDMA(uart->uart_device, USART_DMAREQ_RX, ENABLE);
DMA_EnableChannel(uart->dma_rx.dma_ch, ENABLE);
/* rx dma interrupt config */
NVIC_InitStructure.NVIC_IRQChannel = uart->dma_rx.dma_irq;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
}
static void DMA_TX_Configuration(struct rt_serial_device *serial)
{
DMA_InitType DMA_InitStructure;
NVIC_InitType NVIC_InitStructure;
struct n32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct n32_uart, serial);
/* enable transmit idle interrupt */
// USART_ConfigInt(uart->uart_device, USART_INT_IDLEF, ENABLE);
/* DMA clock enable */
RCC_EnableAHBPeriphClk(RCC_AHB_PERIPH_DMA1, ENABLE);
RCC_EnableAHBPeriphClk(RCC_AHB_PERIPH_DMA2, ENABLE);
/* tx dma config */
DMA_InitStructure.PeriphAddr = (uint32_t)&(uart->uart_device->DAT);
// DMA_InitStructure.MemAddr = (uint32_t)(serial->serial_dma_tx);
DMA_InitStructure.Direction = DMA_DIR_PERIPH_DST;
// DMA_InitStructure.BufSize = serial->config.bufsz;
DMA_InitStructure.PeriphInc = DMA_PERIPH_INC_DISABLE;
DMA_InitStructure.DMA_MemoryInc = DMA_MEM_INC_ENABLE;
DMA_InitStructure.PeriphDataSize = DMA_PERIPH_DATA_SIZE_BYTE;
DMA_InitStructure.MemDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStructure.CircularMode = DMA_MODE_NORMAL;
DMA_InitStructure.Priority = DMA_PRIORITY_HIGH;
DMA_InitStructure.Mem2Mem = DMA_M2M_DISABLE;
DMA_DeInit(uart->dma_tx.dma_ch);
DMA_Init(uart->dma_tx.dma_ch, &DMA_InitStructure);
DMA_ClearFlag(uart->dma_tx.dma_flag, uart->dma_tx.dma_module);
DMA_ConfigInt(uart->dma_tx.dma_ch, DMA_INT_TXC, ENABLE);
USART_EnableDMA(uart->uart_device, USART_DMAREQ_TX, ENABLE);
// DMA_EnableChannel(uart->dma_tx.dma_ch, ENABLE);
/* rx dma interrupt config */
NVIC_InitStructure.NVIC_IRQChannel = uart->dma_tx.dma_irq;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
}
#endif
int rt_hw_usart_init(void)
{
struct n32_uart *uart;
#if defined(BSP_USING_UART1)
uart = &uart1;
uart->serial.ops = &n32_uart_ops;
NVIC_Configuration(uart);
/* register UART1 device */
rt_hw_serial_register(&uart->serial, "uart1",
RT_DEVICE_FLAG_RDWR |
RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_INT_TX
#ifdef RT_SERIAL_USING_DMA
| RT_DEVICE_FLAG_DMA_RX | RT_DEVICE_FLAG_DMA_TX
#endif
, uart);
#endif /* BSP_USING_UART1 */
#if defined(BSP_USING_UART2)
uart = &uart2;
uart->serial.ops = &n32_uart_ops;
NVIC_Configuration(uart);
/* register UART2 device */
rt_hw_serial_register(&uart->serial, "uart2",
RT_DEVICE_FLAG_RDWR |
RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_INT_TX
#ifdef RT_SERIAL_USING_DMA
| RT_DEVICE_FLAG_DMA_RX | RT_DEVICE_FLAG_DMA_TX
#endif
, uart);
#endif /* BSP_USING_UART2 */
#if defined(BSP_USING_UART3)
uart = &uart3;
uart->serial.ops = &n32_uart_ops;
NVIC_Configuration(uart);
/* register UART3 device */
rt_hw_serial_register(&uart->serial, "uart3",
RT_DEVICE_FLAG_RDWR |
RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_INT_TX
#ifdef RT_SERIAL_USING_DMA
| RT_DEVICE_FLAG_DMA_RX | RT_DEVICE_FLAG_DMA_TX
#endif
, uart);
#endif /* BSP_USING_UART3 */
#if defined(BSP_USING_UART4)
uart = &uart4;
uart->serial.ops = &n32_uart_ops;
NVIC_Configuration(uart);
/* register UART4 device */
rt_hw_serial_register(&uart->serial, "uart4",
RT_DEVICE_FLAG_RDWR |
RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_INT_TX
#ifdef RT_SERIAL_USING_DMA
| RT_DEVICE_FLAG_DMA_RX | RT_DEVICE_FLAG_DMA_TX
#endif
, uart);
#endif /* BSP_USING_UART4 */
return RT_EOK;
}
INIT_BOARD_EXPORT(rt_hw_usart_init);

View File

@ -0,0 +1,39 @@
/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-06-06 THEWON first version for serialX
*/
#ifndef __DRV_USARTX_H__
#define __DRV_USARTX_H__
#include "rtdevice.h"
struct n32_uart_dma
{
/* dma channel */
DMA_ChannelType *dma_ch;
DMA_Module *dma_module;
/* dma global flag */
uint32_t dma_flag;
/* dma irq channel */
uint8_t dma_irq;
};
struct n32_uart
{
USART_Module *uart_device;
struct rt_serial_device serial;
IRQn_Type irq;
#ifdef RT_SERIAL_USING_DMA
rt_bool_t dmaTxing;
struct n32_uart_dma dma_rx;
struct n32_uart_dma dma_tx;
#endif
};
#endif /* __DRV_USART_H__ */

View File

@ -13,7 +13,11 @@
#include <rtthread.h>
#include <rthw.h>
#include "board.h"
#ifdef RT_USING_SERIAL_X
#include "drv_uartX.h"
#else
#include "drv_uart.h"
#endif
#include "drv_sys.h"
#if defined(BSP_USING_MMU)

View File

@ -0,0 +1,390 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2023-02-01 THEWON first version for serialX
*/
#include <rtconfig.h>
#ifdef RT_USING_SERIAL
#include <rtdevice.h>
#include "drv_uartX.h"
#include "drv_sys.h"
//#define DRV_DEBUG
#define LOG_TAG "drv.uart"
// #include <drv_log.h>
#if !defined(BSP_USING_UART1) && !defined(BSP_USING_UART2) && !defined(BSP_USING_UART3) && \
!defined(BSP_USING_UART4) && !defined(BSP_USING_UART5) && !defined(BSP_USING_UART6) && \
!defined(BSP_USING_UART7) && !defined(BSP_USING_UART8) && !defined(BSP_USING_UART9) && \
!defined(BSP_USING_UARTA)
#error "Please define at least one BSP_USING_UARTx"
/* this driver can be disabled at menuconfig -> RT-Thread Components -> Device Drivers */
#endif
static int nu_uart_flush(struct rt_serial_device *serial);
static void nu_uart_isr(int vector, void *param);
static struct nu_uart nu_uart_arr[] =
{
#ifdef BSP_USING_UART0
UART0_CONFIG,
#endif
#ifdef BSP_USING_UART1
UART1_CONFIG,
#endif
#ifdef BSP_USING_UART2
UART2_CONFIG,
#endif
#ifdef BSP_USING_UART3
UART3_CONFIG,
#endif
#ifdef BSP_USING_UART4
UART4_CONFIG,
#endif
#ifdef BSP_USING_UART5
UART5_CONFIG,
#endif
#ifdef BSP_USING_UART6
UART6_CONFIG,
#endif
#ifdef BSP_USING_UART7
UART7_CONFIG,
#endif
#ifdef BSP_USING_UART8
UART8_CONFIG,
#endif
#ifdef BSP_USING_UART9
UART9_CONFIG,
#endif
#ifdef BSP_USING_UARTA
UARTA_CONFIG,
#endif
};
// for ALL uarts
static void nu_uart_isr(int vector, void *param)
{
/* Get base address of uart register */
nu_uart_t serial = (nu_uart_t)param;
UART_T *uart_base = ((nu_uart_t)serial)->uart_base;
/* Get interrupt event */
uint32_t u32IntSts = uart_base->INTSTS;
uint32_t u32FIFOSts = uart_base->FIFOSTS;
if (u32IntSts & (UART_INTSTS_RDAINT_Msk | UART_INTSTS_RXTOINT_Msk)) { // Received Data Available interrupt
rt_hw_serial_isr(&serial->dev, RT_SERIAL_EVENT_RX_IND);
}
if (u32IntSts & UART_INTSTS_THREINT_Msk) { // Transmit Holding Register Empty interrupt
rt_hw_serial_isr(&serial->dev, RT_SERIAL_EVENT_TX_DONE | (16<<8));
}
// if (uRegISR & UART_INTSTS_MODEMINT_Msk) {
// uRegMSR = huart->Instance->MSR;
// uRegMSR |= UART_MSR_DCTSF_Msk;
// huart->Instance->MSR = uRegMSR;
// }
// if (uRegISR & UART_ISR_BUF_ERR_INT_Msk) {
// if (uRegFSR & (UART_FSR_TX_OVER_IF_Msk)) {
// huart->Instance->FSR = UART_FSR_TX_OVER_IF_Msk;
// }
// if (uRegFSR & (UART_FSR_RX_OVER_IF_Msk)) {
// huart->Instance->FSR = UART_FSR_RX_OVER_IF_Msk;
// }
// }
// if (uRegFSR & (UART_FSR_BIF_Msk | UART_FSR_FEF_Msk | UART_FSR_PEF_Msk | UART_FSR_RX_OVER_IF_Msk | UART_FSR_TX_OVER_IF_Msk)) {
// huart->Instance->FSR = (UART_FSR_BIF_Msk | UART_FSR_FEF_Msk | UART_FSR_PEF_Msk | UART_FSR_RX_OVER_IF_Msk | UART_FSR_TX_OVER_IF_Msk);
// }
uart_base->INTSTS = u32IntSts;
uart_base->FIFOSTS = u32FIFOSts;
}
/**
* Configure uart port
*/
static rt_err_t nu_uart_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
rt_err_t ret = RT_EOK;
uint32_t uart_word_len = 0;
uint32_t uart_stop_bit = 0;
uint32_t uart_parity = 0;
/* Get base address of uart register */
UART_T *uart_base = ((nu_uart_t)serial)->uart_base;
/* Check baudrate */
RT_ASSERT(cfg->baud_rate != 0);
/* Check word len */
switch (cfg->data_bits) {
case DATA_BITS_5:
uart_word_len = UART_WORD_LEN_5;
break;
case DATA_BITS_6:
uart_word_len = UART_WORD_LEN_6;
break;
case DATA_BITS_7:
uart_word_len = UART_WORD_LEN_7;
break;
case DATA_BITS_8:
uart_word_len = UART_WORD_LEN_8;
break;
default:
uart_word_len = UART_WORD_LEN_8;
break;
}
/* Check stop bit */
switch (cfg->stop_bits) {
case STOP_BITS_1:
uart_stop_bit = UART_STOP_BIT_1;
break;
case STOP_BITS_2:
uart_stop_bit = UART_STOP_BIT_2;
break;
default:
uart_stop_bit = UART_STOP_BIT_1;
break;
}
/* Check parity */
switch (cfg->parity)
{
case PARITY_NONE:
uart_parity = UART_PARITY_NONE;
break;
case PARITY_ODD:
uart_parity = UART_PARITY_ODD;
break;
case PARITY_EVEN:
uart_parity = UART_PARITY_EVEN;
break;
default:
uart_parity = UART_PARITY_NONE;
break;
}
/* Set line configuration. */
UART_SetLineConfig(uart_base, cfg->baud_rate, uart_word_len, uart_parity, uart_stop_bit);
return RT_EOK;
}
/**
* Initialize uart port
*/
static rt_err_t nu_uart_init(struct rt_serial_device *serial)
{
/* Get base address of uart register */
UART_T *uart_base = ((nu_uart_t)serial)->uart_base;
// nu_sys_ip_reset(((nu_uart_t)serial)->rstidx);
/* Open Uart and set UART Baudrate */
UART_Open(uart_base, serial->config->baud_rate);
if (nu_uart_configure(serial, &serial->config) != RT_EOK)
{
return -RT_ERROR;
}
return RT_EOK;
}
static rt_err_t nu_uart_control(struct rt_serial_device *serial, int cmd, void *arg)
{
nu_uart_t psNuUart = (nu_uart_t)serial;
rt_err_t result = RT_EOK;
rt_uint32_t flag;
rt_ubase_t ctrl_arg = (rt_ubase_t)arg;
RT_ASSERT(serial != RT_NULL);
/* Get base address of uart register */
UART_T *uart_base = psNuUart->uart_base;
switch (cmd) {
case RT_DEVICE_CTRL_OPEN:
/* Enable interrupt. */
rt_hw_interrupt_umask(((nu_uart_t)serial)->irqn);
break;
case RT_DEVICE_CTRL_CLR_INT:
/* disable interrupt */
if (ctrl_arg & RT_DEVICE_FLAG_INT_TX) {
UART_DISABLE_INT(uart_base, UART_INTEN_THREIEN_Msk);
}
if (ctrl_arg & RT_DEVICE_FLAG_INT_RX) {
flag = UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk | UART_INTEN_TOCNTEN_Msk;
UART_DISABLE_INT(uart_base, flag);
}
#ifdef RT_SERIAL_USING_DMA
/* disable DMA */
#endif
break;
case RT_DEVICE_CTRL_SET_INT:
/* enable interrupt */
if (ctrl_arg & RT_DEVICE_FLAG_INT_TX) {
UART_ENABLE_INT(uart_base, UART_INTEN_THREIEN_Msk);
}
if (ctrl_arg & RT_DEVICE_FLAG_INT_RX) {
flag = UART_INTEN_RDAIEN_Msk | UART_INTEN_RXTOIEN_Msk | UART_INTEN_TOCNTEN_Msk;
UART_ENABLE_INT(uart_base, flag);
}
break;
case RT_DEVICE_CTRL_CONFIG:
#ifdef RT_SERIAL_USING_DMA
#endif
break;
case RT_DEVICE_CTRL_CLOSE:
/* disable interrupt */
rt_hw_interrupt_mask(psNuUart->irqn);
/* Close UART port */
UART_Close(uart_base);
break;
default :
break;
}
return RT_EOK;
}
static int nu_uart_putc(struct rt_serial_device *serial, char c)
{
UART_T *uart_base;
RT_ASSERT(serial != RT_NULL);
/* Get base address of uart register */
uart_base = ((nu_uart_t)serial)->uart_base;
/* Waiting if TX-FIFO is full. */
while (UART_IS_TX_FULL(uart_base));
/* Put char into TX-FIFO */
UART_WRITE(uart_base, c);
return 1;
}
static int nu_uart_getc(struct rt_serial_device *serial)
{
int ch;
UART_T *uart_base;
RT_ASSERT(serial != RT_NULL);
/* Get base address of uart register */
uart_base = ((nu_uart_t)serial)->uart_base;
/* Return failure if RX-FIFO is empty. */
if (UART_GET_RX_EMPTY(uart_base)) {
return -1;
}
/* Get char from RX-FIFO */
ch = UART_READ(uart_base);
return ch;
}
static int nu_uart_flush(struct rt_serial_device *serial)
{
UART_T *uart_base;
RT_ASSERT(serial != RT_NULL);
/* Get base address of uart register */
uart_base = ((nu_uart_t)serial)->uart_base;
while(!UART_IS_TX_EMPTY(uart_base)){;}
return 1;
}
static void nu_start_tx(struct rt_serial_device *serial)
{
UART_T *uart_base;
RT_ASSERT(serial != RT_NULL);
uart_base = ((nu_uart_t)serial)->uart_base;
/* enable interrupt */
UART_ENABLE_INT(uart_base, UART_INTEN_THREIEN_Msk);
}
static void nu_stop_tx(struct rt_serial_device *serial)
{
UART_T *uart_base;
RT_ASSERT(serial != RT_NULL);
uart_base = ((nu_uart_t)serial)->uart_base;
/* disable interrupt */
UART_DISABLE_INT(uart_base, UART_INTEN_THREIEN_Msk);
}
static void nu_enable_interrupt(struct rt_serial_device *serial)
{
RT_ASSERT(serial != RT_NULL);
rt_hw_interrupt_umask(((nu_uart_t)serial)->irqn);
}
static void nu_disable_interrupt(struct rt_serial_device *serial)
{
RT_ASSERT(serial != RT_NULL);
rt_hw_interrupt_mask(((nu_uart_t)serial)->irqn);
}
static const struct rt_uart_ops nu_uart_ops =
{
.init = nu_uart_init,
.configure = nu_uart_configure,
.control = nu_uart_control,
.putc = nu_uart_putc,
.getc = nu_uart_getc,
.flush = nu_uart_flush,
.start_tx = nu_start_tx,
.stop_tx = nu_stop_tx,
.enable_interrupt = nu_enable_interrupt,
.disable_interrupt = nu_disable_interrupt,
};
int rt_hw_uart_init(void)
{
rt_size_t obj_num = sizeof(nu_uart_arr) / sizeof(struct nu_uart);
rt_err_t result = 0;
int i;
for (i = 0; i < obj_num; i++)
{
/* init UART object */
nu_uart_arr[i].dev.ops = &nu_uart_ops;
rt_hw_interrupt_install(nu_uart_arr[i].irqn, nu_uart_isr, &nu_uart_arr[i], nu_uart_arr[i].name);
nu_sys_ipclk_enable(nu_uart_arr[i].clkidx);
/* register UART device */
result = rt_hw_serial_register(&nu_uart_arr[i].dev, nu_uart_arr[i].name,
RT_DEVICE_FLAG_RDWR
| RT_DEVICE_FLAG_INT_RX
| RT_DEVICE_FLAG_INT_TX
, NULL);
RT_ASSERT(result == RT_EOK);
}
return result;
}
#endif /* RT_USING_SERIAL */

