auto formatted

This commit is contained in:
Meco Man 2021-03-21 02:55:53 +08:00
parent b21d59b3dc
commit 70b1c0e92f
19 changed files with 1954 additions and 1954 deletions

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
@ -16,171 +16,171 @@
#define EE24LC024H
/*
Note: If eeprom size lager then EE_MEM_SIZE byte, you must define EE_ADDR_SIZE == I2C_MEM_2Bytes
Note: If eeprom size lager then EE_MEM_SIZE byte, you must define EE_ADDR_SIZE == I2C_MEM_2Bytes
*/
#ifdef EE24LC024H
#define EE_ADDR_SIZE I2C_MEM_1Byte
#define EE_MEM_SIZE 256
#define EE_PageSize 16
#define EE_MEM_SIZE 256
#define EE_PageSize 16
#endif
static struct rt_device ee_dev;
uint32_t EE_ReadBuffer(void *pBuffer, rt_off_t ReadAddr, rt_size_t NumByteToRead)
{
return I2C_IORW(I2C1, (uint8_t *)pBuffer, (uint16_t)NumByteToRead, (uint16_t)ReadAddr, EE_Address | 0x01, I2C_MEM_1Byte );
return I2C_IORW(I2C1, (uint8_t *)pBuffer, (uint16_t)NumByteToRead, (uint16_t)ReadAddr, EE_Address | 0x01, I2C_MEM_1Byte );
}
uint32_t EE_WritePage(void *pBuffer, uint16_t WriteAddr)
{
I2C_IORW(I2C1, (uint8_t *)pBuffer, EE_PageSize , WriteAddr, EE_Address , EE_ADDR_SIZE );
{
I2C_IORW(I2C1, (uint8_t *)pBuffer, EE_PageSize , WriteAddr, EE_Address , EE_ADDR_SIZE );
/*if( I2C_AcknowledgePolling(I2C1 , EE_Address) == Error )
rt_kprintf("EE ACK failed\n");*/
rt_thread_delay(50);
/*if( I2C_AcknowledgePolling(I2C1 , EE_Address) == Error )
rt_kprintf("EE ACK failed\n");*/
rt_thread_delay(50);
return 0;
return 0;
}
uint32_t EE_WriteByte(void *pBuffer, uint16_t WriteAddr)
{
I2C_IORW(I2C1, (uint8_t *)pBuffer, 1 , WriteAddr, EE_Address, EE_ADDR_SIZE );
I2C_IORW(I2C1, (uint8_t *)pBuffer, 1 , WriteAddr, EE_Address, EE_ADDR_SIZE );
/*if( I2C_AcknowledgePolling(I2C1 , EE_Address) == Error )
rt_kprintf("EE ACK failed\n");*/
rt_thread_delay(50);
/*if( I2C_AcknowledgePolling(I2C1 , EE_Address) == Error )
rt_kprintf("EE ACK failed\n");*/
rt_thread_delay(50);
return 0;
return 0;
}
Status EE_WriteBuffer(const void *pBuffer, rt_off_t WriteAddr, rt_size_t NumByteToWrite)
{
uint8_t NumOfPage = 0, NumOfSingle = 0;
uint16_t Addr = 0,count = 0;
uint8_t *ptr = (uint8_t *)pBuffer;
Addr = (uint16_t)(WriteAddr&0xFFFF);
uint8_t NumOfPage = 0, NumOfSingle = 0;
uint16_t Addr = 0,count = 0;
uint8_t *ptr = (uint8_t *)pBuffer;
count = (uint16_t)(NumByteToWrite&0xFFFF);
if ((WriteAddr + NumByteToWrite) > EE_MEM_SIZE)
return Error;
Addr = (uint16_t)(WriteAddr&0xFFFF);
while (count >= EE_PageSize)
{
EE_WritePage(ptr, Addr);
Addr += EE_PageSize;
count -= EE_PageSize;
ptr += EE_PageSize;
}
while (count)
{
EE_WriteByte(ptr++, Addr++);
count--;
}
return Success;
count = (uint16_t)(NumByteToWrite&0xFFFF);
if ((WriteAddr + NumByteToWrite) > EE_MEM_SIZE)
return Error;
while (count >= EE_PageSize)
{
EE_WritePage(ptr, Addr);
Addr += EE_PageSize;
count -= EE_PageSize;
ptr += EE_PageSize;
}
while (count)
{
EE_WriteByte(ptr++, Addr++);
count--;
}
return Success;
}
static rt_err_t ee24LCxx_init(rt_device_t dev)
{
return RT_EOK;
return RT_EOK;
}
static rt_size_t ee24LCxx_read(rt_device_t dev, rt_off_t pos, void *buf, rt_size_t size)
{
if (EE_ReadBuffer(buf, pos, size) == Success)
return size;
else
return -1;
if (EE_ReadBuffer(buf, pos, size) == Success)
return size;
else
return -1;
}
static rt_size_t ee24LCxx_write(rt_device_t dev, rt_off_t pos, const void *buf, rt_size_t size)
{
if (EE_WriteBuffer(buf, pos, size) == Success)
return size;
else
return -1;
if (EE_WriteBuffer(buf, pos, size) == Success)
return size;
else
return -1;
}
static rt_err_t ee24LCxx_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
return RT_EOK;
}
static rt_err_t ee24LCxx_close(rt_device_t dev)
{
return RT_EOK;
return RT_EOK;
}
static rt_err_t ee24LCxx_control(rt_device_t dev, int cmd, void *args)
{
return RT_EOK;
