Merge pull request #1372 from uestczyh222/master

[Bsp][Tina]Add SDIO Driver
This commit is contained in:
ZYH 2018-04-20 11:26:49 +08:00 committed by GitHub
commit da704e695c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 981 additions and 0 deletions

View File

@ -14,3 +14,9 @@ config TINA_USING_UART2
bool "Using UART2"
select RT_USING_SERIAL
default y
config TINA_USING_SDIO0
bool "Using SDIO0"
select RT_USING_SDIO
default y

View File

@ -0,0 +1,795 @@
/*
* File : drv_sdio.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2017, RT-Thread Development Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2018-02-08 RT-Thread the first version
*/
#include <rtthread.h>
#include <rthw.h>
#include <rtdevice.h>
#include <string.h>
#include "drv_sdio.h"
#include "interrupt.h"
#include "mmu.h"
#include "drv_gpio.h"
#include "drv_clock.h"
#define DBG_ENABLE
#define DBG_SECTION_NAME "[MMC]"
// #define DBG_LEVEL DBG_LOG
// #define DBG_LEVEL DBG_INFO
#define DBG_LEVEL DBG_WARNING
// #define DBG_LEVEL DBG_ERROR
#define DBG_COLOR
#include <rtdbg.h>
#ifdef RT_USING_SDIO
#define CONFIG_MMC_USE_DMA
#define DMA_ALIGN (32U)
struct mmc_xfe_des
{
rt_uint32_t size; /* block size */
rt_uint32_t num; /* block num */
rt_uint8_t *buff; /* buff addr */
rt_uint32_t flag; /* write or read or stream */
#define MMC_DATA_WRITE (1 << 0)
#define MMC_DATA_READ (1 << 1)
#define MMC_DATA_STREAM (1 << 2)
};
struct mmc_flag
{
volatile rt_uint32_t risr;
volatile rt_uint32_t idst;
};
struct sdio_drv
{
struct rt_mmcsd_host *host;
struct rt_mmcsd_req *req;
struct rt_semaphore rt_sem;
struct mmc_xfe_des xfe;
struct mmc_flag flag;
tina_mmc_t mmc_des;
rt_uint8_t *mmc_buf;
rt_uint8_t usedma;
};
#ifdef CONFIG_MMC_USE_DMA
#ifdef TINA_USING_SDIO0
ALIGN(32) static rt_uint8_t dma_buffer[64 * 1024];
#endif
#endif
static void mmc_request_end(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req);
static void mmc_delay_us(int us)
{
volatile unsigned int temp;
while (us--)
{
temp = 0x2f;
while (temp--)
{
temp = temp;
};
}
}
static void mmc_dump_errinfo(unsigned int err)
{
dbg_log(DBG_ERROR, "[err]:0x%08x, %s%s%s%s%s%s%s%s%s%s%s\n",
err,
err & SDXC_RespErr ? " RE" : "",
err & SDXC_RespCRCErr ? " RCE" : "",
err & SDXC_DataCRCErr ? " DCE" : "",
err & SDXC_RespTimeout ? " RTO" : "",
err & SDXC_DataTimeout ? " DTO" : "",
err & SDXC_DataStarve ? " DS" : "",
err & SDXC_FIFORunErr ? " FE" : "",
err & SDXC_HardWLocked ? " HL" : "",
err & SDXC_StartBitErr ? " SBE" : "",
err & SDXC_EndBitErr ? " EBE" : "",
err == 0 ? " STO" : ""
);
}
static int mmc_update_clk(tina_mmc_t mmc)
{
rt_uint32_t cmd;
rt_uint32_t timeout = 2000000;
/* cmd load */
cmd = SDXC_LOAD_CMD | SDXC_UPDATE_CLOCK_CMD | SDXC_WAIT_OVER_CMD;
mmc->cmdr_reg = cmd;
/* while load success */