View File

@ -0,0 +1,79 @@
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2023-02-01 THEWON first version for serialX
*/
#ifndef __DRV_UART_H__
#define __DRV_UART_H__
#include <rtthread.h>
#include "rtdevice.h"
#include <rthw.h>
#include <drv_common.h>
#include "NuMicro.h"
#include <drv_sys.h>
typedef void(*uart_isr_cb)(int, void*);
/* Private typedef --------------------------------------------------------------*/
struct nu_uart
{
struct rt_serial_device dev;
char *name;
UART_T *uart_base;
IRQn_Type irqn;
E_SYS_IPRST rstidx;
E_SYS_IPCLK clkidx;
#if defined(RT_SERIAL_USING_DMA)
uint32_t dma_flag;
int16_t pdma_perp_tx;
int8_t pdma_chanid_tx;
int16_t pdma_perp_rx;
int8_t pdma_chanid_rx;
int32_t rx_write_offset;
int32_t rxdma_trigger_len;
nu_pdma_desc_t pdma_rx_desc;
#endif
};
typedef struct nu_uart *nu_uart_t;
#if defined(BSP_USING_UART0)
#ifndef UART0_CONFIG
#define UART0_CONFIG \
{ \
.name = "uart0", \
.uart_base = UART0, \
.irqn = IRQ_UART0, \
.rstidx = UART0RST, \
.clkidx = UART0CKEN, \
}
#endif /* UART0_CONFIG */
#endif /* BSP_USING_UART0 */
#if defined(BSP_USING_UART1)
#ifndef UART1_CONFIG
#define UART1_CONFIG \
{ \
.name = "uart1", \
.uart_base = UART1, \
.irqn = IRQ_UART1, \
.rstidx = UART1RST, \
.clkidx = UART1CKEN, \
}
#endif /* UART1_CONFIG */
#endif /* BSP_USING_UART1 */
int rt_hw_uart_init(void);
#endif /* __DRV_UART_H__ */

View File

@ -12,6 +12,8 @@ src = Split("""
if GetDepend(['BSP_USING_UART']):
if GetDepend(['RT_USING_SERIAL_V2']):
src += ['drv_usart_v2.c']
elif GetDepend(['RT_USING_SERIAL_X']):
src += ['drv_usartX.c']
else:
print("\nThe current project does not support serial-v1\n")
Return('group')