return RT_EOK;
}
void ee24LCxx_hw_init(void)
{
uint32_t delay, i;
I2C1_INIT();
uint32_t delay, i;
I2C1_INIT();
for (i =0; i < 4; i++)
{
delay = 0xFFFFF;
while (delay--);
}
for (i =0; i < 4; i++)
{
delay = 0xFFFFF;
while (delay--);
}
ee_dev.init = ee24LCxx_init;
ee_dev.open = ee24LCxx_open;
ee_dev.close = ee24LCxx_close;
ee_dev.read = ee24LCxx_read;
ee_dev.write = ee24LCxx_write;
ee_dev.control = ee24LCxx_control;
ee_dev.type = RT_Device_Class_Unknown;
ee_dev.init = ee24LCxx_init;
ee_dev.open = ee24LCxx_open;
ee_dev.close = ee24LCxx_close;
ee_dev.read = ee24LCxx_read;
ee_dev.write = ee24LCxx_write;
ee_dev.control = ee24LCxx_control;
ee_dev.type = RT_Device_Class_Unknown;
rt_device_register(&ee_dev, "eeprom", RT_DEVICE_FLAG_RDWR);
rt_device_register(&ee_dev, "eeprom", RT_DEVICE_FLAG_RDWR);
}
void dump_ee(void)
{
rt_device_t dev;
char buf[EE_MEM_SIZE];
int i, j;
rt_device_t dev;
char buf[EE_MEM_SIZE];
int i, j;
dev = rt_device_find("eeprom");
rt_device_read(dev, 0, buf, EE_MEM_SIZE );
dev = rt_device_find("eeprom");
rt_device_read(dev, 0, buf, EE_MEM_SIZE );
for (i = 0; i < 16; i++)
{
for (j = 0; j < 16; j++)
{
rt_kprintf("0x%02X ", buf[ i*16+ j]);
}
rt_kprintf("\n");
}
for (i = 0; i < 16; i++)
{
for (j = 0; j < 16; j++)
{
rt_kprintf("0x%02X ", buf[ i*16+ j]);
}
rt_kprintf("\n");
}
}
void ee_reset(void)
{
char buf[EE_MEM_SIZE], read[EE_MEM_SIZE];
int i;
rt_device_t dev = rt_device_find("eeprom");
char buf[EE_MEM_SIZE], read[EE_MEM_SIZE];
int i;
rt_device_t dev = rt_device_find("eeprom");
for (i = 0; i < EE_MEM_SIZE; i++)
{
buf[i] = 0xFF;
read[i] = 0;
}
if (rt_device_write(dev, 0, buf, EE_MEM_SIZE ) == EE_MEM_SIZE)
rt_kprintf("Write Success\n");
for (i = 0; i < EE_MEM_SIZE; i++)
{
buf[i] = 0xFF;
read[i] = 0;
}
if (rt_device_write(dev, 0, buf, EE_MEM_SIZE ) == EE_MEM_SIZE)
rt_kprintf("Write Success\n");
rt_device_read(dev, 0, read, EE_MEM_SIZE );
rt_device_read(dev, 0, read, EE_MEM_SIZE );
for (i = 0; i < EE_MEM_SIZE; i++)
{
if (buf[i] != read[i])
rt_kprintf("EE Failed %X != %X at %d\n", buf[i], read[i], i);
}
for (i = 0; i < EE_MEM_SIZE; i++)
{
if (buf[i] != read[i])
rt_kprintf("EE Failed %X != %X at %d\n", buf[i], read[i], i);
}
}
#ifdef RT_USING_FINSH

View File

@ -26,7 +26,7 @@ void rt_hw_spi2_baud_rate(uint16_t SPI_BaudRatePrescaler)
/* FM25L256 using SPI2 */
void fm25_spi_cfg()
{
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitTypeDef GPIO_InitStructure;
SPI_InitTypeDef SPI_InitStructure;
/* Enable SPI Periph clock */
@ -36,24 +36,24 @@ void fm25_spi_cfg()
//Setup GPIO
GPIO_InitStructure.GPIO_Pin = FM25_SPI_SCK | FM25_SPI_MISO | FM25_SPI_MOSI;
/*Connect Pin to AF*/
GPIO_PinAFConfig(FM25_SPI_GPIO, GPIO_PinSource3, GPIO_AF_SPI3);
GPIO_PinAFConfig(FM25_SPI_GPIO, GPIO_PinSource4, GPIO_AF_SPI3);
GPIO_PinAFConfig(FM25_SPI_GPIO, GPIO_PinSource5, GPIO_AF_SPI3);
/*Connect Pin to AF*/
GPIO_PinAFConfig(FM25_SPI_GPIO, GPIO_PinSource3, GPIO_AF_SPI3);
GPIO_PinAFConfig(FM25_SPI_GPIO, GPIO_PinSource4, GPIO_AF_SPI3);
GPIO_PinAFConfig(FM25_SPI_GPIO, GPIO_PinSource5, GPIO_AF_SPI3);
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(FM25_SPI_GPIO, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(FM25_SPI_GPIO, &GPIO_InitStructure);
/* CS pin: PB12 */
/* CS pin: PB12 */
GPIO_InitStructure.GPIO_Pin = FM25_SPI_NSS_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_Init(FM25_SPI_NSS_GPIO, &GPIO_InitStructure);
CS_HIGH();
CS_HIGH();
SPI_Cmd(FM25_SPI, DISABLE);
SPI_Cmd(FM25_SPI, DISABLE);
/*------------------------ SPI configuration ------------------------*/
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;//SPI_Direction_1Line_Tx;
SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
@ -72,23 +72,23 @@ void fm25_spi_cfg()
SPI_Cmd(FM25_SPI, ENABLE);
//SPI_CalculateCRC(FM25_SPI, DISABLE);