while ((mmc->cmdr_reg & SDXC_LOAD_CMD) && (--timeout))
{
mmc_delay_us(1);
}
if (!timeout)
{
dbg_log(DBG_ERROR, "mmc update clk failed\n");
return -RT_ERROR;
}
/* clean interrupt */
mmc->risr_reg = mmc->risr_reg;
return RT_EOK;
}
static rt_err_t mmc_trans_data_by_dma(tina_mmc_t mmc, struct mmc_xfe_des *xfe)
{
ALIGN(32) static struct mmc_des_v4p1 pdes[128]; // mast ALIGN(32)
unsigned i, rval;
unsigned des_idx;
unsigned length = xfe->size * xfe->num;
unsigned buff_frag_num = length >> SDXC_DES_NUM_SHIFT;
unsigned remain = length & (SDXC_DES_BUFFER_MAX_LEN - 1);
if (remain)
{
buff_frag_num ++;
}
else
{
remain = SDXC_DES_BUFFER_MAX_LEN;
}
memset(pdes, 0, sizeof(pdes));
mmu_clean_dcache((rt_uint32_t)(xfe->buff), length);
for (i = 0, des_idx = 0; i < buff_frag_num; i++, des_idx++)
{
// memset((void*)&pdes[des_idx], 0, sizeof(struct mmc_v4p1));
pdes[des_idx].des_chain = 1;
pdes[des_idx].own = 1;
pdes[des_idx].dic = 1;
if ((buff_frag_num > 1) && (i != buff_frag_num - 1))
{
pdes[des_idx].data_buf1_sz = SDXC_DES_BUFFER_MAX_LEN;
}
else
{
pdes[des_idx].data_buf1_sz = remain;
}
pdes[des_idx].buf_addr_ptr1 = (unsigned long)(xfe->buff) + i * SDXC_DES_BUFFER_MAX_LEN;
if (i == 0)
{
pdes[des_idx].first_des = 1;
}
if (i == (buff_frag_num - 1))
{
pdes[des_idx].dic = 0;
pdes[des_idx].last_des = 1;
pdes[des_idx].end_of_ring = 1;
pdes[des_idx].buf_addr_ptr2 = 0;
}
else
{
pdes[des_idx].buf_addr_ptr2 = (unsigned long)&pdes[des_idx+1];
}
dbg_log(DBG_LOG, "frag %d, remain %d, des[%d](%08x): " \
"[0] = %08x, [1] = %08x, [2] = %08x, [3] = %08x\n", \
i, remain, des_idx, (unsigned int)&pdes[des_idx],
(unsigned int)((unsigned int*)&pdes[des_idx])[0], (unsigned int)((unsigned int*)&pdes[des_idx])[1],
(unsigned int)((unsigned int*)&pdes[des_idx])[2], (unsigned int)((unsigned int*)&pdes[des_idx])[3]);
}
mmu_clean_dcache((rt_uint32_t)pdes, sizeof(struct mmc_des_v4p1) * (des_idx + 1));
/*
* GCTRLREG
* GCTRL[2] : DMA reset
* GCTRL[5] : DMA enable
*
* IDMACREG
* IDMAC[0] : IDMA soft reset
* IDMAC[1] : IDMA fix burst flag
* IDMAC[7] : IDMA on
*
* IDIECREG
* IDIE[0] : IDMA transmit interrupt flag
* IDIE[1] : IDMA receive interrupt flag
*/
rval = mmc->gctl_reg;
mmc->gctl_reg = rval | (1 << 5) | (1 << 2); /* dma enable */
mmc->dmac_reg = (1 << 0); /* idma reset */
while(mmc->dmac_reg & 0x1) {}; /* wait idma reset done */
mmc->dmac_reg = (1 << 1) | (1 << 7); /* idma on */
rval = mmc->idie_reg & (~3);
if (xfe->flag == MMC_DATA_WRITE)
rval |= (1 << 0);
else
rval |= (1 << 1);
mmc->idie_reg = rval;
mmc->dlba_reg = (unsigned long)pdes;
mmc->fwlr_reg = (2U << 28) | (7U << 16) | 8;
return 0;
}
static rt_err_t mmc_trans_data_by_cpu(tina_mmc_t mmc, struct mmc_xfe_des *xfe)
{
unsigned i;
unsigned byte_cnt = xfe->size * xfe->num;
unsigned *buff = (unsigned *)(xfe->buff);