View File

@ -0,0 +1,625 @@
/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-07-29 KyleChan first version
* 2022-06-08 THEWON first version for serialX
*/
#include <drv_usartX.h>
#ifdef RT_USING_SERIAL_X
//#define DRV_DEBUG
#define DBG_TAG "drv.usart"
#ifdef DRV_DEBUG
#define DBG_LVL DBG_LOG
#else
#define DBG_LVL DBG_INFO
#endif /* DRV_DEBUG */
#include <rtdbg.h>
/* SCI SCR register bit masks */
#define SCI_SCR_TEIE_MASK (0x04U) ///< Transmit End Interrupt Enable
#define SCI_SCR_RE_MASK (0x10U) ///< Receive Enable
#define SCI_SCR_TE_MASK (0x20U) ///< Transmit Enable
#define SCI_SCR_RIE_MASK (0x40U) ///< Receive Interrupt Enable
#define SCI_SCR_TIE_MASK (0x80U) ///< Transmit Interrupt Enable
static struct ra_uart_config uart_config[] =
{
#ifdef BSP_USING_UART0
UART0_CONFIG,
#endif
#ifdef BSP_USING_UART1
UART1_CONFIG,
#endif
#ifdef BSP_USING_UART2
UART2_CONFIG,
#endif
#ifdef BSP_USING_UART3
UART3_CONFIG,
#endif
#ifdef BSP_USING_UART4
UART4_CONFIG,
#endif
#ifdef BSP_USING_UART5
UART5_CONFIG,
#endif
#ifdef BSP_USING_UART6
UART6_CONFIG,
#endif
#ifdef BSP_USING_UART7
UART7_CONFIG,
#endif
#ifdef BSP_USING_UART8
UART8_CONFIG,
#endif
#ifdef BSP_USING_UART9
UART9_CONFIG,
#endif
};
enum
{
#ifdef BSP_USING_UART0
UART0_INDEX,
#endif
#ifdef BSP_USING_UART1
UART1_INDEX,
#endif
#ifdef BSP_USING_UART2
UART2_INDEX,
#endif
#ifdef BSP_USING_UART3
UART3_INDEX,
#endif
#ifdef BSP_USING_UART4
UART4_INDEX,
#endif
#ifdef BSP_USING_UART5
UART5_INDEX,
#endif
#ifdef BSP_USING_UART6
UART6_INDEX,
#endif
#ifdef BSP_USING_UART7
UART7_INDEX,
#endif
#ifdef BSP_USING_UART8
UART8_INDEX,
#endif
#ifdef BSP_USING_UART9
UART9_INDEX,
#endif
};
static struct ra_uart uart_obj[sizeof(uart_config) / sizeof(uart_config[0])] = {0};
static void ra_uart_get_config(void)
{
struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
#ifdef BSP_USING_UART0
uart_obj[UART0_INDEX].serial.config = config;
#endif
#ifdef BSP_USING_UART1
uart_obj[UART1_INDEX].serial.config = config;
#endif
#ifdef BSP_USING_UART2
uart_obj[UART2_INDEX].serial.config = config;
#endif
#ifdef BSP_USING_UART3
uart_obj[UART3_INDEX].serial.config = config;
#endif
#ifdef BSP_USING_UART4
uart_obj[UART4_INDEX].serial.config = config;
#endif
#ifdef BSP_USING_UART6
uart_obj[UART6_INDEX].serial.config = config;
#endif
#ifdef BSP_USING_UART7
uart_obj[UART7_INDEX].serial.config = config;
uart_config[UART7_INDEX].uart_cfg = g_uart7_cfg;
#endif
#ifdef BSP_USING_UART8
uart_obj[UART8_INDEX].serial.config = config;
#endif
#ifdef BSP_USING_UART9
uart_obj[UART9_INDEX].serial.config = config;
#endif
}
/*
* UART interface
*/
static rt_err_t ra_uart_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
struct ra_uart *uart;
RT_ASSERT(serial != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
fsp_err_t err = FSP_SUCCESS;
uart = rt_container_of(serial, struct ra_uart, serial);
RT_ASSERT(uart != RT_NULL);
if (cfg->data_bits == DATA_BITS_7)
{
uart->uart_config->uart_cfg.data_bits = UART_DATA_BITS_7;
}
else if (cfg->data_bits == DATA_BITS_8)
{
uart->uart_config->uart_cfg.data_bits = UART_DATA_BITS_8;
}
else if (cfg->data_bits == DATA_BITS_9)
{
uart->uart_config->uart_cfg.data_bits = UART_DATA_BITS_9;
}
if (cfg->stop_bits == STOP_BITS_1)
{
uart->uart_config->uart_cfg.stop_bits = UART_STOP_BITS_1;
}
else if (cfg->stop_bits == STOP_BITS_2)
{
uart->uart_config->uart_cfg.stop_bits = UART_STOP_BITS_2;
}
if (cfg->parity == PARITY_NONE)
{
uart->uart_config->uart_cfg.parity = UART_PARITY_OFF;
}
else if (cfg->parity == PARITY_ODD)
{
uart->uart_config->uart_cfg.parity = UART_PARITY_ODD;
}
else if (cfg->parity == PARITY_EVEN)
{
uart->uart_config->uart_cfg.parity = UART_PARITY_EVEN;
}
err = R_SCI_UART_Open(uart->uart_config->p_api_ctrl, &uart->uart_config->uart_cfg);
if (FSP_SUCCESS != err)
{
return -RT_ERROR;
}
return RT_EOK;
}
/*
* Initialize UART interface
*/
static rt_err_t ra_uart_init(struct rt_serial_device *serial)
{
if (ra_uart_configure(serial, &serial->config) != RT_EOK)
{
return -RT_ERROR;
}
return RT_EOK;
}
static rt_err_t ra_uart_control(struct rt_serial_device *serial, int cmd, void *arg)
{
struct ra_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct ra_uart, serial);
switch (cmd) {
case RT_DEVICE_CTRL_OPEN:
uart->intTxing = RT_FALSE;
break;
case RT_DEVICE_CTRL_CLOSE:
R_SCI_UART_Close(uart->uart_config->p_api_ctrl);
break;
case RT_DEVICE_CTRL_CLR_INT:
/* disable interrupt */
break;
case RT_DEVICE_CTRL_SET_INT:
/* enable interrupt */
break;
/* USART config */
case RT_DEVICE_CTRL_CONFIG :
break;
default :
break;
}
return RT_EOK;
}
static int ra_uart_putc(struct rt_serial_device *serial, char c, rt_bool_t useint)
{
struct ra_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct ra_uart, serial);
sci_uart_instance_ctrl_t *p_ctrl = (sci_uart_instance_ctrl_t *)uart->uart_config->p_api_ctrl;
while ((p_ctrl->p_reg->SSR_b.TDRE) == 0);
p_ctrl->p_reg->TDR = c;
if (useint) {
p_ctrl->p_reg->SCR |= SCI_SCR_TE_MASK;
p_ctrl->p_reg->SCR |= SCI_SCR_TIE_MASK;
}
return RT_EOK;
}
static int ra_uart_getc(struct rt_serial_device *serial)
{
int ch;
struct ra_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct ra_uart, serial);
sci_uart_instance_ctrl_t *p_ctrl = (sci_uart_instance_ctrl_t *)uart->uart_config->p_api_ctrl;
ch = -1;
if ((p_ctrl->p_reg->SSR_b.RDRF) == 1) {
ch = p_ctrl->p_reg->RDR & 0xFF;
p_ctrl->p_reg->SSR_b.RDRF = 0;
}
return ch;
}
static int ra_uart_flush(struct rt_serial_device *serial)
{
struct ra_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct ra_uart, serial);
sci_uart_instance_ctrl_t *p_ctrl = (sci_uart_instance_ctrl_t *)uart->uart_config->p_api_ctrl;
while (!((p_ctrl->p_reg->SSR_b.TEND) == 1 && (p_ctrl->p_reg->SSR_b.TDRE) == 1));
return 0;
}
rt_bool_t ra_int_txing(struct rt_serial_device *serial)
{
struct ra_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct ra_uart, serial);
return uart->intTxing;
}
static void ra_start_tx(struct rt_serial_device *serial, rt_uint8_t ch)
{
struct ra_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct ra_uart, serial);
sci_uart_instance_ctrl_t *p_ctrl = (sci_uart_instance_ctrl_t *)uart->uart_config->p_api_ctrl;
uart->intTxing = RT_TRUE;
p_ctrl->p_reg->SCR &= ~(SCI_SCR_TIE_MASK | SCI_SCR_TEIE_MASK);
p_ctrl->p_reg->TDR = ch;
p_ctrl->p_reg->SCR |= SCI_SCR_TE_MASK;
/* Trigger a TXI interrupt. This triggers the transfer instance or a TXI interrupt if the transfer instance is
* not used. */
p_ctrl->p_reg->SCR |= SCI_SCR_TIE_MASK;
}
static void ra_stop_tx(struct rt_serial_device *serial)
{
struct ra_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct ra_uart, serial);
sci_uart_instance_ctrl_t *p_ctrl = (sci_uart_instance_ctrl_t *)uart->uart_config->p_api_ctrl;
p_ctrl->p_reg->SCR &= ~(SCI_SCR_TIE_MASK | SCI_SCR_TEIE_MASK);
uart->intTxing = RT_FALSE;
}
#ifdef BSP_USING_UART0
void user_uart0_callback(uart_callback_args_t *p_args)
{
rt_interrupt_enter();
struct rt_serial_device *serial = &uart_obj[UART0_INDEX].serial;
RT_ASSERT(serial != RT_NULL);
if (UART_EVENT_RX_CHAR == p_args->event)
{
struct rt_serial_rx_fifo *rx_fifo;
rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
rt_ringbuffer_putchar(&(rx_fifo->rb), (rt_uint8_t)p_args->data);
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
}
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_UART1
void user_uart1_callback(uart_callback_args_t *p_args)
{
rt_interrupt_enter();
struct rt_serial_device *serial = &uart_obj[UART1_INDEX].serial;
RT_ASSERT(serial != RT_NULL);
if (UART_EVENT_RX_CHAR == p_args->event)
{
struct rt_serial_rx_fifo *rx_fifo;
rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
rt_ringbuffer_putchar(&(rx_fifo->rb), (rt_uint8_t)p_args->data);
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
}
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_UART2
void user_uart2_callback(uart_callback_args_t *p_args)
{
rt_interrupt_enter();
struct rt_serial_device *serial = &uart_obj[UART2_INDEX].serial;
RT_ASSERT(serial != RT_NULL);
if (UART_EVENT_RX_CHAR == p_args->event)
{
struct rt_serial_rx_fifo *rx_fifo;
rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
rt_ringbuffer_putchar(&(rx_fifo->rb), (rt_uint8_t)p_args->data);
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
}
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_UART3
void user_uart3_callback(uart_callback_args_t *p_args)
{
rt_interrupt_enter();
struct rt_serial_device *serial = &uart_obj[UART3_INDEX].serial;
RT_ASSERT(serial != RT_NULL);
if (UART_EVENT_RX_CHAR == p_args->event)
{
struct rt_serial_rx_fifo *rx_fifo;
rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
rt_ringbuffer_putchar(&(rx_fifo->rb), (rt_uint8_t)p_args->data);
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
}
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_UART4
void user_uart4_callback(uart_callback_args_t *p_args)
{
rt_interrupt_enter();
struct rt_serial_device *serial = &uart_obj[UART4_INDEX].serial;
RT_ASSERT(serial != RT_NULL);
if (UART_EVENT_RX_CHAR == p_args->event)
{
struct rt_serial_rx_fifo *rx_fifo;
rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
rt_ringbuffer_putchar(&(rx_fifo->rb), (rt_uint8_t)p_args->data);
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
}
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_UART5
void user_uart5_callback(uart_callback_args_t *p_args)
{
rt_interrupt_enter();
struct rt_serial_device *serial = &uart_obj[UART5_INDEX].serial;
RT_ASSERT(serial != RT_NULL);
if (UART_EVENT_RX_CHAR == p_args->event)
{
struct rt_serial_rx_fifo *rx_fifo;
rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
rt_ringbuffer_putchar(&(rx_fifo->rb), (rt_uint8_t)p_args->data);
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
}
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_UART6
void user_uart6_callback(uart_callback_args_t *p_args)
{
rt_interrupt_enter();
struct rt_serial_device *serial = &uart_obj[UART6_INDEX].serial;
RT_ASSERT(serial != RT_NULL);
if (UART_EVENT_RX_CHAR == p_args->event)
{
struct rt_serial_rx_fifo *rx_fifo;
rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
rt_ringbuffer_putchar(&(rx_fifo->rb), (rt_uint8_t)p_args->data);
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
}
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_UART7
void user_uart7_callback(uart_callback_args_t *p_args)
{
rt_interrupt_enter();
struct rt_serial_device *serial = &uart_obj[UART7_INDEX].serial;
RT_ASSERT(serial != RT_NULL);
if (UART_EVENT_RX_CHAR == p_args->event)
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
} else if (UART_EVENT_TX_COMPLETE == p_args->event) {
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DONE);
}
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_UART8
void user_uart8_callback(uart_callback_args_t *p_args)
{
rt_interrupt_enter();
struct rt_serial_device *serial = &uart_obj[UART8_INDEX].serial;
RT_ASSERT(serial != RT_NULL);
if (UART_EVENT_RX_CHAR == p_args->event)
{
struct rt_serial_rx_fifo *rx_fifo;
rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
rt_ringbuffer_putchar(&(rx_fifo->rb), (rt_uint8_t)p_args->data);
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
}
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_UART9
void user_uart9_callback(uart_callback_args_t *p_args)
{
rt_interrupt_enter();
struct rt_serial_device *serial = &uart_obj[UART9_INDEX].serial;
RT_ASSERT(serial != RT_NULL);
if (UART_EVENT_RX_CHAR == p_args->event)
{
struct rt_serial_rx_fifo *rx_fifo;
rx_fifo = (struct rt_serial_rx_fifo *) serial->serial_rx;
RT_ASSERT(rx_fifo != RT_NULL);
rt_ringbuffer_putchar(&(rx_fifo->rb), (rt_uint8_t)p_args->data);
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
}
rt_interrupt_leave();
}
#endif
static const struct rt_uart_ops ra_uart_ops =
{
.init = ra_uart_init,
.configure = ra_uart_configure,
.control = ra_uart_control,
.putc = ra_uart_putc,
.getc = ra_uart_getc,
.flush = ra_uart_flush,
.is_int_txing = ra_int_txing,
.start_tx = ra_start_tx,
.stop_tx = ra_stop_tx,
};
int rt_hw_usart_init(void)
{
rt_err_t result = 0;
rt_size_t obj_num = sizeof(uart_obj) / sizeof(struct ra_uart);
ra_uart_get_config();
for (int i = 0; i < obj_num; i++)
{
/* init UART object */
uart_obj[i].uart_config = &uart_config[i];
uart_obj[i].serial.ops = &ra_uart_ops;
/* register UART device */
result = rt_hw_serial_register(&uart_obj[i].serial,
uart_obj[i].uart_config->name,
RT_DEVICE_FLAG_RDWR |
RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_INT_TX,
NULL);
RT_ASSERT(result == RT_EOK);
}
return result;
}
#endif /* RT_USING_SERIAL_X */

View File

@ -0,0 +1,39 @@
/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-07-29 KyleChan first version
* 2022-06-08 THEWON first version for serialX
*/
#ifndef __DRV_USART_V2_H__
#define __DRV_USART_V2_H__
#include <rtthread.h>
#include <rtdevice.h>
#include <rthw.h>
#include <drv_common.h>
#include <drv_config.h>
#include <hal_data.h>
/* renesas config class */
struct ra_uart_config
{
const char *name;
uart_ctrl_t * p_api_ctrl;
uart_cfg_t uart_cfg;
};
struct ra_uart
{
struct rt_serial_device serial;
struct ra_uart_config *uart_config;
rt_bool_t intTxing;
};
int rt_hw_usart_init(void);
#endif /* __DRV_USART_H__ */