fram_lock = rt_sem_create("framlock", 1, RT_IPC_FLAG_FIFO);
fram_lock = rt_sem_create("framlock", 1, RT_IPC_FLAG_FIFO);
}
static uint8_t spi_readwrite(uint8_t data)
{
int32_t timeout = 0xFFFFF;
//rt_kprintf("State 0x%X\n", SPI_I2S_GetFlagStatus(FM25_SPI, SPI_I2S_FLAG_TXE));
//Wait until the transmit buffer is empty
//rt_kprintf("State 0x%X\n", SPI_I2S_GetFlagStatus(FM25_SPI, SPI_I2S_FLAG_TXE));
//Wait until the transmit buffer is empty
while (SPI_I2S_GetFlagStatus(FM25_SPI, SPI_I2S_FLAG_TXE) == RESET && --timeout >0);
if( timeout <= 0 ){ spi_timeout_cnt++; return 0;}
if( timeout <= 0 ){ spi_timeout_cnt++; return 0;}
// Send the byte
SPI_I2S_SendData(FM25_SPI, data);
timeout = 0xFFFFF;
timeout = 0xFFFFF;
//Wait until a data is received
while (SPI_I2S_GetFlagStatus(FM25_SPI, SPI_I2S_FLAG_RXNE) == RESET && --timeout >0);
if( timeout <= 0 ){ spi_timeout_cnt++; return 0;}
if( timeout <= 0 ){ spi_timeout_cnt++; return 0;}
// Get the received data
data = SPI_I2S_ReceiveData(FM25_SPI);
@ -110,29 +110,29 @@ rt_size_t fm25_read(rt_device_t dev, rt_off_t offset, void * buf, rt_size_t size
{
uint32_t index;
uint8_t *buffer = (uint8_t*) buf;
uint8_t *buffer = (uint8_t*) buf;
fram_lock();
//spi_config();
//rt_kprintf("READ: %d, size=%d\n", offset, size);
//rt_kprintf("READ: %d, size=%d\n", offset, size);
CS_LOW();
spi_readwrite( FM25_READ);
spi_readwrite( (offset >> 8)&0xFF );
spi_readwrite( offset & 0xFF );
spi_readwrite( FM25_READ);
spi_readwrite( (offset >> 8)&0xFF );
spi_readwrite( offset & 0xFF );
for(index=0; index<size; index++)
{
*buffer++ = spi_readwrite(0xFF);
*buffer++ = spi_readwrite(0xFF);
if( spi_timeout_cnt > 0 )
{
fram_unlock();
spi_timeout_cnt = 0;
rt_kprintf("Read time out\n");
return -1;
}
if( spi_timeout_cnt > 0 )
{
fram_unlock();
spi_timeout_cnt = 0;
rt_kprintf("Read time out\n");
return -1;
}
offset++;
offset++;
}
CS_HIGH();
@ -145,33 +145,33 @@ rt_size_t fm25_write(rt_device_t dev, rt_off_t offset, const void * buf, rt_size
{
uint32_t index = size;
uint8_t *buffer = (uint8_t*) buf;
uint8_t *buffer = (uint8_t*) buf;
fram_lock();
//spi_config();
//rt_kprintf("WRITE: %d, size=%d\n", offset, size);
CS_LOW();
//rt_kprintf("WRITE: %d, size=%d\n", offset, size);
CS_LOW();
spi_readwrite( FM25_WREN );
CS_HIGH();
CS_LOW();
spi_readwrite( FM25_WRITE);
spi_readwrite( (offset >> 8)&0xFF );
spi_readwrite( offset & 0xFF );
while( index > 0 )
{
spi_readwrite( *buffer++ );
if( spi_timeout_cnt > 0 )
{
fram_unlock();
rt_kprintf("Write time out\n");
spi_timeout_cnt = 0;
return -1;
}
index--;
offset++;
}
CS_HIGH();
//rt_thread_delay(100);
CS_LOW();
spi_readwrite( FM25_WRITE);
spi_readwrite( (offset >> 8)&0xFF );
spi_readwrite( offset & 0xFF );
while( index > 0 )
{
spi_readwrite( *buffer++ );
if( spi_timeout_cnt > 0 )
{
fram_unlock();
rt_kprintf("Write time out\n");
spi_timeout_cnt = 0;
return -1;
}
index--;
offset++;
}
CS_HIGH();
//rt_thread_delay(100);
fram_unlock();
@ -179,36 +179,36 @@ rt_size_t fm25_write(rt_device_t dev, rt_off_t offset, const void * buf, rt_size
}
static rt_err_t fm25_init(rt_device_t dev)
{
return RT_EOK;
return RT_EOK;
}
static rt_err_t fm25_open(rt_device_t dev, rt_uint16_t oflag)
{
char i;
SPI_Cmd(FM25_SPI, ENABLE);
char i;
SPI_Cmd(FM25_SPI, ENABLE);
if( oflag != RT_DEVICE_FLAG_RDONLY )
{
CS_LOW();
spi_readwrite( FM25_WRSR );
spi_readwrite( FM25_WPEN );
CS_HIGH();
//rt_kprintf("RDSR=0x%X\n", fm25_read_status());
if( oflag != RT_DEVICE_FLAG_RDONLY )
{
CS_LOW();
spi_readwrite( FM25_WRSR );
spi_readwrite( FM25_WPEN );
CS_HIGH();
//rt_kprintf("RDSR=0x%X\n", fm25_read_status());
}
return RT_EOK;
}
return RT_EOK;
}
static rt_err_t fm25_close(rt_device_t dev)
{
CS_LOW();
CS_LOW();
spi_readwrite( FM25_WRDI );
CS_HIGH();
SPI_Cmd(FM25_SPI, DISABLE);
SPI_Cmd(FM25_SPI, DISABLE);