volatile unsigned timeout = 2000000;
if (xfe->flag == MMC_DATA_WRITE)
{
for (i = 0; i < (byte_cnt >> 2); i++)
{
while(--timeout && (mmc->star_reg & (1 << 3)));
if (timeout <= 0)
{
dbg_log(DBG_ERROR, "write data by cpu failed status:0x%08x\n", mmc->star_reg);
return -RT_ERROR;
}
mmc->fifo_reg = buff[i];
timeout = 2000000;
}
}
else
{
for (i = 0; i < (byte_cnt >> 2); i++)
{
while(--timeout && (mmc->star_reg & (1 << 2)));
if (timeout <= 0)
{
dbg_log(DBG_ERROR, "read data by cpu failed status:0x%08x\n", mmc->star_reg);
return -RT_ERROR;
}
buff[i] = mmc->fifo_reg;
timeout = 2000000;
}
}
return RT_EOK;
}
static rt_err_t mmc_config_clock(tina_mmc_t mmc, int clk)
{
rt_uint32_t rval = 0;
/* disable card clock */
rval = mmc->ckcr_reg;
rval &= ~(1 << 16);
mmc->ckcr_reg = rval;
if (mmc_update_clk(mmc) != RT_EOK)
{
dbg_log(DBG_ERROR, "clk update fail line:%d\n", __LINE__);
return -RT_ERROR;
}
if (mmc == MMC0)
{
mmc_set_clk(SDMMC0, clk);
}
else
{
mmc_set_clk(SDMMC1, clk);
}
/* Re-enable card clock */
rval = mmc->ckcr_reg;
rval |= (0x1 << 16); //(3 << 16);
mmc->ckcr_reg = rval;
if(mmc_update_clk(mmc) != RT_EOK)
{
dbg_log(DBG_ERROR, "clk update fail line:%d\n", __LINE__);
return -RT_ERROR;
}
return RT_EOK;
}
static rt_err_t mmc_set_ios(tina_mmc_t mmc, int clk, int bus_width)
{
dbg_log(DBG_LOG, "mmc set io bus width:%d clock:%d\n", \
(bus_width == MMCSD_BUS_WIDTH_8 ? 8 : (bus_width == MMCSD_BUS_WIDTH_4 ? 4 : 1)), clk);
/* change clock */
if (clk && (mmc_config_clock(mmc, clk) != RT_EOK))
{
dbg_log(DBG_ERROR, "update clock failed\n");
return -RT_ERROR;
}
/* Change bus width */
if (bus_width == MMCSD_BUS_WIDTH_8)
{
mmc->bwdr_reg = 2;
}
else if (bus_width == MMCSD_BUS_WIDTH_4)
{
mmc->bwdr_reg = 1;
}
else
{
mmc->bwdr_reg = 0;
}
return RT_EOK;
}
static int mmc_send_cmd(struct rt_mmcsd_host *host, struct rt_mmcsd_cmd *cmd)
{
unsigned int cmdval = 0x80000000;
signed int timeout = 0;
int err = 0;
unsigned int status = 0;
struct rt_mmcsd_data *data = cmd->data;
unsigned int bytecnt = 0;
struct sdio_drv *sdio_des = (struct sdio_drv *)host->private_data;
tina_mmc_t mmc = sdio_des->mmc_des;
timeout = 5000 * 1000;
status = mmc->star_reg;
while (status & (1 << 9))
{
dbg_log(DBG_LOG, "note: check card busy\n");
status = mmc->star_reg;
if (!timeout--)
{
err = -1;
dbg_log(DBG_ERROR, "mmc cmd12 busy timeout data:0x%08x\n", status);
return err;
}
mmc_delay_us(1);
}
/*
* CMDREG
* CMD[5:0] : Command index
* CMD[6] : Has response
* CMD[7] : Long response
* CMD[8] : Check response CRC
* CMD[9] : Has data
* CMD[10] : Write
* CMD[11] : Steam mode
* CMD[12] : Auto stop
* CMD[13] : Wait previous over
* CMD[14] : About cmd
* CMD[15] : Send initialization
* CMD[21] : Update clock
* CMD[31] : Load cmd
*/
if (!cmd->cmd_code)
cmdval |= (1 << 15);