View File

@ -13,6 +13,8 @@ if GetDepend(['RT_USING_PIN']):
if GetDepend(['RT_USING_SERIAL']):
if GetDepend(['RT_USING_SERIAL_V2']):
src += ['drv_usart_v2.c']
elif GetDepend(['RT_USING_SERIAL_X']):
src += ['drv_usartX.c']
else:
src += ['drv_usart.c']

View File

@ -0,0 +1,939 @@
/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-04-10 THEWON first version for serialX
*/
#include "board.h"
#include "drv_usartX.h"
#include "drv_config.h"
#ifdef RT_USING_SERIAL
//#define DRV_DEBUG
#define LOG_TAG "drv.usart"
#include <drv_log.h>
#if !defined(BSP_USING_UART1) && !defined(BSP_USING_UART2) && !defined(BSP_USING_UART3) && \
!defined(BSP_USING_UART4) && !defined(BSP_USING_UART5) && !defined(BSP_USING_UART6) && \
!defined(BSP_USING_UART7) && !defined(BSP_USING_UART8) && !defined(BSP_USING_LPUART1)
#error "Please define at least one BSP_USING_UARTx"
/* this driver can be disabled at menuconfig -> RT-Thread Components -> Device Drivers */
#endif
#ifdef RT_SERIAL_USING_DMA
static void stm32_dma_rx_config(struct rt_serial_device *serial);
static void stm32_dma_tx_config(struct rt_serial_device *serial);
#endif
enum
{
#ifdef BSP_USING_UART1
UART1_INDEX,
#endif
#ifdef BSP_USING_UART2
UART2_INDEX,
#endif
#ifdef BSP_USING_UART3
UART3_INDEX,
#endif
#ifdef BSP_USING_UART4
UART4_INDEX,
#endif
#ifdef BSP_USING_UART5
UART5_INDEX,
#endif
#ifdef BSP_USING_UART6
UART6_INDEX,
#endif
#ifdef BSP_USING_UART7
UART7_INDEX,
#endif
#ifdef BSP_USING_UART8
UART8_INDEX,
#endif
#ifdef BSP_USING_LPUART1
LPUART1_INDEX,
#endif
};
static struct stm32_uart_config uart_config[] =
{
#ifdef BSP_USING_UART1
UART1_CONFIG,
#endif
#ifdef BSP_USING_UART2
UART2_CONFIG,
#endif
#ifdef BSP_USING_UART3
UART3_CONFIG,
#endif
#ifdef BSP_USING_UART4
UART4_CONFIG,
#endif
#ifdef BSP_USING_UART5
UART5_CONFIG,
#endif
#ifdef BSP_USING_UART6
UART6_CONFIG,
#endif
#ifdef BSP_USING_UART7
UART7_CONFIG,
#endif
#ifdef BSP_USING_UART8
UART8_CONFIG,
#endif
#ifdef BSP_USING_LPUART1
LPUART1_CONFIG,
#endif
};
static struct stm32_uart uart_obj[sizeof(uart_config) / sizeof(uart_config[0])] = {0};
static rt_uint32_t stm32_uart_get_mask(rt_uint32_t word_length, rt_uint32_t parity)
{
rt_uint32_t mask;
if (word_length == UART_WORDLENGTH_8B)
{
if (parity == UART_PARITY_NONE)
{
mask = 0x00FFU ;
}
else
{
mask = 0x007FU ;
}
}
#ifdef UART_WORDLENGTH_9B
else if (word_length == UART_WORDLENGTH_9B)
{
if (parity == UART_PARITY_NONE)
{
mask = 0x01FFU ;
}
else
{
mask = 0x00FFU ;
}
}
#endif
#ifdef UART_WORDLENGTH_7B
else if (word_length == UART_WORDLENGTH_7B)
{
if (parity == UART_PARITY_NONE)
{
mask = 0x007FU ;
}
else
{
mask = 0x003FU ;
}
}
else
{
mask = 0x0000U;
}
#endif
return mask;
}
static rt_err_t stm32_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
struct stm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
uart = rt_container_of(serial, struct stm32_uart, serial);
uart->handle.Instance = uart->uart_config->Instance;
uart->handle.Init.BaudRate = cfg->baud_rate;
uart->handle.Init.Mode = UART_MODE_TX_RX;
uart->handle.Init.OverSampling = UART_OVERSAMPLING_16;
switch (cfg->flowcontrol)
{
case RT_SERIAL_FLOWCONTROL_NONE:
uart->handle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
break;
case RT_SERIAL_FLOWCONTROL_CTSRTS:
uart->handle.Init.HwFlowCtl = UART_HWCONTROL_RTS_CTS;
break;
default:
uart->handle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
break;
}
switch (cfg->data_bits)
{
case DATA_BITS_8:
if (cfg->parity == PARITY_ODD || cfg->parity == PARITY_EVEN)
uart->handle.Init.WordLength = UART_WORDLENGTH_9B;
else
uart->handle.Init.WordLength = UART_WORDLENGTH_8B;
break;
case DATA_BITS_9:
uart->handle.Init.WordLength = UART_WORDLENGTH_9B;
break;
default:
uart->handle.Init.WordLength = UART_WORDLENGTH_8B;
break;
}
switch (cfg->stop_bits)
{
case STOP_BITS_1:
uart->handle.Init.StopBits = UART_STOPBITS_1;
break;
case STOP_BITS_2:
uart->handle.Init.StopBits = UART_STOPBITS_2;
break;
default:
uart->handle.Init.StopBits = UART_STOPBITS_1;
break;
}
switch (cfg->parity)
{
case PARITY_NONE:
uart->handle.Init.Parity = UART_PARITY_NONE;
break;
case PARITY_ODD:
uart->handle.Init.Parity = UART_PARITY_ODD;
break;
case PARITY_EVEN:
uart->handle.Init.Parity = UART_PARITY_EVEN;
break;
default:
uart->handle.Init.Parity = UART_PARITY_NONE;
break;
}
uart->uart_config->mask = stm32_uart_get_mask(uart->handle.Init.WordLength, uart->handle.Init.Parity);
if (HAL_UART_Init(&uart->handle) != HAL_OK)
{
return -RT_ERROR;
}
return RT_EOK;
}
static rt_err_t stm32_init(struct rt_serial_device *serial)
{
if (stm32_configure(serial, &serial->config) != RT_EOK)
{
return -RT_ERROR;
}
return RT_EOK;
}
static rt_err_t stm32_control(struct rt_serial_device *serial, int cmd, void *arg)
{
struct stm32_uart *uart;
rt_ubase_t ctrl_arg = (rt_ubase_t)arg;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct stm32_uart, serial);
switch (cmd) {
case RT_DEVICE_CTRL_OPEN:
__HAL_UART_DISABLE_IT(&(uart->handle), UART_IT_TXE);
UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_RXNE);
UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TXE);
UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TC);
/* enable interrupt */
HAL_NVIC_SetPriority(uart->uart_config->irq_type, 1, 0);
HAL_NVIC_EnableIRQ(uart->uart_config->irq_type);
#ifdef RT_SERIAL_USING_DMA
uart->dmaTxing = RT_FALSE;
#endif
break;
case RT_DEVICE_CTRL_CLOSE:
HAL_NVIC_DisableIRQ(uart->uart_config->irq_type);
#ifdef RT_SERIAL_USING_DMA
HAL_NVIC_DisableIRQ(uart->uart_config->dma_conf_rx->dma_irq);
if (HAL_DMA_Abort(&(uart->dma_rx.handle)) != HAL_OK) {
RT_ASSERT(0);
}
if (HAL_DMA_DeInit(&(uart->dma_rx.handle)) != HAL_OK) {
RT_ASSERT(0);
}
HAL_NVIC_DisableIRQ(uart->uart_config->dma_conf_tx->dma_irq);
if (HAL_DMA_Abort(&(uart->dma_tx.handle)) != HAL_OK) {
RT_ASSERT(0);
}
if (HAL_DMA_DeInit(&(uart->dma_tx.handle)) != HAL_OK) {
RT_ASSERT(0);
}
#endif
__HAL_UART_DISABLE_IT(&(uart->handle), UART_IT_RXNE);
__HAL_UART_DISABLE_IT(&(uart->handle), UART_IT_TXE);
if (HAL_UART_DeInit(&(uart->handle)) != HAL_OK ) {
}
break;
/* disable interrupt */
case RT_DEVICE_CTRL_CLR_INT:
/* disable interrupt */
if (ctrl_arg & RT_DEVICE_FLAG_INT_RX) {
__HAL_UART_DISABLE_IT(&(uart->handle), UART_IT_RXNE);
}
#ifdef RT_SERIAL_USING_DMA
/* disable DMA */
if (ctrl_arg & RT_DEVICE_FLAG_DMA_RX) {
HAL_NVIC_DisableIRQ(uart->uart_config->dma_conf_rx->dma_irq);
}
if(ctrl_arg & RT_DEVICE_FLAG_DMA_TX) {
HAL_NVIC_DisableIRQ(uart->uart_config->dma_conf_tx->dma_irq);
}
#endif
break;
/* enable interrupt */
case RT_DEVICE_CTRL_SET_INT:
/* enable rx irq */
if (ctrl_arg & RT_DEVICE_FLAG_INT_RX) {
__HAL_UART_ENABLE_IT(&(uart->handle), UART_IT_RXNE);
}
break;
#ifdef RT_SERIAL_USING_DMA
case RT_DEVICE_CTRL_CONFIG:
if (ctrl_arg & RT_DEVICE_FLAG_DMA_RX) {
stm32_dma_rx_config(serial);
} else if (ctrl_arg & RT_DEVICE_FLAG_DMA_TX) {
stm32_dma_tx_config(serial);
}
break;
#endif
default :
break;
}
return RT_EOK;
}
static int stm32_putc(struct rt_serial_device *serial, char c)
{
struct stm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct stm32_uart, serial);
while (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TXE) == RESET);
UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TC);
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32F0) \
|| defined(SOC_SERIES_STM32L0) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32H7) \
|| defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32F3)
uart->handle.Instance->TDR = c;
#else
uart->handle.Instance->DR = c;
#endif
return 1;
}
static int stm32_getc(struct rt_serial_device *serial)
{
int ch = -1;
struct stm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct stm32_uart, serial);
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) == RESET)
{
return -1;
}
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32F0) \
|| defined(SOC_SERIES_STM32L0) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32H7) \
|| defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB)|| defined(SOC_SERIES_STM32F3)
ch = uart->handle.Instance->RDR & uart->uart_config->mask;
#else
ch = uart->handle.Instance->DR & uart->uart_config->mask;
#endif
return ch;
}
static int stm32_flush(struct rt_serial_device *serial)
{
struct stm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct stm32_uart, serial);
while (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TC) == RESET);
return 1;
}
static void stm32_start_tx(struct rt_serial_device *serial)
{
struct stm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct stm32_uart, serial);
__HAL_UART_ENABLE_IT(&(uart->handle), UART_IT_TXE);
}
static void stm32_stop_tx(struct rt_serial_device *serial)
{
struct stm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct stm32_uart, serial);
__HAL_UART_DISABLE_IT(&(uart->handle), UART_IT_TXE);
}
#ifdef RT_SERIAL_USING_DMA
static rt_bool_t stm32_is_dma_txing(struct rt_serial_device *serial)
{
struct stm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct stm32_uart, serial);
return uart->dmaTxing; //RT_FALSE;
}
static void stm32_start_dma_tx(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size)
{
struct stm32_uart *uart;
HAL_StatusTypeDef status;
DMA_HandleTypeDef *hdma;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct stm32_uart, serial);
do { // may fallin dead loop
status = HAL_UART_Transmit_DMA(&uart->handle, buf, size);
} while (status != HAL_OK);
uart->dmaTxing = RT_TRUE;
}
static void stm32_stop_dma_tx(struct rt_serial_device *serial)
{
struct stm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct stm32_uart, serial);
if ((uart->dma_tx.handle.Instance->CR & DMA_SxCR_EN) == DMA_SxCR_EN) {
return;
}
__HAL_DMA_DISABLE(&uart->dma_tx.handle);
uart->dmaTxing = RT_FALSE;
}
#endif
static void stm32_enable_interrupt(struct rt_serial_device *serial)
{
struct stm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct stm32_uart, serial);
HAL_NVIC_EnableIRQ(uart->uart_config->irq_type);
#ifdef RT_SERIAL_USING_DMA
if (uart->uart_dma_flag) {
HAL_NVIC_EnableIRQ(uart->uart_config->dma_conf_rx->dma_irq);
}
#endif
}
static void stm32_disable_interrupt(struct rt_serial_device *serial)
{
struct stm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct stm32_uart, serial);
HAL_NVIC_DisableIRQ(uart->uart_config->irq_type);
#ifdef RT_SERIAL_USING_DMA
if (uart->uart_dma_flag) {
HAL_NVIC_DisableIRQ(uart->uart_config->dma_conf_rx->dma_irq);
}
#endif
}
/**
* Uart common interrupt process. This need add to uart ISR.
*
* @param serial serial device
*/
static void uart_isr(struct rt_serial_device *serial)
{
struct stm32_uart *uart;
#ifdef RT_SERIAL_USING_DMA
rt_size_t dma_cnt;
#endif
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct stm32_uart, serial);
/* UART in mode Receiver -------------------------------------------------*/
if ((__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET) &&
(__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_RXNE) != RESET))
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
}
if ((__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TXE) != RESET) &&
(__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_TXE) != RESET))
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DONE);
}
#ifdef RT_SERIAL_USING_DMA
else if ((uart->uart_dma_flag) && (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_IDLE) != RESET)
&& (__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_IDLE) != RESET))
{
__HAL_UART_CLEAR_IDLEFLAG(&uart->handle);
dma_cnt = RT_SERIAL_DMA_BUFSZ - __HAL_DMA_GET_COUNTER(&(uart->dma_rx.handle));
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (dma_cnt << 8));
}
else if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TC) &&
(__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_TC) != RESET))
{
if ((serial->parent.open_flag & RT_DEVICE_FLAG_DMA_TX) != 0)
{
HAL_UART_IRQHandler(&(uart->handle));
}
}
#endif
else
{
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_ORE) != RESET)
{
__HAL_UART_CLEAR_OREFLAG(&uart->handle);
}
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_NE) != RESET)
{
__HAL_UART_CLEAR_NEFLAG(&uart->handle);
}
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_FE) != RESET)
{
__HAL_UART_CLEAR_FEFLAG(&uart->handle);
}
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_PE) != RESET)