return RT_EOK;
return RT_EOK;
}
static rt_err_t fm25_control(rt_device_t dev, int cmd, void *args)
{
RT_ASSERT(dev != RT_NULL);
RT_ASSERT(dev != RT_NULL);
if (cmd == RT_DEVICE_CTRL_BLK_GETGEOME)
{
@ -219,30 +219,30 @@ static rt_err_t fm25_control(rt_device_t dev, int cmd, void *args)
geometry->bytes_per_sector = 1;
geometry->block_size = 1;
geometry->sector_count = 8192;
geometry->sector_count = 8192;
}
return RT_EOK;
return RT_EOK;
}
static struct rt_device spi_flash_device;
static struct rt_device spi_flash_device;
void fm25_hw_init()
{
int i = 0xFFFFF;
fm25_spi_cfg();
int i = 0xFFFFF;
fm25_spi_cfg();
while(i--);
//spi_config();
CS_LOW();
while(i--);
//spi_config();
CS_LOW();
spi_readwrite( FM25_WRDI );
CS_HIGH();
spi_flash_device.type = RT_Device_Class_Block;
spi_flash_device.type = RT_Device_Class_Block;
spi_flash_device.init = fm25_init;
spi_flash_device.open = fm25_open;
spi_flash_device.close = fm25_close;
spi_flash_device.read = fm25_read;
spi_flash_device.read = fm25_read;
spi_flash_device.write = fm25_write;
spi_flash_device.control = fm25_control;
/* no private */
@ -255,17 +255,17 @@ void fm25_hw_init()
int fram_test(int x)
{
//rt_kprintf("SR=0x%X\nCR1=0x%X\nCR2=0x%X\n", FM25_SPI->SR, FM25_SPI->CR1,FM25_SPI->CR2);
rt_device_t device = RT_NULL;
char buf[256];
char read[256];
int i, j;
//rt_kprintf("SR=0x%X\nCR1=0x%X\nCR2=0x%X\n", FM25_SPI->SR, FM25_SPI->CR1,FM25_SPI->CR2);
rt_device_t device = RT_NULL;
char buf[256];
char read[256];
int i, j;
for(i =0; i< 256; i++ )
{
buf[i] = i;
read[i] = 0;
}
for(i =0; i< 256; i++ )
{
buf[i] = i;
read[i] = 0;
}
// step 1:find device
device = rt_device_find("fram0");
if( device == RT_NULL)
@ -273,22 +273,22 @@ int fram_test(int x)
rt_kprintf("device %s: not found!\r\n");
return RT_ERROR;
}
device->open(device,RT_DEVICE_FLAG_RDWR);
device->open(device,RT_DEVICE_FLAG_RDWR);
for( j = 0; j < FM25_MAXSIZE; j+= 256 )
//j = 256*x;
{
//rt_kprintf("RDSR=0x%X\n", fm25_read_status());
device->write(device,j, buf,256);
device->read(device,j, read,256);
for(i =0; i< 256; i++ )
{
if( buf[i] != read[i] )
rt_kprintf("error at %d: %d!=%d\n", i, buf[i], read[i]);
}
}
device->close(device);
rt_kprintf("Finsh test\n");
for( j = 0; j < FM25_MAXSIZE; j+= 256 )
//j = 256*x;
{
//rt_kprintf("RDSR=0x%X\n", fm25_read_status());
device->write(device,j, buf,256);
device->read(device,j, read,256);
for(i =0; i< 256; i++ )
{
if( buf[i] != read[i] )
rt_kprintf("error at %d: %d!=%d\n", i, buf[i], read[i]);
}
}
device->close(device);
rt_kprintf("Finsh test\n");
}
#ifdef RT_USING_FINSH
#include <finsh.h>

View File

@ -1,14 +1,14 @@
#ifndef FM25LX_H
#define FM25LX_H
#define FM25_WREN 0x06
#define FM25_WRDI 0x04
#define FM25_RDSR 0x05
#define FM25_WRSR 0x01
#define FM25_READ 0x03
#define FM25_WRITE 0x02
#define FM25_WEL 0x02
#define FM25_WPEN 0x80
#define FM25_WREN 0x06
#define FM25_WRDI 0x04
#define FM25_RDSR 0x05
#define FM25_WRSR 0x01
#define FM25_READ 0x03
#define FM25_WRITE 0x02
#define FM25_WEL 0x02
#define FM25_WPEN 0x80
#define FM25CL64B
//#define FM25LC256
@ -19,25 +19,25 @@
#define FM25_MAXSIZE 32768
#endif
#define FM25_SPI SPI3
#define FM25_SPI_GPIO GPIOB
#define FM25_SPI_MOSI GPIO_Pin_5
#define FM25_SPI_MISO GPIO_Pin_4
#define FM25_SPI_SCK GPIO_Pin_3
#define FM25_SPI_NSS_GPIO GPIOD
#define FM25_SPI_NSS_PIN GPIO_Pin_10
#define FM25_SPI_CLK RCC_APB1Periph_SPI3
#define FM25_SPI_GPIO_CLK RCC_AHB1Periph_GPIOB
#define FM25_SPI_NSS_GPIO_CLK RCC_AHB1Periph_GPIOD
#define FM25_SPI SPI3
#define FM25_SPI_GPIO GPIOB
#define FM25_SPI_MOSI GPIO_Pin_5
#define FM25_SPI_MISO GPIO_Pin_4
#define FM25_SPI_SCK GPIO_Pin_3
#define FM25_SPI_NSS_GPIO GPIOD
#define FM25_SPI_NSS_PIN GPIO_Pin_10
#define FM25_SPI_CLK RCC_APB1Periph_SPI3
#define FM25_SPI_GPIO_CLK RCC_AHB1Periph_GPIOB