if (resp_type(cmd) != RESP_NONE)
cmdval |= (1 << 6);
if (resp_type(cmd) == RESP_R2)
cmdval |= (1 << 7);
if ((resp_type(cmd) != RESP_R3) && (resp_type(cmd) != RESP_R4))
cmdval |= (1 << 8);
if (data)
{
cmdval |= (1 << 9) | (1 << 13);
if (data->flags & DATA_DIR_WRITE)
cmdval |= (1 << 10);
if (data->blks > 1)
cmdval |= (1 << 12);
mmc->bksr_reg = data->blksize;
bytecnt = data->blksize * data->blks;
mmc->bycr_reg = bytecnt;
}
dbg_log(DBG_LOG, "cmd %d(0x%08x), arg 0x%08x\n", cmd->cmd_code, cmdval | cmd->cmd_code, cmd->arg);
mmc->cagr_reg = cmd->arg;
if (!data)
{
mmc->cmdr_reg = cmdval | cmd->cmd_code;
mmc->imkr_reg |= 0x1 << 2;
}
/*
* transfer data and check status
* STATREG[2] : FIFO empty
* STATREG[3] : FIFO full
*/
if (data)
{
dbg_log(DBG_LOG, "mmc trans data %d bytes addr:0x%08x\n", bytecnt, data);
#ifdef CONFIG_MMC_USE_DMA
if (bytecnt > 64)
{
#else
if (0)
{
#endif
sdio_des->usedma = 1;
mmc->gctl_reg = mmc->gctl_reg & (~0x80000000);
mmc_trans_data_by_dma(mmc, &sdio_des->xfe);
mmc->cmdr_reg = cmdval | cmd->cmd_code;
}
else
{
sdio_des->usedma = 0;
mmc->gctl_reg = mmc->gctl_reg | 0x80000000;
mmc->cmdr_reg = cmdval | cmd->cmd_code;
mmc_trans_data_by_cpu(mmc, &sdio_des->xfe);
}
if (data->blks > 1)
{
mmc->imkr_reg |= (0x1 << 14);
}
else
{
mmc->imkr_reg |= (0x1 << 3);
}
}
mmc->imkr_reg |= 0xbfc2;
if (data)
{
//TODO:2 * bytecnt * 4?
timeout = sdio_des->usedma ? (2 * bytecnt * 4) : 100; //0.04us(25M)*2(4bit width)*25()
if (timeout < 10)
{
timeout = 10;
}
}
else
{
timeout = 200;
}
if (rt_sem_take(&sdio_des->rt_sem, timeout) != RT_EOK)
{
err = (mmc->risr_reg | sdio_des->flag.risr) & 0xbfc2;
goto out;
}
err = (mmc->risr_reg | sdio_des->flag.risr) & 0xbfc2;
if (err)
{
cmd->err = -RT_ETIMEOUT;
goto out;
}
if (resp_type(cmd) == RESP_R2)
{
cmd->resp[3] = mmc->resp0_reg;
cmd->resp[2] = mmc->resp1_reg;
cmd->resp[1] = mmc->resp2_reg;
cmd->resp[0] = mmc->resp3_reg;
dbg_log(DBG_LOG, "mmc resp 0x%08x 0x%08x 0x%08x 0x%08x\n",
cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3]);
}
else
{
cmd->resp[0] = mmc->resp0_reg;
dbg_log(DBG_LOG, "mmc resp 0x%08x\n", cmd->resp[0]);
}
out:
if (err)
{
mmc_dump_errinfo(err & 0xbfc2);
}
if (data && sdio_des->usedma)
{
/* IDMASTAREG
* IDST[0] : idma tx int
* IDST[1] : idma rx int
* IDST[2] : idma fatal bus error
* IDST[4] : idma descriptor invalid
* IDST[5] : idma error summary
* IDST[8] : idma normal interrupt sumary
* IDST[9] : idma abnormal interrupt sumary
*/
status = mmc->idst_reg;
mmc->idst_reg = status;
mmc->idie_reg = 0;
mmc->dmac_reg = 0;
mmc->gctl_reg = mmc->gctl_reg & (~(1 << 5));
}
if (err)
{
if (data && (data->flags & DATA_DIR_READ) && (bytecnt == 512))
{
mmc->gctl_reg = mmc->gctl_reg | 0x80000000;
mmc->dbgc_reg = 0xdeb;
timeout = 1000;
dbg_log(DBG_LOG, "Read remain data\n");