{
__HAL_UART_CLEAR_PEFLAG(&uart->handle);
}
#if !defined(SOC_SERIES_STM32L4) && !defined(SOC_SERIES_STM32WL) && !defined(SOC_SERIES_STM32F7) && !defined(SOC_SERIES_STM32F0) \
&& !defined(SOC_SERIES_STM32L0) && !defined(SOC_SERIES_STM32G0) && !defined(SOC_SERIES_STM32H7) \
&& !defined(SOC_SERIES_STM32G4) && !defined(SOC_SERIES_STM32MP1) && !defined(SOC_SERIES_STM32WB)
#ifdef SOC_SERIES_STM32F3
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_LBDF) != RESET)
{
UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_LBDF);
}
#else
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_LBD) != RESET)
{
UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_LBD);
}
#endif
#endif
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_CTS) != RESET)
{
UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_CTS);
}
// if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TXE) != RESET)
// {
// UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TXE);
// }
// if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TC) != RESET)
// {
// UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TC);
// }
// if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET)
// {
// UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_RXNE);
// }
}
}
#ifdef RT_SERIAL_USING_DMA
static void dma_isr(struct rt_serial_device *serial)
{
struct stm32_uart *uart;
rt_size_t dma_cnt;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct stm32_uart, serial);
if ((__HAL_DMA_GET_IT_SOURCE(&(uart->dma_rx.handle), DMA_IT_TC) != RESET) ||
(__HAL_DMA_GET_IT_SOURCE(&(uart->dma_rx.handle), DMA_IT_HT) != RESET))
{
dma_cnt = RT_SERIAL_DMA_BUFSZ - __HAL_DMA_GET_COUNTER(&(uart->dma_rx.handle));
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (dma_cnt << 8));
}
}
#endif
#if defined(BSP_USING_UART1)
void USART1_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&(uart_obj[UART1_INDEX].serial));
/* leave interrupt */
rt_interrupt_leave();
}
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_RX_USING_DMA)
void UART1_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&uart_obj[UART1_INDEX].dma_rx.handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_RX_USING_DMA) */
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_TX_USING_DMA)
void UART1_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&uart_obj[UART1_INDEX].dma_tx.handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_TX_USING_DMA) */
#endif /* BSP_USING_UART1 */
#ifdef RT_SERIAL_USING_DMA
static void stm32_uart_get_dma_config(void)
{
#ifdef BSP_USING_UART1
uart_obj[UART1_INDEX].uart_dma_flag = 0;
#ifdef BSP_UART1_RX_USING_DMA
uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
static struct dma_config uart1_dma_rx = UART1_DMA_RX_CONFIG;
uart_config[UART1_INDEX].dma_conf_rx = &uart1_dma_rx;
#endif
#ifdef BSP_UART1_TX_USING_DMA
uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
static struct dma_config uart1_dma_tx = UART1_DMA_TX_CONFIG;
uart_config[UART1_INDEX].dma_conf_tx = &uart1_dma_tx;
#endif
#endif
}
static void stm32_dma_rx_config(struct rt_serial_device *serial)
{
DMA_HandleTypeDef *DMA_Handle;
struct dma_config *dma_config;
struct stm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct stm32_uart, serial);
DMA_Handle = &uart->dma_rx.handle;
dma_config = uart->uart_config->dma_conf_rx;
LOG_D("%s dma config start", uart->uart_config->name);
{
rt_uint32_t tmpreg = 0x00U;
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0) \
|| defined(SOC_SERIES_STM32L0)|| defined(SOC_SERIES_STM32F3) || defined(SOC_SERIES_STM32L1)
/* enable DMA clock && Delay after an RCC peripheral clock enabling*/
SET_BIT(RCC->AHBENR, dma_config->dma_rcc);
tmpreg = READ_BIT(RCC->AHBENR, dma_config->dma_rcc);
#elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) \
|| defined(SOC_SERIES_STM32G4)|| defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32WB)
/* enable DMA clock && Delay after an RCC peripheral clock enabling*/
SET_BIT(RCC->AHB1ENR, dma_config->dma_rcc);
tmpreg = READ_BIT(RCC->AHB1ENR, dma_config->dma_rcc);
#elif defined(SOC_SERIES_STM32MP1)
/* enable DMA clock && Delay after an RCC peripheral clock enabling*/
SET_BIT(RCC->MP_AHB2ENSETR, dma_config->dma_rcc);
tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, dma_config->dma_rcc);
#endif
#if (defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32WB)) && defined(DMAMUX1)
/* enable DMAMUX clock for L4+ and G4 */
__HAL_RCC_DMAMUX1_CLK_ENABLE();
#elif defined(SOC_SERIES_STM32MP1)
__HAL_RCC_DMAMUX_CLK_ENABLE();
#endif
UNUSED(tmpreg); /* To avoid compiler warnings */
}
__HAL_LINKDMA(&(uart->handle), hdmarx, uart->dma_rx.handle);
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32L0)|| defined(SOC_SERIES_STM32F3) || defined(SOC_SERIES_STM32L1)
DMA_Handle->Instance = dma_config->Instance;
#elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
DMA_Handle->Instance = dma_config->Instance;
DMA_Handle->Init.Channel = dma_config->channel;
#elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32WB)\
|| defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
DMA_Handle->Instance = dma_config->Instance;
DMA_Handle->Init.Request = dma_config->request;
#endif
DMA_Handle->Init.PeriphInc = DMA_PINC_DISABLE;
DMA_Handle->Init.MemInc = DMA_MINC_ENABLE;
DMA_Handle->Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
DMA_Handle->Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
DMA_Handle->Init.Direction = DMA_PERIPH_TO_MEMORY;
DMA_Handle->Init.Mode = DMA_CIRCULAR;
DMA_Handle->Init.Priority = DMA_PRIORITY_MEDIUM;
#if defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
DMA_Handle->Init.FIFOMode = DMA_FIFOMODE_DISABLE;
#endif
if (HAL_DMA_DeInit(DMA_Handle) != HAL_OK)
{
RT_ASSERT(0);
}
if (HAL_DMA_Init(DMA_Handle) != HAL_OK)
{
RT_ASSERT(0);
}
/* enable interrupt */
/* Start DMA transfer */
if (HAL_UART_Receive_DMA(&(uart->handle), serial->serial_dma_rx, RT_SERIAL_DMA_BUFSZ) != HAL_OK)
{
/* Transfer error in reception process */
RT_ASSERT(0);
}
CLEAR_BIT(uart->handle.Instance->CR3, USART_CR3_EIE);
__HAL_UART_ENABLE_IT(&(uart->handle), UART_IT_IDLE);
/* DMA irq should set in DMA TX mode, or HAL_UART_TxCpltCallback function will not be called */
HAL_NVIC_SetPriority(dma_config->dma_irq, 0, 0);
HAL_NVIC_EnableIRQ(dma_config->dma_irq);
}
static void stm32_dma_tx_config(struct rt_serial_device *serial)
{
DMA_HandleTypeDef *DMA_Handle;
struct dma_config *dma_config;
struct stm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct stm32_uart, serial);
DMA_Handle = &uart->dma_tx.handle;
dma_config = uart->uart_config->dma_conf_tx;
LOG_D("%s dma config start", uart->uart_config->name);
{
rt_uint32_t tmpreg = 0x00U;
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32G0) \
|| defined(SOC_SERIES_STM32L0)|| defined(SOC_SERIES_STM32F3) || defined(SOC_SERIES_STM32L1)
/* enable DMA clock && Delay after an RCC peripheral clock enabling*/
SET_BIT(RCC->AHBENR, dma_config->dma_rcc);
tmpreg = READ_BIT(RCC->AHBENR, dma_config->dma_rcc);
#elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) \
|| defined(SOC_SERIES_STM32G4)|| defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32WB)
/* enable DMA clock && Delay after an RCC peripheral clock enabling*/
SET_BIT(RCC->AHB1ENR, dma_config->dma_rcc);
tmpreg = READ_BIT(RCC->AHB1ENR, dma_config->dma_rcc);
#elif defined(SOC_SERIES_STM32MP1)
/* enable DMA clock && Delay after an RCC peripheral clock enabling*/
SET_BIT(RCC->MP_AHB2ENSETR, dma_config->dma_rcc);
tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, dma_config->dma_rcc);
#endif
#if (defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32WB)) && defined(DMAMUX1)
/* enable DMAMUX clock for L4+ and G4 */
__HAL_RCC_DMAMUX1_CLK_ENABLE();
#elif defined(SOC_SERIES_STM32MP1)
__HAL_RCC_DMAMUX_CLK_ENABLE();
#endif
UNUSED(tmpreg); /* To avoid compiler warnings */
}
__HAL_LINKDMA(&(uart->handle), hdmatx, uart->dma_tx.handle);
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32L0)|| defined(SOC_SERIES_STM32F3) || defined(SOC_SERIES_STM32L1)
DMA_Handle->Instance = dma_config->Instance;
#elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
DMA_Handle->Instance = dma_config->Instance;
DMA_Handle->Init.Channel = dma_config->channel;
#elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32WB)\
|| defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
DMA_Handle->Instance = dma_config->Instance;
DMA_Handle->Init.Request = dma_config->request;
#endif
DMA_Handle->Init.PeriphInc = DMA_PINC_DISABLE;
DMA_Handle->Init.MemInc = DMA_MINC_ENABLE;
DMA_Handle->Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
DMA_Handle->Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
DMA_Handle->Init.Direction = DMA_MEMORY_TO_PERIPH;
DMA_Handle->Init.Mode = DMA_NORMAL;
DMA_Handle->Init.Priority = DMA_PRIORITY_MEDIUM;
#if defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
DMA_Handle->Init.FIFOMode = DMA_FIFOMODE_DISABLE;
#endif
if (HAL_DMA_DeInit(DMA_Handle) != HAL_OK)
{
RT_ASSERT(0);
}
if (HAL_DMA_Init(DMA_Handle) != HAL_OK)
{
RT_ASSERT(0);
}
/* DMA irq should set in DMA TX mode, or HAL_UART_TxCpltCallback function will not be called */
HAL_NVIC_SetPriority(dma_config->dma_irq, 0, 0);
HAL_NVIC_EnableIRQ(dma_config->dma_irq);
}
/**
* @brief UART error callbacks
* @param huart: UART handle
* @note This example shows a simple way to report transfer error, and you can
* add your own implementation.
* @retval None
*/
void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
{
struct stm32_uart *uart;
RT_ASSERT(huart != NULL);
uart = (struct stm32_uart *)huart;
LOG_D("%s: %s %d\n", __FUNCTION__, uart->uart_config->name, huart->ErrorCode);
UNUSED(uart);
}
/**
* @brief Rx Transfer completed callback
* @param huart: UART handle
* @note This example shows a simple way to report end of DMA Rx transfer, and
* you can add your own implementation.
* @retval None
*/
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
struct stm32_uart *uart;
RT_ASSERT(huart != NULL);
uart = (struct stm32_uart *)huart;
dma_isr(&uart->serial);
}
/**
* @brief Rx Half transfer completed callback
* @param huart: UART handle
* @note This example shows a simple way to report end of DMA Rx Half transfer,
* and you can add your own implementation.
* @retval None
*/
void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart)
{
struct stm32_uart *uart;
RT_ASSERT(huart != NULL);
uart = (struct stm32_uart *)huart;
dma_isr(&uart->serial);
}
/**
* @brief HAL_UART_TxCpltCallback
* @param huart: UART handle
* @note This callback can be called by two functions, first in UART_EndTransmit_IT when
* UART Tx complete and second in UART_DMATransmitCplt function in DMA Circular mode.
* @retval None
*/
void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
{
struct stm32_uart *uart;
rt_size_t dma_cnt;
RT_ASSERT(huart != NULL);
uart = (struct stm32_uart *)huart;
dma_cnt = __HAL_DMA_GET_COUNTER(&(uart->dma_tx.handle));
if (dma_cnt == 0)
{
rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_TX_DMADONE);
}
}
#endif /* RT_SERIAL_USING_DMA */
static const struct rt_uart_ops stm32_uart_ops =
{
.init = stm32_init,
.configure = stm32_configure,
.control = stm32_control,
.putc = stm32_putc,
.getc = stm32_getc,
.flush = stm32_flush,
.start_tx = stm32_start_tx,
.stop_tx = stm32_stop_tx,
#ifdef RT_SERIAL_USING_DMA
.is_dma_txing = stm32_is_dma_txing,
.start_dma_tx = stm32_start_dma_tx,
.stop_dma_tx = stm32_stop_dma_tx,
#endif
.enable_interrupt = stm32_enable_interrupt,
.disable_interrupt = stm32_disable_interrupt,
};
int rt_hw_usart_init(void)
{
rt_size_t obj_num = sizeof(uart_obj) / sizeof(struct stm32_uart);
rt_err_t result = 0;
#ifdef RT_SERIAL_USING_DMA
stm32_uart_get_dma_config();
#endif
for (int i = 0; i < obj_num; i++)
{
/* init UART object */
uart_obj[i].uart_config = &uart_config[i];
uart_obj[i].serial.ops = &stm32_uart_ops;
/* register UART device */
result = rt_hw_serial_register(&uart_obj[i].serial, uart_obj[i].uart_config->name,
RT_DEVICE_FLAG_RDWR
| RT_DEVICE_FLAG_INT_RX
| RT_DEVICE_FLAG_INT_TX
#ifdef RT_SERIAL_USING_DMA
| uart_obj[i].uart_dma_flag
#endif
, NULL);
RT_ASSERT(result == RT_EOK);
}
return result;
}
#endif /* RT_USING_SERIAL */