#define FM25_SPI_NSS_GPIO_CLK RCC_AHB1Periph_GPIOD
#define FM25_SPI_DMA_CLK RCC_AHB1Periph_DMA1
#define FM25_SPI_DMA_Channel DMA_Channel_0
#define FM25_SPI_RX_DMA_Stream DMA1_Stream0
#define FM25_SPI_RX_DMA_IRQ DMA1_Stream0_IRQn
#define FM25_SPI_DMA_CLK RCC_AHB1Periph_DMA1
#define FM25_SPI_DMA_Channel DMA_Channel_0
#define FM25_SPI_RX_DMA_Stream DMA1_Stream0
#define FM25_SPI_RX_DMA_IRQ DMA1_Stream0_IRQn
#define FM25_SPI_RX_DMA_FLAG DMA_IT_TCIF0
#define FM25_SPI_TX_DMA_Stream DMA1_Stream5
#define FM25_SPI_TX_DMA_IRQ DMA1_Stream5_IRQn
#define FM25_SPI_TX_DMA_Stream DMA1_Stream5
#define FM25_SPI_TX_DMA_IRQ DMA1_Stream5_IRQn
#define FM25_SPI_TX_DMA_FLAG DMA_IT_TCIF5
#define FM25_SPI_DR_Base 0x4003C00C
#define FM25_SPI_DR_Base 0x4003C00C
#endif
#endif

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
@ -30,16 +30,16 @@
void SD_LowLevel_DeInit(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
/*!< Disable SDIO Clock */
SDIO_ClockCmd(DISABLE);
/*!< Set Power State to OFF */
SDIO_SetPowerState(SDIO_PowerState_OFF);
/*!< DeInitializes the SDIO peripheral */
SDIO_DeInit();
/* Disable the SDIO APB2 Clock */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SDIO, DISABLE);
@ -66,7 +66,7 @@ void SD_LowLevel_DeInit(void)
}
/**
* @brief Initializes the SD Card and put it into StandBy State (Ready for
* @brief Initializes the SD Card and put it into StandBy State (Ready for
* data transfer).
* @param None
* @retval None
@ -101,7 +101,7 @@ void SD_LowLevel_Init(void)
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOC, &GPIO_InitStructure);
/*!< Configure SD_SPI_DETECT_PIN pin: SD Card detect pin */
GPIO_InitStructure.GPIO_Pin = SD_DETECT_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
@ -154,7 +154,7 @@ void SD_LowLevel_DMA_TxConfig(uint32_t *BufferSRC, uint32_t BufferSize)
/* DMA2 Stream3 or Stream6 enable */
DMA_Cmd(SD_SDIO_DMA_STREAM, ENABLE);
}
/**
@ -219,11 +219,11 @@ uint32_t SD_DMAEndOfTransferStatus(void)
void NVIC_Configuration(void)
{
#ifdef VECT_TAB_RAM
/* Set the Vector Table base location at 0x20000000 */
NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0);
/* Set the Vector Table base location at 0x20000000 */
NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0);
#else /* VECT_TAB_FLASH */
/* Set the Vector Table base location at 0x08000000 */
NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);
/* Set the Vector Table base location at 0x08000000 */
NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);
#endif
}
@ -236,15 +236,15 @@ void NVIC_Configuration(void)
*******************************************************************************/
void SysTick_Configuration(void)
{
RCC_ClocksTypeDef rcc_clocks;
rt_uint32_t cnts;
RCC_ClocksTypeDef rcc_clocks;
rt_uint32_t cnts;
RCC_GetClocksFreq(&rcc_clocks);
RCC_GetClocksFreq(&rcc_clocks);
cnts = (rt_uint32_t)rcc_clocks.HCLK_Frequency / RT_TICK_PER_SECOND;
cnts = (rt_uint32_t)rcc_clocks.HCLK_Frequency / RT_TICK_PER_SECOND;
SysTick_Config(cnts);
SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK);
SysTick_Config(cnts);
SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK);
}
/**
@ -253,13 +253,13 @@ void SysTick_Configuration(void)
*/
void SysTick_Handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
/* enter interrupt */
rt_interrupt_enter();
rt_tick_increase();
rt_tick_increase();
/* leave interrupt */
rt_interrupt_leave();
/* leave interrupt */
rt_interrupt_leave();
}
/**
@ -267,15 +267,15 @@ void SysTick_Handler(void)
*/
void rt_hw_board_init()
{
/* NVIC Configuration */
NVIC_Configuration();
/* NVIC Configuration */
NVIC_Configuration();
/* Configure the SysTick */
SysTick_Configuration();
/* Configure the SysTick */
SysTick_Configuration();
rt_hw_usart_init();
rt_hw_usart_init();
#ifdef RT_USING_CONSOLE