while (mmc->bbcr_reg < 512)
{
unsigned int tmp = mmc->fifo_reg;
tmp = tmp;
dbg_log(DBG_LOG, "Read data 0x%08x, bbcr 0x%04x\n", tmp, mmc->bbcr_reg);
mmc_delay_us(1);
if (!(timeout--))
{
dbg_log(DBG_ERROR, "Read remain data timeout\n");
break;
}
}
}
mmc->gctl_reg = 0x7;
while (mmc->gctl_reg & 0x7) { };
mmc_update_clk(mmc);
cmd->err = -RT_ETIMEOUT;
dbg_log(DBG_ERROR, "mmc cmd %d err\n", cmd->cmd_code);
}
mmc->gctl_reg &= ~(0x1 << 4);
mmc->imkr_reg &= ~0xffff;
mmc->risr_reg = 0xffffffff;
mmc->gctl_reg |= 0x1 << 4;
while (!rt_sem_take(&sdio_des->rt_sem, 0)) {}
mmc_request_end(sdio_des->host, sdio_des->req);
return err;
}
static void mmc_request_end(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
{
struct rt_mmcsd_data *data;
unsigned byte_cnt;
struct sdio_drv *sdio = (struct sdio_drv *)host->private_data;
#ifdef CONFIG_MMC_USE_DMA
data = req->cmd->data;
if (data)
{
byte_cnt = data->blksize * data->blks;
if ((byte_cnt > 64) && (data->flags & DATA_DIR_READ))
{
mmu_invalidate_dcache((rt_uint32_t)sdio->xfe.buff, (rt_uint32_t)byte_cnt);
if (((rt_uint32_t)data->buf) & (DMA_ALIGN - 1))
{
memcpy(data->buf, sdio->xfe.buff, byte_cnt);
}
}
}
#endif
mmcsd_req_complete(host);
}
static void sdio_request_send(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
{
struct rt_mmcsd_data *data;
int byte_cnt;
struct sdio_drv *sdio;
sdio = (struct sdio_drv *)host->private_data;
sdio->req = req;
data = req->cmd->data;
if (data)
{
sdio->xfe.size = data->blksize;
sdio->xfe.num = data->blks;
sdio->xfe.buff = (rt_uint8_t *)data->buf;
sdio->xfe.flag = (data->flags & DATA_DIR_WRITE) ? \
MMC_DATA_WRITE : MMC_DATA_READ;
#ifdef CONFIG_MMC_USE_DMA
byte_cnt = data->blksize * data->blks;
if ((byte_cnt > 64) && (((rt_uint32_t)data->buf) & (DMA_ALIGN - 1)))
{
sdio->xfe.buff = (rt_uint8_t *)sdio->mmc_buf;
if (data->flags & DATA_DIR_WRITE)
{
memcpy(sdio->mmc_buf, data->buf, byte_cnt);
mmu_clean_dcache((rt_uint32_t)sdio->mmc_buf, (rt_uint32_t)byte_cnt);
}
}
#endif
}
memset(&sdio->flag, 0, sizeof(struct mmc_flag));
mmc_send_cmd(host, req->cmd);
return;
}
static void sdio_set_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
{
int clk = io_cfg->clock;
int width = io_cfg->bus_width;
struct sdio_drv *sdio_des = (struct sdio_drv *)host->private_data;
tina_mmc_t mmc = sdio_des->mmc_des;
mmc_set_ios(mmc, clk, width);
}
static const struct rt_mmcsd_host_ops ops =
{
sdio_request_send,
sdio_set_iocfg,
RT_NULL,
RT_NULL,
};
static void sdio_interrupt_handle(int irqno, void *param)
{
rt_uint32_t risr, idst;
rt_uint32_t status;
struct sdio_drv *sdio_des = (struct sdio_drv *)param;
struct rt_mmcsd_data *data = sdio_des->req->cmd->data;
tina_mmc_t mmc = sdio_des->mmc_des;
risr = mmc->risr_reg;
idst = mmc->idst_reg;
mmc->risr_reg = risr & mmc->imkr_reg;