View File

@ -0,0 +1,73 @@
/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-04-10 THEWON first version for serialX
*/
#ifndef __DRV_USARTX_H__
#define __DRV_USARTX_H__
#include <rtthread.h>
#include "rtdevice.h"
#include <rthw.h>
#include <drv_common.h>
#include "drv_dma.h"
int rt_hw_usart_init(void);
#if defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) \
|| defined(SOC_SERIES_STM32L0) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32WB)|| defined(SOC_SERIES_STM32F3)
#define DMA_INSTANCE_TYPE DMA_Channel_TypeDef
#elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) \
|| defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
#define DMA_INSTANCE_TYPE DMA_Stream_TypeDef
#endif /* defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) */
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WL) || defined(SOC_SERIES_STM32F2) \
|| defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32L0) || defined(SOC_SERIES_STM32G0) \
|| defined(SOC_SERIES_STM32G4) || defined(SOC_SERIES_STM32WB)|| defined(SOC_SERIES_STM32F3)
#define UART_INSTANCE_CLEAR_FUNCTION __HAL_UART_CLEAR_FLAG
#elif defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32H7) \
|| defined(SOC_SERIES_STM32MP1)
#define UART_INSTANCE_CLEAR_FUNCTION __HAL_UART_CLEAR_IT
#endif
/* stm32 config class */
struct stm32_uart_config
{
const char *name;
USART_TypeDef *Instance;
IRQn_Type irq_type;
rt_uint32_t mask;
#ifdef RT_SERIAL_USING_DMA
struct dma_config *dma_conf_rx;
struct dma_config *dma_conf_tx;
#endif
};
/* stm32 uart driver class */
struct stm32_uart
{
UART_HandleTypeDef handle;
struct rt_serial_device serial;
struct stm32_uart_config *uart_config;
#ifdef RT_SERIAL_USING_DMA
rt_bool_t dmaTxing;
struct
{
DMA_HandleTypeDef handle;
} dma_rx;
struct
{
DMA_HandleTypeDef handle;
} dma_tx;
rt_uint16_t uart_dma_flag;
#endif
};
#endif /* __DRV_USART_H__ */

View File

@ -93,6 +93,11 @@ menu "On-chip Peripheral Drivers"
bool "Enable UART1"
default y
config BSP_UART1_TX_USING_DMA
bool "Enable UART1 TX DMA"
depends on BSP_USING_UART1 && RT_SERIAL_USING_DMA
default n
config BSP_UART1_RX_USING_DMA
bool "Enable UART1 RX DMA"
depends on BSP_USING_UART1 && RT_SERIAL_USING_DMA

View File

@ -99,6 +99,11 @@ menu "On-chip Peripheral Drivers"
bool "Enable UART1"
default y
config BSP_UART1_TX_USING_DMA
bool "Enable UART1 TX DMA"
depends on BSP_USING_UART1 && RT_SERIAL_USING_DMA
default n
config BSP_UART1_RX_USING_DMA
bool "Enable UART1 RX DMA"
depends on BSP_USING_UART1 && RT_SERIAL_USING_DMA
@ -108,6 +113,11 @@ menu "On-chip Peripheral Drivers"
bool "Enable UART2"
default n
config BSP_UART2_TX_USING_DMA
bool "Enable UART2 TX DMA"
depends on BSP_USING_UART2 && RT_SERIAL_USING_DMA
default n
config BSP_UART2_RX_USING_DMA
bool "Enable UART2 RX DMA"
depends on BSP_USING_UART2 && RT_SERIAL_USING_DMA
@ -116,8 +126,13 @@ menu "On-chip Peripheral Drivers"
config BSP_USING_UART3
bool "Enable UART3"
default n
config BSP_UART3_TX_USING_DMA
bool "Enable UART3 TX DMA"
depends on BSP_USING_UART3 && RT_SERIAL_USING_DMA
depends on !BSP_USING_ETH
default n
config BSP_UART3_RX_USING_DMA
bool "Enable UART3 RX DMA"
depends on BSP_USING_UART3 && RT_SERIAL_USING_DMA

View File

@ -97,6 +97,11 @@ menu "On-chip Peripheral Drivers"
bool "Enable UART1"
default y
config BSP_UART1_TX_USING_DMA
bool "Enable UART1 TX DMA"
depends on BSP_USING_UART1 && RT_SERIAL_USING_DMA
default n
config BSP_UART1_RX_USING_DMA
bool "Enable UART1 RX DMA"
depends on BSP_USING_UART1 && RT_SERIAL_USING_DMA
@ -106,6 +111,11 @@ menu "On-chip Peripheral Drivers"
bool "Enable UART2"
default n
config BSP_UART2_TX_USING_DMA
bool "Enable UART2 TX DMA"
depends on BSP_USING_UART2 && RT_SERIAL_USING_DMA
default n
config BSP_UART2_RX_USING_DMA
bool "Enable UART2 RX DMA"
depends on BSP_USING_UART2 && RT_SERIAL_USING_DMA

View File

@ -32,6 +32,11 @@ menu "On-chip Peripheral Drivers"
bool "Enable UART1"
default y
config BSP_UART1_TX_USING_DMA
bool "Enable UART1 TX DMA"
depends on BSP_USING_UART1 && RT_SERIAL_USING_DMA
default n
config BSP_UART1_RX_USING_DMA
bool "Enable UART1 RX DMA"
depends on BSP_USING_UART1 && RT_SERIAL_USING_DMA
@ -41,6 +46,11 @@ menu "On-chip Peripheral Drivers"
bool "Enable UART2"
default n
config BSP_UART2_TX_USING_DMA
bool "Enable UART2 TX DMA"
depends on BSP_USING_UART2 && RT_SERIAL_USING_DMA
default n
config BSP_UART2_RX_USING_DMA
bool "Enable UART2 RX DMA"
depends on BSP_USING_UART2 && RT_SERIAL_USING_DMA

View File

@ -34,6 +34,10 @@ menuconfig RT_USING_SERIAL
bool "RT_USING_SERIAL_V1"
config RT_USING_SERIAL_V2
bool "RT_USING_SERIAL_V2"
config RT_USING_SERIAL_X
bool "RT_USING_SERIAL_X"
help
A serial driver that supporting True NonBlock.
endchoice
config RT_SERIAL_USING_DMA
bool "Enable serial DMA mode"
@ -41,8 +45,36 @@ menuconfig RT_USING_SERIAL
config RT_SERIAL_RB_BUFSZ
int "Set RX buffer size"
depends on !RT_USING_SERIAL_V2
depends on RT_USING_SERIAL_V1
default 64
if RT_USING_SERIAL_X
config RT_SERIAL_FIFO_BUFSZ
int "Set SerialX FIFO buffer size"
default 128
help
suggestion: RT_SERIAL_FIFO_BUFSZ == 2^N
and RT_SERIAL_FIFO_BUFSZ >= 2*RT_SERIAL_DMA_BUFSZ
config RT_SERIAL_DMA_BUFSZ
int "Set SerialX DMA buffer size"
depends on RT_SERIAL_USING_DMA
default 64
help
suggestion: RT_SERIAL_DMA_BUFSZ == 2^N
and RT_SERIAL_FIFO_BUFSZ >= 2*RT_SERIAL_DMA_BUFSZ
config RT_SERIAL_HARD_FIFO
bool "Using Hard FIFO"
default n
help
Useful only if the chip supported
eg: NUC970 N9H30 serial chips
The UART1/2/4/6/8/10 is built-in with a 64-byte transmitter FIFO (TX_FIFO)
and a 64-byte receiver FIFO (RX_FIFO),
and the UART0/3/5/7/9 are equipped 16-byte transmitter FIFO (TX_FIFO)
and 16-byte receiver FIFO (RX_FIFO).
endif
endif
config RT_USING_CAN