rt_console_set_device(CONSOLE_DEVICE);
rt_console_set_device(CONSOLE_DEVICE);
#endif
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
@ -16,32 +16,32 @@
/* board configuration */
// <o> SDCard Driver <1=>SDIO sdcard <0=>SPI MMC card
// <i>Default: 1
#define STM32_USE_SDIO 1
// <i>Default: 1
#define STM32_USE_SDIO 1
/* whether use board external SRAM memory */
// <e>Use external SRAM memory on the board
// <i>Enable External SRAM memory
// <i>Enable External SRAM memory
#define STM32_EXT_SRAM 0
// <o>Begin Address of External SRAM
// <i>Default: 0x68000000
// <o>Begin Address of External SRAM
// <i>Default: 0x68000000
#define STM32_EXT_SRAM_BEGIN 0x68000000 /* the begining address of external SRAM */
// <o>End Address of External SRAM
// <i>Default: 0x68080000
// <o>End Address of External SRAM
// <i>Default: 0x68080000
#define STM32_EXT_SRAM_END 0x68080000 /* the end address of external SRAM */
// </e>
// <o> Internal SRAM memory size[Kbytes] <8-128>
// <i>Default: 64
// <i>Default: 64
#define STM32_SRAM_SIZE 128
#define STM32_SRAM_END (0x20000000 + STM32_SRAM_SIZE * 1024)
// <o> Console on USART: <0=> no console <1=>USART 1 <2=>USART 2 <3=> USART 3
// <i>Default: 1
#define STM32_CONSOLE_USART 1
// <i>Default: 1
#define STM32_CONSOLE_USART 1
// <o> Ethernet Interface: <0=> Microchip ENC28J60
#define STM32_ETH_IF 0
#define STM32_ETH_IF 0
void rt_hw_board_led_on(int n);
void rt_hw_board_led_off(int n);
@ -64,21 +64,21 @@ void rt_hw_board_init(void);
#define SD_DETECT_PIN GPIO_Pin_0 /* PB.0 */
#define SD_DETECT_GPIO_PORT GPIOB /* GPIOB */
#define SD_DETECT_GPIO_CLK RCC_AHB1Periph_GPIOB
#define SDIO_FIFO_ADDRESS ((uint32_t)0x40012C80)
/**
/**
* @brief SDIO Intialization Frequency (400KHz max)
*/
#define SDIO_INIT_CLK_DIV ((uint8_t)0x76)
/**
* @brief SDIO Data Transfer Frequency (25MHz max)
/**
* @brief SDIO Data Transfer Frequency (25MHz max)
*/
#define SDIO_TRANSFER_CLK_DIV ((uint8_t)0x0)
#define SDIO_TRANSFER_CLK_DIV ((uint8_t)0x0)
#define SD_SDIO_DMA DMA2
#define SD_SDIO_DMA_CLK RCC_AHB1Periph_DMA2
#define SD_SDIO_DMA_STREAM3 3
#define SD_SDIO_DMA_STREAM3 3
//#define SD_SDIO_DMA_STREAM6 6
#ifdef SD_SDIO_DMA_STREAM3
@ -88,7 +88,7 @@ void rt_hw_board_init(void);
#define SD_SDIO_DMA_FLAG_DMEIF DMA_FLAG_DMEIF3
#define SD_SDIO_DMA_FLAG_TEIF DMA_FLAG_TEIF3
#define SD_SDIO_DMA_FLAG_HTIF DMA_FLAG_HTIF3
#define SD_SDIO_DMA_FLAG_TCIF DMA_FLAG_TCIF3
#define SD_SDIO_DMA_FLAG_TCIF DMA_FLAG_TCIF3
#elif defined SD_SDIO_DMA_STREAM6
#define SD_SDIO_DMA_STREAM DMA2_Stream6
#define SD_SDIO_DMA_CHANNEL DMA_Channel_4
@ -96,11 +96,11 @@ void rt_hw_board_init(void);
#define SD_SDIO_DMA_FLAG_DMEIF DMA_FLAG_DMEIF6
#define SD_SDIO_DMA_FLAG_TEIF DMA_FLAG_TEIF6
#define SD_SDIO_DMA_FLAG_HTIF DMA_FLAG_HTIF6
#define SD_SDIO_DMA_FLAG_TCIF DMA_FLAG_TCIF6
#define SD_SDIO_DMA_FLAG_TCIF DMA_FLAG_TCIF6
#endif /* SD_SDIO_DMA_STREAM3 */
void SD_LowLevel_DeInit(void);
void SD_LowLevel_Init(void);
void SD_LowLevel_Init(void);
void SD_LowLevel_DMA_TxConfig(uint32_t *BufferSRC, uint32_t BufferSize);
void SD_LowLevel_DMA_RxConfig(uint32_t *BufferDST, uint32_t BufferSize);

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
@ -43,20 +43,20 @@ static struct rt_device rtc;
static time_t rt_mktime(struct tm *tm)
{
long res;
int year;
year = tm->tm_year - 70;
long res;
int year;
year = tm->tm_year - 70;
res = YEAR * year + DAY * ((year + 1) / 4);
res += month[tm->tm_mon];
res = YEAR * year + DAY * ((year + 1) / 4);
res += month[tm->tm_mon];
if (tm->tm_mon > 1 && ((year + 2) % 4))
res -= DAY;
res += DAY * (tm->tm_mday - 1);
res += HOUR * tm->tm_hour;
res += MINUTE * tm->tm_min;
res += tm->tm_sec;
return res;
if (tm->tm_mon > 1 && ((year + 2) % 4))
res -= DAY;
res += DAY * (tm->tm_mday - 1);
res += HOUR * tm->tm_hour;