mmc->idst_reg = idst & mmc->idie_reg;
sdio_des->flag.risr |= risr;
sdio_des->flag.idst |= idst;
if (data)
{
int done = 0;
status = sdio_des->flag.risr | mmc->risr_reg;
if (data->blks > 1)//not wait auto stop when MMC_CMD_MANUAL is set
{
if (sdio_des->usedma)
done = ((status & (1 << 14)) && (sdio_des->flag.idst & 0x3)) ? 1 : 0;
else
done = status & (1 << 14);
}
else
{
if (sdio_des->usedma)
done = ((status & (1 << 3)) && (sdio_des->flag.idst & 0x3)) ? 1 : 0;
else
done = status & (1 << 3);
}
if (done)
{
rt_sem_release(&sdio_des->rt_sem);
}
}
else
{
rt_sem_release(&sdio_des->rt_sem);
}
}
static void sdio_gpio_init(struct sdio_drv *sdio_des)
{
int pin;
if ((rt_uint32_t)sdio_des->mmc_des == MMC0_BASE_ADDR)
{
/* SDC0: PF0-PF5 */
for (pin = GPIO_PIN_0; pin <= GPIO_PIN_5; pin++)
{
gpio_set_func(GPIO_PORT_F, pin, IO_FUN_1);
gpio_set_pull_mode(GPIO_PORT_F, pin, PULL_UP);
gpio_set_drive_level(GPIO_PORT_F, pin, DRV_LEVEL_2);
}
}
else if ((rt_uint32_t)sdio_des->mmc_des == MMC1_BASE_ADDR)
{
//todo: config gpio port
RT_ASSERT(0);
}
}
static void sdio_clk_io_on(struct sdio_drv *sdio_des)
{
if ((rt_uint32_t)sdio_des->mmc_des == MMC0_BASE_ADDR)
{
CCU->bus_clk_gating0 |= 0x1 << 8;
CCU->bus_soft_rst0 |= 0x1 << 8;
}
else if ((rt_uint32_t)sdio_des->mmc_des == MMC1_BASE_ADDR)
{
CCU->bus_clk_gating0 |= 0x1 << 9;
CCU->bus_soft_rst0 |= 0x1 << 9;
}
mmc_set_clk(SDMMC0, 24000000);
}
static void sdio_irq_init(void *param)
{
struct sdio_drv *sdio_des = (struct sdio_drv *)param;
if ((rt_uint32_t)sdio_des->mmc_des == MMC0_BASE_ADDR)
{
rt_hw_interrupt_install(SDC0_INTERRUPT, sdio_interrupt_handle, param, "mmc0_irq");
rt_hw_interrupt_umask(SDC0_INTERRUPT);
}
else if ((rt_uint32_t)sdio_des->mmc_des == MMC1_BASE_ADDR)
{
rt_hw_interrupt_install(SDC1_INTERRUPT, sdio_interrupt_handle, param, "mmc1_irq");
rt_hw_interrupt_umask(SDC1_INTERRUPT);
}
sdio_des->mmc_des->gctl_reg |= (0x1 << 4);
}
int tina_sdio_init(void)
{
struct rt_mmcsd_host *host;
#ifdef TINA_USING_SDIO0
{
static struct sdio_drv _sdio_drv;
host = mmcsd_alloc_host();
if (!host)
{
dbg_log(DBG_ERROR, "alloc host failed\n");
goto err;
}
if (rt_sem_init(&_sdio_drv.rt_sem, "sdio_sem", RT_NULL, RT_IPC_FLAG_FIFO))
{
dbg_log(DBG_ERROR, "sem init failed\n");
goto err;
}
_sdio_drv.mmc_des = (tina_mmc_t)MMC0_BASE_ADDR;
_sdio_drv.mmc_buf = dma_buffer;
//init gpio pin
sdio_gpio_init(&_sdio_drv);
//clk is on
sdio_clk_io_on(&_sdio_drv);
//irq init
sdio_irq_init(&_sdio_drv);
host->ops = &ops;
host->freq_min = 400 * 1000;
host->freq_max = 50 * 1000 * 1000;
host->valid_ocr = VDD_26_27 | VDD_27_28 | VDD_28_29 | VDD_29_30 | VDD_30_31 | VDD_31_32 |
VDD_32_33 | VDD_33_34 | VDD_34_35 | VDD_35_36;
host->flags = MMCSD_BUSWIDTH_4 | MMCSD_MUTBLKWRITE | MMCSD_SUP_SDIO_IRQ | MMCSD_SUP_HIGHSPEED;
host->max_seg_size = 2048;
