diff --git a/components/libc/newlib/math.c b/components/libc/newlib/math.c index d86abe5877..cfd3763686 100644 --- a/components/libc/newlib/math.c +++ b/components/libc/newlib/math.c @@ -1,12 +1,168 @@ #include -/* Fix me */ -double sin(double x) +/* + * COPYRIGHT: See COPYING in the top level directory + * PROJECT: ReactOS CRT + * FILE: lib/crt/math/cos.c + * PURPOSE: Generic C Implementation of cos + * PROGRAMMER: Timo Kreuzer (timo.kreuzer@reactos.org) + */ + +#define PRECISION 9 + +static double cos_off_tbl[] = {0.0, -M_PI/2., 0, -M_PI/2.}; +static double cos_sign_tbl[] = {1,-1,-1,1}; + +static double sin_off_tbl[] = {0.0, -M_PI/2., 0, -M_PI/2.}; +static double sin_sign_tbl[] = {1,-1,-1,1}; + +double sin(double x) { - #warning sin function not supported for this platform + int quadrant; + double x2, result; + + /* Calculate the quadrant */ + quadrant = x * (2./M_PI); + + /* Get offset inside quadrant */ + x = x - quadrant * (M_PI/2.); + + /* Normalize quadrant to [0..3] */ + quadrant = (quadrant - 1) & 0x3; + + /* Fixup value for the generic function */ + x += sin_off_tbl[quadrant]; + + /* Calculate the negative of the square of x */ + x2 = - (x * x); + + /* This is an unrolled taylor series using iterations + * Example with 4 iterations: + * result = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8! + * To save multiplications and to keep the precision high, it's performed + * like this: + * result = 1 - x^2 * (1/2! - x^2 * (1/4! - x^2 * (1/6! - x^2 * (1/8!)))) + */ + + /* Start with 0, compiler will optimize this away */ + result = 0; + +#if (PRECISION >= 10) + result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19*20); + result *= x2; +#endif +#if (PRECISION >= 9) + result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18); + result *= x2; +#endif +#if (PRECISION >= 8) + result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16); + result *= x2; +#endif +#if (PRECISION >= 7) + result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14); + result *= x2; +#endif +#if (PRECISION >= 6) + result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12); + result *= x2; +#endif +#if (PRECISION >= 5) + result += 1./(1.*2*3*4*5*6*7*8*9*10); + result *= x2; +#endif + result += 1./(1.*2*3*4*5*6*7*8); + result *= x2; + + result += 1./(1.*2*3*4*5*6); + result *= x2; + + result += 1./(1.*2*3*4); + result *= x2; + + result += 1./(1.*2); + result *= x2; + + result += 1; + + /* Apply correct sign */ + result *= sin_sign_tbl[quadrant]; + + return result; } -double cos(double x) +double cos(double x) { - #warning cos function not supported for this platform + int quadrant; + double x2, result; + + /* Calculate the quadrant */ + quadrant = x * (2./M_PI); + + /* Get offset inside quadrant */ + x = x - quadrant * (M_PI/2.); + + /* Normalize quadrant to [0..3] */ + quadrant = quadrant & 0x3; + + /* Fixup value for the generic function */ + x += cos_off_tbl[quadrant]; + + /* Calculate the negative of the square of x */ + x2 = - (x * x); + + /* This is an unrolled taylor series using iterations + * Example with 4 iterations: + * result = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8! + * To save multiplications and to keep the precision high, it's performed + * like this: + * result = 1 - x^2 * (1/2! - x^2 * (1/4! - x^2 * (1/6! - x^2 * (1/8!)))) + */ + + /* Start with 0, compiler will optimize this away */ + result = 0; + +#if (PRECISION >= 10) + result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18*19*20); + result *= x2; +#endif +#if (PRECISION >= 9) + result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16*17*18); + result *= x2; +#endif +#if (PRECISION >= 8) + result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14*15*16); + result *= x2; +#endif +#if (PRECISION >= 7) + result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12*13*14); + result *= x2; +#endif +#if (PRECISION >= 6) + result += 1./(1.*2*3*4*5*6*7*8*9*10*11*12); + result *= x2; +#endif +#if (PRECISION >= 5) + result += 1./(1.*2*3*4*5*6*7*8*9*10); + result *= x2; +#endif + result += 1./(1.*2*3*4*5*6*7*8); + result *= x2; + + result += 1./(1.*2*3*4*5*6); + result *= x2; + + result += 1./(1.*2*3*4); + result *= x2; + + result += 1./(1.*2); + result *= x2; + + result += 1; + + /* Apply correct sign */ + result *= cos_sign_tbl[quadrant]; + + return result; } +