res += MINUTE * tm->tm_min;
res += tm->tm_sec;
return res;
}
static rt_err_t rt_rtc_open(rt_device_t dev, rt_uint16_t oflag)
{
@ -76,7 +76,7 @@ static rt_size_t rt_rtc_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_siz
static rt_err_t rt_rtc_control(rt_device_t dev, int cmd, void *args)
{
time_t *time;
struct tm ti,*to;
struct tm ti,*to;
RT_ASSERT(dev != RT_NULL);
switch (cmd)
@ -84,17 +84,17 @@ static rt_err_t rt_rtc_control(rt_device_t dev, int cmd, void *args)
case RT_DEVICE_CTRL_RTC_GET_TIME:
time = (time_t *)args;
/* read device */
//RTC_GetTimeStamp(RTC_Format_BIN, &RTC_TimeStructure, &RTC_DateStructure);
RTC_GetTime(RTC_Format_BIN, &RTC_TimeStructure);
RTC_GetDate(RTC_Format_BIN, &RTC_DateStructure);
ti.tm_sec = RTC_TimeStructure.RTC_Seconds;
ti.tm_min = RTC_TimeStructure.RTC_Minutes;
ti.tm_hour = RTC_TimeStructure.RTC_Hours;
//ti.tm_wday = (RTC_DateStructure.RTC_WeekDay==7)?0:RTC_DateStructure.RTC_WeekDay;
ti.tm_mon = RTC_DateStructure.RTC_Month -1;
ti.tm_mday = RTC_DateStructure.RTC_Date;
ti.tm_year = RTC_DateStructure.RTC_Year + 70;
*time = rt_mktime(&ti);
//RTC_GetTimeStamp(RTC_Format_BIN, &RTC_TimeStructure, &RTC_DateStructure);
RTC_GetTime(RTC_Format_BIN, &RTC_TimeStructure);
RTC_GetDate(RTC_Format_BIN, &RTC_DateStructure);
ti.tm_sec = RTC_TimeStructure.RTC_Seconds;
ti.tm_min = RTC_TimeStructure.RTC_Minutes;
ti.tm_hour = RTC_TimeStructure.RTC_Hours;
//ti.tm_wday = (RTC_DateStructure.RTC_WeekDay==7)?0:RTC_DateStructure.RTC_WeekDay;
ti.tm_mon = RTC_DateStructure.RTC_Month -1;
ti.tm_mday = RTC_DateStructure.RTC_Date;
ti.tm_year = RTC_DateStructure.RTC_Year + 70;
*time = rt_mktime(&ti);
//*time = RTC_GetCounter();
break;
@ -104,10 +104,10 @@ static rt_err_t rt_rtc_control(rt_device_t dev, int cmd, void *args)
time = (time_t *)args;
/* Enable the PWR clock */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
/* Allow access to RTC */
PWR_BackupAccessCmd(ENABLE);
/* Allow access to RTC */
PWR_BackupAccessCmd(ENABLE);
/* Wait until last write operation on RTC registers has finished */
//RTC_WaitForLastTask();
@ -115,22 +115,22 @@ static rt_err_t rt_rtc_control(rt_device_t dev, int cmd, void *args)
/* Change the current time */
//RTC_SetCounter(*time);
to = gmtime(time);
RTC_TimeStructure.RTC_Seconds = to->tm_sec;
RTC_TimeStructure.RTC_Minutes = to->tm_min;
RTC_TimeStructure.RTC_Hours = to->tm_hour;
//RTC_DateStructure.RTC_WeekDay =(ti->tm_wday==0)?7:ti->tm_wday;
RTC_DateStructure.RTC_Month = to->tm_mon + 1;
RTC_DateStructure.RTC_Date = to->tm_mday;
RTC_DateStructure.RTC_Year = to->tm_year - 70;
RTC_SetTime(RTC_Format_BIN, &RTC_TimeStructure);
RTC_SetDate(RTC_Format_BIN, &RTC_DateStructure);
to = gmtime(time);
RTC_TimeStructure.RTC_Seconds = to->tm_sec;
RTC_TimeStructure.RTC_Minutes = to->tm_min;
RTC_TimeStructure.RTC_Hours = to->tm_hour;
//RTC_DateStructure.RTC_WeekDay =(ti->tm_wday==0)?7:ti->tm_wday;
RTC_DateStructure.RTC_Month = to->tm_mon + 1;
RTC_DateStructure.RTC_Date = to->tm_mday;
RTC_DateStructure.RTC_Year = to->tm_year - 70;
RTC_SetTime(RTC_Format_BIN, &RTC_TimeStructure);
RTC_SetDate(RTC_Format_BIN, &RTC_DateStructure);
/* Wait until last write operation on RTC registers has finished */
//RTC_WaitForLastTask();
RTC_WriteBackupRegister(RTC_BKP_DR1, 0xA5A5);
//BKP_WriteBackupRegister(BKP_DR1, 0xA5A5);
//BKP_WriteBackupRegister(BKP_DR1, 0xA5A5);
}
break;
}
@ -147,75 +147,75 @@ static rt_err_t rt_rtc_control(rt_device_t dev, int cmd, void *args)
*******************************************************************************/
int RTC_Config(void)
{
u32 count=0x200000;
/* Enable the PWR clock */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
u32 count=0x200000;
/* Enable the PWR clock */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
/* Allow access to RTC */