host->max_dma_segs = 10;
host->max_blk_size = 512;
host->max_blk_count = 4096;
host->private_data = &_sdio_drv;
_sdio_drv.host = host;
mmcsd_change(host);
}
#endif
return RT_EOK;
err:
if (host)
{
rt_free(host);
}
return RT_ERROR;
}
INIT_APP_EXPORT(tina_sdio_init);
#endif

View File

@ -0,0 +1,180 @@
/*
* File : drv_sdio.h
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2017, RT-Thread Development Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2018-02-08 RT-Thread the first version
*/
#ifndef __DRV_SDIO_H__
#define __DRV_SDIO_H__
#define MMC0_BASE_ADDR 0x01C0F000
#define MMC1_BASE_ADDR 0x01C10000
struct tina_mmc
{
volatile rt_uint32_t gctl_reg; /* (0x000) */
volatile rt_uint32_t ckcr_reg; /* (0x004) */
volatile rt_uint32_t tmor_reg; /* (0x008) */
volatile rt_uint32_t bwdr_reg; /* (0x00C) */
volatile rt_uint32_t bksr_reg; /* (0x010) */
volatile rt_uint32_t bycr_reg; /* (0x014) */
volatile rt_uint32_t cmdr_reg; /* (0x018) */
volatile rt_uint32_t cagr_reg; /* (0x01C) */
volatile rt_uint32_t resp0_reg; /* (0x020) */
volatile rt_uint32_t resp1_reg; /* (0x024) */
volatile rt_uint32_t resp2_reg; /* (0x028) */
volatile rt_uint32_t resp3_reg; /* (0x02C) */
volatile rt_uint32_t imkr_reg; /* (0x030) */
volatile rt_uint32_t misr_reg; /* (0x034) */
volatile rt_uint32_t risr_reg; /* (0x038) */
volatile rt_uint32_t star_reg; /* (0x03C) */
volatile rt_uint32_t fwlr_reg; /* (0x040) */
volatile rt_uint32_t funs_reg; /* (0x044) */
volatile rt_uint32_t cbcr_reg; /* (0x048) */
volatile rt_uint32_t bbcr_reg; /* (0x04C) */
volatile rt_uint32_t dbgc_reg; /* (0x050) */
volatile rt_uint32_t reserved0;
volatile rt_uint32_t a12a_reg; /* (0x058) */
volatile rt_uint32_t reserved1[7];
volatile rt_uint32_t hwrst_reg; /* (0x078) */
volatile rt_uint32_t reserved2;
volatile rt_uint32_t dmac_reg; /* (0x080) */
volatile rt_uint32_t dlba_reg; /* (0x084) */
volatile rt_uint32_t idst_reg; /* (0x088) */
volatile rt_uint32_t idie_reg; /* (0x08C) */
volatile rt_uint32_t chda_reg; /* (0x090) */
volatile rt_uint32_t cbda_reg; /* (0x094) */
volatile rt_uint32_t reserved3[26];
volatile rt_uint32_t card_thldc_reg; /* (0x100) */
volatile rt_uint32_t reserved4[2];
volatile rt_uint32_t emmc_dsbd_reg; /* (0x10c) */
volatile rt_uint32_t reserved5[12];
volatile rt_uint32_t reserved6[48];
volatile rt_uint32_t fifo_reg; /* (0x200) */
};
typedef struct tina_mmc *tina_mmc_t;
#define MMC0 ((tina_mmc_t)MMC0_BASE_ADDR)
#define MMC1 ((tina_mmc_t)MMC1_BASE_ADDR)
#define BIT(x) (1<<(x))
/* Struct for Intrrrupt Information */
#define SDXC_RespErr BIT(1) //0x2
#define SDXC_CmdDone BIT(2) //0x4
#define SDXC_DataOver BIT(3) //0x8
#define SDXC_TxDataReq BIT(4) //0x10
#define SDXC_RxDataReq BIT(5) //0x20
#define SDXC_RespCRCErr BIT(6) //0x40