View File

@ -0,0 +1,216 @@
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-04-10 THEWON serialX first version
* 2022-06-08 THEWON add No TX Empty interrupt support
* 2023-02-15 THEWON add init ops
*/
#ifndef __SERIALX_H__
#define __SERIALX_H__
#include <rtthread.h>
#include <rtdevice.h>
#define BAUD_RATE_2400 2400
#define BAUD_RATE_4800 4800
#define BAUD_RATE_9600 9600
#define BAUD_RATE_19200 19200
#define BAUD_RATE_38400 38400
#define BAUD_RATE_57600 57600
#define BAUD_RATE_115200 115200
#define BAUD_RATE_230400 230400
#define BAUD_RATE_460800 460800
#define BAUD_RATE_921600 921600
#define BAUD_RATE_2000000 2000000
#define BAUD_RATE_3000000 3000000
#define DATA_BITS_5 5
#define DATA_BITS_6 6
#define DATA_BITS_7 7
#define DATA_BITS_8 8
#define DATA_BITS_9 9
#define STOP_BITS_1 0
#define STOP_BITS_2 1
#define STOP_BITS_3 2
#define STOP_BITS_4 3
#ifdef _WIN32
#include <windows.h>
#else
#define PARITY_NONE 0
#define PARITY_ODD 1
#define PARITY_EVEN 2
#endif
#define BIT_ORDER_LSB 0
#define BIT_ORDER_MSB 1
#define NRZ_NORMAL 0 /* Non Return to Zero : normal mode */
#define NRZ_INVERTED 1 /* Non Return to Zero : inverted mode */
#ifndef RT_SERIAL_FIFO_BUFSZ
#define RT_SERIAL_FIFO_BUFSZ 128
#endif
#ifndef RT_SERIAL_DMA_BUFSZ
#define RT_SERIAL_DMA_BUFSZ 32
#endif
#if RT_SERIAL_DMA_BUFSZ < 32
#define RT_SERIAL_DMA_BUFSZ 32
#endif
#if RT_SERIAL_FIFO_BUFSZ < (RT_SERIAL_DMA_BUFSZ*2)
#define RT_SERIAL_FIFO_BUFSZ RT_SERIAL_DMA_BUFSZ*2
#endif
#define RT_SERIAL_EVENT_RX_IND 0x01 /* Rx indication */
#define RT_SERIAL_EVENT_TX_DONE 0x02 /* Tx complete */
#define RT_SERIAL_EVENT_RX_DMADONE 0x03 /* Rx DMA transfer done */
#define RT_SERIAL_EVENT_TX_DMADONE 0x04 /* Tx DMA transfer done */
#define RT_SERIAL_EVENT_RX_TIMEOUT 0x05 /* Rx timeout */
#define RT_SERIAL_DMA_RX 0x01
#define RT_SERIAL_DMA_TX 0x02
#define RT_SERIAL_RX_INT 0x01
#define RT_SERIAL_TX_INT 0x02
#define RT_SERIAL_ERR_OVERRUN 0x01
#define RT_SERIAL_ERR_FRAMING 0x02
#define RT_SERIAL_ERR_PARITY 0x03
#define RT_SERIAL_TX_DATAQUEUE_SIZE 2048
#define RT_SERIAL_TX_DATAQUEUE_LWM 30
#define RT_SERIAL_FLOWCONTROL_CTSRTS 1
#define RT_SERIAL_FLOWCONTROL_NONE 0
/* Default config for serial_configure structure */
#define RT_SERIAL_CONFIG_DEFAULT \
{ \
BAUD_RATE_115200, /* 115200 bits/s */ \
DATA_BITS_8, /* 8 databits */ \
STOP_BITS_1, /* 1 stopbit */ \
PARITY_NONE, /* No parity */ \
BIT_ORDER_LSB, /* LSB first sent */ \
NRZ_NORMAL, /* Normal mode */ \
RT_SERIAL_FIFO_BUFSZ, /* Buffer size */ \
RT_SERIAL_FLOWCONTROL_NONE, /* Off flowcontrol */ \
0 \
}
#define RT_SERIAL_EVENT_TXDONE (1 << 0)
#define RT_SERIAL_EVENT_RXDONE (1 << 1)
//#define RT_SERIAL_USE_EVENT // Just for test, maybe using event in the future
struct rt_serial_device;
typedef int (*cb_serial_tx)(struct rt_serial_device *serial, const rt_uint8_t *data, int length);
typedef int (*cb_serial_rx)(struct rt_serial_device *serial, rt_uint8_t *data, int length);
struct serial_configure
{
rt_uint32_t baud_rate;
rt_uint32_t data_bits :4;
rt_uint32_t stop_bits :2;
rt_uint32_t parity :2;
rt_uint32_t bit_order :1;
rt_uint32_t invert :1;
rt_uint32_t bufsz :16; // unused, move it to struct rt_serial_device
rt_uint32_t flowcontrol :1;
rt_uint32_t reserved :5;
};
/*
* Serial FIFO mode
*/
struct rt_serial_fifo
{
rt_uint32_t buf_sz;
/* software fifo */
rt_uint8_t *buffer;
rt_uint16_t put_index, get_index;
rt_bool_t is_full;
};
struct rt_serial_device
{
struct rt_device parent;
const struct rt_uart_ops *ops;
struct serial_configure config;
rt_uint32_t bufsz;
void *serial_rx;
void *serial_tx;
#ifdef RT_SERIAL_USING_DMA
rt_size_t dma_idx_rx;
rt_uint8_t serial_dma_rx[RT_SERIAL_DMA_BUFSZ];
rt_uint8_t serial_dma_tx[RT_SERIAL_DMA_BUFSZ];
#endif
cb_serial_rx _cb_rx;
cb_serial_tx _cb_tx;
#ifndef RT_SERIAL_USE_EVENT
struct rt_completion completion_rx;
struct rt_completion completion_tx;
#else
rt_event_t rx_done;
rt_event_t tx_done;
#endif
};
typedef struct rt_serial_device rt_serial_t;
/**
* uart operators
*/
struct rt_uart_ops
{
rt_err_t (*init)(struct rt_serial_device *serial);
rt_err_t (*configure)(struct rt_serial_device *serial, struct serial_configure *cfg);
rt_err_t (*control)(struct rt_serial_device *serial, int cmd, void *arg);
int (*putc)(struct rt_serial_device *serial, char c);
int (*getc)(struct rt_serial_device *serial);
int (*flush)(struct rt_serial_device *serial);
#if defined (RT_SERIAL_NO_TXEIT)
rt_bool_t (*is_int_txing)(struct rt_serial_device *serial);
void (*start_tx)(struct rt_serial_device *serial, rt_uint8_t ch);
#else
void (*start_tx)(struct rt_serial_device *serial);
#endif
void (*stop_tx)(struct rt_serial_device *serial);
#ifdef RT_SERIAL_USING_DMA
rt_bool_t (*is_dma_txing)(struct rt_serial_device *serial);
void (*start_dma_tx)(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size);
void (*stop_dma_tx)(struct rt_serial_device *serial);
#endif
void (*enable_interrupt)(struct rt_serial_device *serial);
void (*disable_interrupt)(struct rt_serial_device *serial);
};
void rt_hw_serial_isr(struct rt_serial_device *serial, int event);
rt_err_t rt_hw_serial_register(struct rt_serial_device *serial,
const char *name,
rt_uint32_t flag,
void *data);
#endif

View File

@ -7,6 +7,7 @@
* Date Author Notes
* 2012-01-08 bernard first version.
* 2014-07-12 bernard Add workqueue implementation.
* 2022-04-10 THEWON add serialX
*/
#ifndef __RT_DEVICE_H__
@ -57,7 +58,9 @@ extern "C" {
#endif /* RT_USING_USB_HOST */
#ifdef RT_USING_SERIAL
#ifdef RT_USING_SERIAL_V2
#ifdef RT_USING_SERIAL_X
#include "drivers/serialX.h"
#elif defined RT_USING_SERIAL_V2
#include "drivers/serial_v2.h"
#else
#include "drivers/serial.h"

View File

@ -7,6 +7,9 @@ if GetDepend(['RT_USING_SERIAL']):
if GetDepend(['RT_USING_SERIAL_V2']):
src = Glob('serial_v2.c')
group = DefineGroup('DeviceDrivers', src, depend = ['RT_USING_SERIAL_V2'], CPPPATH = CPPPATH)
elif GetDepend(['RT_USING_SERIAL_X']):
src = Glob('serialX.c')
group = DefineGroup('DeviceDrivers', src, depend = ['RT_USING_SERIAL_X'], CPPPATH = CPPPATH)
else:
src = Glob('serial.c')
group = DefineGroup('DeviceDrivers', src, depend = ['RT_USING_SERIAL'], CPPPATH = CPPPATH)