#define SDXC_DataCRCErr BIT(7) //0x80
#define SDXC_RespTimeout BIT(8) //0x100
#define SDXC_ACKRcv BIT(8) //0x100
#define SDXC_DataTimeout BIT(9) //0x200
#define SDXC_BootStart BIT(9) //0x200
#define SDXC_DataStarve BIT(10) //0x400
#define SDXC_VolChgDone BIT(10) //0x400
#define SDXC_FIFORunErr BIT(11) //0x800
#define SDXC_HardWLocked BIT(12) //0x1000
#define SDXC_StartBitErr BIT(13) //0x2000
#define SDXC_AutoCMDDone BIT(14) //0x4000
#define SDXC_EndBitErr BIT(15) //0x8000
#define SDXC_SDIOInt BIT(16) //0x10000
#define SDXC_CardInsert BIT(30) //0x40000000
#define SDXC_CardRemove BIT(31) //0x80000000
#define SDXC_IntErrBit (SDXC_RespErr | SDXC_RespCRCErr | SDXC_DataCRCErr \
| SDXC_RespTimeout | SDXC_DataTimeout | SDXC_FIFORunErr \
| SDXC_HardWLocked | SDXC_StartBitErr | SDXC_EndBitErr) //0xbfc2
/*
SD CMD reg
REG[0-5] : Cmd ID
REG[6] : Has response
REG[7] : Long response
REG[8] : Check response CRC
REG[9] : Has data
REG[10] : Write
REG[11] : Steam mode
REG[12] : Auto stop
REG[13] : Wait previous over
REG[14] : About cmd
REG[15] : Send initialization
REG[21] : Update clock
REG[31] : Load cmd
*/
#define SDXC_RESPONSE_CMD BIT(6)
#define SDXC_LONG_RESPONSE_CMD BIT(7)
#define SDXC_CHECK_CRC_CMD BIT(8)
#define SDXC_HAS_DATA_CMD BIT(9)
#define SDXC_WRITE_CMD BIT(10)
#define SDXC_STEAM_CMD BIT(11)
#define SDXC_AUTO_STOP_CMD BIT(12)
#define SDXC_WAIT_OVER_CMD BIT(13)
#define SDXC_ABOUT_CMD BIT(14)
#define SDXC_SEND_INIT_CMD BIT(15)
#define SDXC_UPDATE_CLOCK_CMD BIT(21)
#define SDXC_LOAD_CMD BIT(31)
/*
SD status reg
REG[0] : FIFO_RX_LEVEL
REG[1] : FIFO_TX_LEVEL
REG[2] : FIFO_EMPTY
REG[3] : FIFO_FULL
REG[4-7] : FSM_STA
REG[8] : CARD_PRESENT
REG[9] : CARD_BUSY
REG[10] : FSM_BUSY
REG[11-16]: RESP_IDX
REG[17-21]: FIFO_LEVEL
REG[31] : DMA_REQ
*/
#define SDXC_FIFO_RX_LEVEL BIT(0)
#define SDXC_FIFO_TX_LEVEL BIT(1)
#define SDXC_FIFO_EMPTY BIT(2)
#define SDXC_FIFO_FULL BIT(3)
#define SDXC_CARD_PRESENT BIT(8)
#define SDXC_CARD_BUSY BIT(9)
#define SDXC_FSM_BUSY BIT(10)
#define SDXC_DMA_REQ BIT(31)
struct mmc_des_v4p1
{
rt_uint32_t : 1,
dic : 1, /* disable interrupt on completion */
last_des : 1, /* 1-this data buffer is the last buffer */
first_des : 1, /* 1-data buffer is the first buffer,0-data buffer contained in the next descriptor is 1st buffer */
des_chain : 1, /* 1-the 2nd address in the descriptor is the next descriptor address */
end_of_ring : 1, /* 1-last descriptor flag when using dual data buffer in descriptor */
: 24,
card_err_sum : 1, /* transfer error flag */
own : 1; /* des owner:1-idma owns it, 0-host owns it */
#define SDXC_DES_NUM_SHIFT 12 /* smhc2!! */
#define SDXC_DES_BUFFER_MAX_LEN (1 << SDXC_DES_NUM_SHIFT)
rt_uint32_t data_buf1_sz : 16,
data_buf2_sz : 16;
rt_uint32_t buf_addr_ptr1;
rt_uint32_t buf_addr_ptr2;
};
#endif