View File

@ -0,0 +1,124 @@
## serialX User Manual
serialX 驱动框架在尽量延续 v1 版使用方法的前提下,增加阻塞和非阻塞操作,同时对 DMA 收发缓冲机制进行了调整。
RT-Thread 论坛上有几篇介绍和讲解 serialX 的文章,使用 serialX 前请先了解它。
如果用分层理论解释 serialX ,那么它可以划分成应用层、中间驱动框架层、底层硬件层。这三层各有分工,又相互影响。
硬件是千变万化的,驱动的一个职责就是把千变万化的硬件进行包装,把共性的行为固化出来,交给应用层使用。
### 串口驱动框架和硬件底层接口功能定义详解
```
struct rt_uart_ops
{
// 配置外设寄存器设置默认波特率等;外设时钟配置、引脚功能复用(如果还没配置过);启用外设等等
int (*init)(struct rt_serial_device *serial);
// 仅仅用于配置外设波特率、数据位数、停止位等等
rt_err_t (*configure)(struct rt_serial_device *serial, struct serial_configure *cfg);
// 用于使能禁用中断,初始配置 DMA
rt_err_t (*control)(struct rt_serial_device *serial, int cmd, void *arg);
// 串口外设“写数据寄存器”*为空*,把数据放入“写数据寄存器”。*不为空*,死等
int (*putc)(struct rt_serial_device *serial, char c);
// 串口外设“读数据寄存器”*不为空*,读出“读数据寄存器”的值。*为空*,返回 -1
int (*getc)(struct rt_serial_device *serial);
// 启动发送,多数是使能串口外设“发送寄存器”*空*中断
void (*start_tx)(struct rt_serial_device *serial);
// 结束发送,多数是禁止串口外设“发送寄存器”*空*中断
void (*stop_tx)(struct rt_serial_device *serial);
#ifdef RT_SERIAL_USING_DMA
// 判断 DMA 是否在发送过程中,必须有效检测 DMA 是否在发送数据中,有些芯片有寄存器位标志,可以用标志位判断,如果没有,使用变量标志。
rt_bool_t (*is_dma_txing)(struct rt_serial_device *serial);
// 启动 DMA 发送,数据缓存首地址和数据长度由驱动框架提供。(最后置位 DMA tx 标志)
void (*start_dma_tx)(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size);
// 停止 DMA 发送,停用 DMA 发送,(最后复位 DMA tx 标志)
void (*stop_dma_tx)(struct rt_serial_device *serial);
#endif
// 使能串口外设中断,添加这个的初衷是减少全局中断开关操作。目前这部分代码已被注释并使用 rt_hw_interrupt_enable
void (*enable_interrupt)(struct rt_serial_device *serial);
// 禁用串口外设中断,添加这个的初衷是减少全局中断开关操作。目前这部分代码已被注释并使用 rt_hw_interrupt_disable
void (*disable_interrupt)(struct rt_serial_device *serial);
};
```
其中,`control` 是一个多功能扩展接口,目前支持的 `cmd` 包括:
- `RT_DEVICE_CTRL_OPEN` 先清理一些可能出现的中断,最后配置并使能外设中断
- `RT_DEVICE_CTRL_CLOSE` 禁止外设中断,清理中断,卸载外设
- `RT_DEVICE_CTRL_CLR_INT` 定向禁止中断,包括接收中断,接收通道 DMA 中断,发送通道 DMA 中断
- `RT_DEVICE_CTRL_SET_INT` 定向使能中断,包括接收中断,接收通道 DMA 中断,发送通道 DMA 中断
- `RT_DEVICE_CTRL_CONFIG` 这部分主要是初始化配置接收通道 DMA 和发送通道 DMA。
`enable_interrupt` `disable_interrupt` 两个接口是一组很细腻的操作,但是有些外设如果用中断方式,有些用 DMA 方式。这时候需要区别当前外设是否使用了 DMA ,是否需要操作 DMA 中断。(某外设 “是否支持 DMA 收发” 和外设 “使用了 DMA 收发” 是两个概念)
PS: `control` 好像是无所不能的,有了它,为什么还要添加 `init` `start_tx` `stop_tx` `enable_interrupt` `disable_interrupt`
#### `rt_hw_serial_isr` 中断回调函数怎么调用?
在 serialX 里只关心五种中断,
1. “接收寄存器不空” `rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DONE);`
2. “发送寄存器空” `rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);`
3. “接收通道空闲” `rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (dma_cnt << 8));`
4. “接收通道 DMA 半/全中断” `rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (dma_cnt << 8));`
5. “发送通道 DMA 发送完成中断” `rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_TX_DMADONE);`
其中dma_cnt 是 DMA 接收缓存中已接收数据字节数。
前两个用于中断收发,后三个用于 DMA 收发。
> 注:其它异常错误中断,或者清理掉,或者转入其它流程,这些不在 serialX 驱动考虑范围内。
### 重新定义 `rt_serial_device` 定义:
```
struct rt_serial_device
{
struct rt_device parent;
const struct rt_uart_ops *ops;
struct serial_configure config;
rt_uint32_t bufsz; // 驱动层收发缓存容量大小
void *serial_rx; // 串口接收缓存
void *serial_tx; // 串口发送缓存
#ifdef RT_SERIAL_USING_DMA // 串口收发缓存和 DMA 使用的二级缓存分开
rt_size_t dma_idx_rx;
rt_uint8_t serial_dma_rx[RT_SERIAL_DMA_BUFSZ]; // DMA 接收缓存
rt_uint8_t serial_dma_tx[RT_SERIAL_DMA_BUFSZ]; // DMA 发送缓存
#endif
cb_serial_tx _cb_tx; // 写过程回调函数指针
cb_serial_rx _cb_rx; // 读过程回调函数指针
struct rt_completion completion_tx; // 发送完成
struct rt_completion completion_rx; // 接收到新数据
};
typedef struct rt_serial_device rt_serial_t;
```
在最近的一次修改中,把 `struct serial_configure` 中的 `bufsz` 成员挪到了 `struct rt_serial_device` 。就是为了 open 了设备之后还能修改波特率,而且,修改缓存大小的功能可以挪到 `control` 里,达到 open 设备之后还能修改缓存大小的目地。
### 之前写过的文章汇总
#### 理论类
- [rt-thread 驱动篇 之 串口驱动框架剖析及性能提升](https://club.rt-thread.org/ask/article/0ee3da5b6a9c347d.html) 这里是 serialX 的理论基础,之后的所有工作都是这些想法的实现。
- [rt-thread 驱动篇 之 serialX 全网公测](https://club.rt-thread.org/ask/article/bfd92159ba11aef6.html) 这是第一次在 stm32 上实现并进行的测试,内含测试代码。 `struct rt_uart_ops` 结构体接口定义有很详细的注释,在新的芯片上写底层驱动时,这些注释说明很重要,一定严格按照这些接口定义的功能进行实现。
#### 实践类
- [rt-thread 驱动篇serialX 小试牛刀](http://www.elecfans.com/d/1849301.html) 这是在控制台串口上使用 serialX 的实践。
以及,[rt-thread 驱动篇serialX弊端及解决方法](https://www.elecfans.com/d/1850548.html) 会告诉你在控制台上使用**中断/DMA**收发模式时,可能遇到的尴尬问题以及怎么去避免它们。
- [测试 serialX 的 posix 支持](https://club.rt-thread.org/ask/article/e7b067264f6badfe.html) 这里是 posix 接口测试。内含测试代码
- [基于 serialX 串口驱动移植 libmodbus](https://club.rt-thread.org/ask/article/91437d9031d4ac5a.html) 这篇是使用 serialX 驱动跑的 libmodbus 。开启了 posix 之后serialX 驱动和 libmodbus 配合的还是蛮好的。
### 仓库
最后serialX 的[源码仓库](https://gitee.com/thewon/serialX) ,里面有一份儿移植说明文档,以及两个测试程序。我们可以从测试程序里看到所有的用法。
目前已经实现了几种芯片底层驱动,想移植到其它芯片上,可以参考。

File diff suppressed because it is too large Load Diff

View File

@ -41,6 +41,7 @@
* 2022-01-01 Gabriel improve hooking method
* 2022-01-07 Gabriel move some __on_rt_xxxxx_hook to dedicated c source files
* 2022-01-12 Meco Man remove RT_THREAD_BLOCK
* 2022-04-10 THEWON add flush for device & some device flags
* 2022-04-20 Meco Man change version number to v4.1.1
* 2022-04-21 THEWON add macro RT_VERSION_CHECK
* 2022-06-29 Meco Man add RT_USING_LIBC and standard libc headers
@ -1010,6 +1011,10 @@ enum rt_device_class_type
#define RT_DEVICE_OFLAG_WRONLY 0x002 /**< write only access */
#define RT_DEVICE_OFLAG_RDWR 0x003 /**< read and write */
#define RT_DEVICE_OFLAG_OPEN 0x008 /**< device is opened */
#define RT_DEVICE_OFLAG_BLOCKING 0x000 /**< blocking io mode */
#define RT_DEVICE_OFLAG_NONBLOCKING 0x004 /**< non-blocking io mode */
#define RT_DEVICE_OFLAG_MASK 0xf0f /**< mask of open flag */
/**
@ -1019,10 +1024,14 @@ enum rt_device_class_type
#define RT_DEVICE_CTRL_SUSPEND 0x02 /**< suspend device */
#define RT_DEVICE_CTRL_CONFIG 0x03 /**< configure device */
#define RT_DEVICE_CTRL_CLOSE 0x04 /**< close device */
#define RT_DEVICE_CTRL_SET_INT 0x10 /**< set interrupt */
#define RT_DEVICE_CTRL_CLR_INT 0x11 /**< clear interrupt */
#define RT_DEVICE_CTRL_GET_INT 0x12 /**< get interrupt status */
#define RT_DEVICE_CTRL_NOTIFY_SET 0x05 /**< set notify func */
#define RT_DEVICE_CTRL_SET_INT 0x06 /**< set interrupt */
#define RT_DEVICE_CTRL_CLR_INT 0x07 /**< clear interrupt */
#define RT_DEVICE_CTRL_GET_INT 0x08 /**< get interrupt status */
#define RT_DEVICE_CTRL_CONSOLE_OFLAG 0x09 /**< get console open flag */
#define RT_DEVICE_CTRL_OPEN 0x0A /**< open device */
#define RT_DEVICE_CTRL_BLOCKING 0x0B /**< blocking io */
#define RT_DEVICE_CTRL_MASK 0x1f /**< mask for contrl commands */
/**
* device control
@ -1055,6 +1064,7 @@ struct rt_device_ops
rt_size_t (*read) (rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size);
rt_size_t (*write) (rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size);
rt_err_t (*control)(rt_device_t dev, int cmd, void *args);
rt_err_t (*flush) (rt_device_t dev);
};
#endif /* RT_USING_DEVICE_OPS */
@ -1096,6 +1106,7 @@ struct rt_device
rt_size_t (*read) (rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size);
rt_size_t (*write) (rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size);
rt_err_t (*control)(rt_device_t dev, int cmd, void *args);
rt_err_t (*flush) (rt_device_t dev);
#endif /* RT_USING_DEVICE_OPS */
#ifdef RT_USING_POSIX_DEVIO

View File

@ -519,6 +519,12 @@ rt_size_t rt_device_write(rt_device_t dev,
const void *buffer,
rt_size_t size);
rt_err_t rt_device_control(rt_device_t dev, int cmd, void *arg);
rt_err_t rt_device_flush(rt_device_t dev);
#ifdef RT_USING_DM
rt_err_t rt_device_bind_driver(rt_device_t device, rt_driver_t driver, void *node);
rt_device_t rt_device_create_since_driver(rt_driver_t drv,int device_id);
rt_err_t rt_device_probe_and_init(rt_device_t device);
#endif
/**@}*/
#endif

View File

@ -13,6 +13,7 @@
* 2013-07-09 Grissiom add ref_count support
* 2016-04-02 Bernard fix the open_flag initialization issue.
* 2021-03-19 Meco Man remove rt_device_init_all()
* 2022-04-10 THEWON add flush for device
*/
#include <rtthread.h>
@ -28,6 +29,7 @@
#define device_close (dev->ops->close)
#define device_read (dev->ops->read)
#define device_write (dev->ops->write)
#define device_flush (dev->ops->flush)
#define device_control (dev->ops->control)
#else
#define device_init (dev->init)
@ -35,6 +37,7 @@
#define device_close (dev->close)
#define device_read (dev->read)
#define device_write (dev->write)
#define device_flush (dev->flush)
#define device_control (dev->control)
#endif /* RT_USING_DEVICE_OPS */
@ -290,7 +293,11 @@ rt_err_t rt_device_close(rt_device_t dev)
/* set open flag */
if (result == RT_EOK || result == -RT_ENOSYS)
{
dev->open_flag = RT_DEVICE_OFLAG_CLOSE;
dev->rx_indicate = RT_NULL;
dev->tx_complete = RT_NULL;
}
return result;
}
@ -382,6 +389,33 @@ rt_size_t rt_device_write(rt_device_t dev,
}
RTM_EXPORT(rt_device_write);
/**
* @brief This function will flush a device's buffers.
*
* @param dev is the pointer of device driver structure.
*
* @return the result, RT_EOK on successfully.
*/
rt_err_t rt_device_flush(rt_device_t dev)
{
RT_ASSERT(dev != RT_NULL);
RT_ASSERT(rt_object_get_type(&dev->parent) == RT_Object_Class_Device);
if (dev->ref_count == 0)
{
return -RT_ERROR;
}
/* call device_write interface */
if (device_flush != RT_NULL)
{
return device_flush(dev);
}
return -RT_ENOSYS;
}
RTM_EXPORT(rt_device_flush);
/**
* @brief This function will perform a variety of control functions on devices.
*
@ -457,4 +491,87 @@ rt_err_t rt_device_set_tx_complete(rt_device_t dev,
}
RTM_EXPORT(rt_device_set_tx_complete);
#ifdef RT_USING_DM
/**
* This function bind drvier and device
*
* @param driver the pointer of driver structure
* @param device the pointer of device structure
* @param node the pointer of fdt node structure
*
* @return the error code, RT_EOK on successfully.
*/
rt_err_t rt_device_bind_driver(rt_device_t device, rt_driver_t driver, void *node)
{
if((!driver) || (!device))
{
return -RT_EINVAL;
}
device->drv = driver;
#ifdef RT_USING_DEVICE_OPS
device->ops = driver->dev_ops;
#endif
device->dtb_node = node;
return RT_EOK;
}
RTM_EXPORT(rt_device_bind_driver);
/**
* This function create rt_device according to driver infomation
*
* @param drv the pointer of driver structure
* @param device_id specify the ID of the rt_device
*
* @return the error code, RT_EOK on successfully.
*/
rt_device_t rt_device_create_since_driver(rt_driver_t drv,int device_id)
{
rt_device_t device;
if (!drv)
{
return RT_NULL;
}
device = (rt_device_t)rt_calloc(1,drv->device_size);
if(device == RT_NULL)
{
return RT_NULL;
}
device->device_id = device_id;
rt_snprintf(device->parent.name, sizeof(device->parent.name), "%s%d", drv->name, device_id);
return device;
}
RTM_EXPORT(rt_device_create_since_driver);
/**
* This function rt_device probe and init
*
* @param device the pointer of rt_device structure
* @return the error code, RT_EOK on successfully.
*/
rt_err_t rt_device_probe_and_init(rt_device_t device)
{
int ret = -RT_ERROR;
if (!device)
{
return -RT_EINVAL;
}
if(!device->drv)
{
return -RT_ERROR;
}
if(device->drv->probe)
{
ret = device->drv->probe((rt_device_t)device);
}
if(device->drv->probe_init)
{
ret = device->drv->probe_init((rt_device_t)device);
}
return ret;
}
RTM_EXPORT(rt_device_probe_and_init);
#endif /* RT_USING_DM */
#endif /* RT_USING_DEVICE */