PWR_BackupAccessCmd(ENABLE);
/* Allow access to RTC */
PWR_BackupAccessCmd(ENABLE);
RCC_LSEConfig(RCC_LSE_ON);
RCC_LSEConfig(RCC_LSE_ON);
/* Wait till LSE is ready */
while ( (RCC_GetFlagStatus(RCC_FLAG_LSERDY) == RESET) && (--count) );
/* Wait till LSE is ready */
while ( (RCC_GetFlagStatus(RCC_FLAG_LSERDY) == RESET) && (--count) );
if ( count == 0 )
{
return -1;
}
/* Select the RTC Clock Source */
RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE);
/* Select the RTC Clock Source */
RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE);
SynchPrediv = 0xFF;
AsynchPrediv = 0x7F;
SynchPrediv = 0xFF;
AsynchPrediv = 0x7F;
/* Enable the RTC Clock */
RCC_RTCCLKCmd(ENABLE);
/* Enable the RTC Clock */
RCC_RTCCLKCmd(ENABLE);
/* Wait for RTC APB registers synchronisation */
RTC_WaitForSynchro();
/* Wait for RTC APB registers synchronisation */
RTC_WaitForSynchro();
/* Enable The TimeStamp */
//RTC_TimeStampCmd(RTC_TimeStampEdge_Falling, ENABLE);
/* Enable The TimeStamp */
//RTC_TimeStampCmd(RTC_TimeStampEdge_Falling, ENABLE);
return 0;
return 0;
}
int RTC_Configuration(void)
{
if(RTC_Config() < 0 )
return -1;
if(RTC_Config() < 0 )
return -1;
/* Set the Time */
RTC_TimeStructure.RTC_Hours = 0;
RTC_TimeStructure.RTC_Minutes = 0;
RTC_TimeStructure.RTC_Seconds = 0;
/* Set the Time */
RTC_TimeStructure.RTC_Hours = 0;
RTC_TimeStructure.RTC_Minutes = 0;
RTC_TimeStructure.RTC_Seconds = 0;
/* Set the Date */
RTC_DateStructure.RTC_Month = 1;
RTC_DateStructure.RTC_Date = 1;
RTC_DateStructure.RTC_Year = 0;
RTC_DateStructure.RTC_WeekDay = 4;
/* Set the Date */
RTC_DateStructure.RTC_Month = 1;
RTC_DateStructure.RTC_Date = 1;
RTC_DateStructure.RTC_Year = 0;
RTC_DateStructure.RTC_WeekDay = 4;
/* Calendar Configuration */
RTC_InitStructure.RTC_AsynchPrediv = AsynchPrediv;
RTC_InitStructure.RTC_SynchPrediv = SynchPrediv;
RTC_InitStructure.RTC_HourFormat = RTC_HourFormat_24;
RTC_Init(&RTC_InitStructure);
/* Calendar Configuration */
RTC_InitStructure.RTC_AsynchPrediv = AsynchPrediv;
RTC_InitStructure.RTC_SynchPrediv = SynchPrediv;
RTC_InitStructure.RTC_HourFormat = RTC_HourFormat_24;
RTC_Init(&RTC_InitStructure);
/* Set Current Time and Date */
RTC_SetTime(RTC_Format_BCD, &RTC_TimeStructure);
RTC_SetDate(RTC_Format_BCD, &RTC_DateStructure);
if (RTC_Init(&RTC_InitStructure) == ERROR)
return -1;
/* Set Current Time and Date */
RTC_SetTime(RTC_Format_BCD, &RTC_TimeStructure);
RTC_SetDate(RTC_Format_BCD, &RTC_DateStructure);
if (RTC_Init(&RTC_InitStructure) == ERROR)
return -1;
return 0;
}
void rt_hw_rtc_init(void)
{
rtc.type = RT_Device_Class_RTC;
rtc.type = RT_Device_Class_RTC;
if (RTC_ReadBackupRegister(RTC_BKP_DR1) != 0xA5A5)
{
@ -234,11 +234,11 @@ void rt_hw_rtc_init(void)
}
/* register rtc device */
rtc.init = RT_NULL;
rtc.open = rt_rtc_open;
rtc.close = RT_NULL;
rtc.read = rt_rtc_read;
rtc.write = RT_NULL;
rtc.init = RT_NULL;
rtc.open = rt_rtc_open;
rtc.close = RT_NULL;
rtc.read = rt_rtc_read;
rtc.write = RT_NULL;
rtc.control = rt_rtc_control;
/* no private */

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*

File diff suppressed because it is too large Load Diff

View File

@ -5,17 +5,17 @@
/* Exported constants --------------------------------------------------------*/
#define SR1_AF_Set ((uint16_t)0x0400)
#define SR1_ARLO_Set ((uint16_t)0x0200)
#define SR1_BERR_Set ((uint16_t)0x0100)
#define SR1_ADDR_Set ((uint16_t)0x0002)
#define SR1_SB_Set ((uint16_t)0x0001)
#define SR1_AF_Set ((uint16_t)0x0400)
#define SR1_ARLO_Set ((uint16_t)0x0200)
#define SR1_BERR_Set ((uint16_t)0x0100)
#define SR1_ADDR_Set ((uint16_t)0x0002)
#define SR1_SB_Set ((uint16_t)0x0001)
#define SR2_BUSY ((uint16_t)0x0002)
#define SR2_MSL ((uint16_t)0x0001)
#define SR2_BUSY ((uint16_t)0x0002)
#define SR2_MSL ((uint16_t)0x0001)
#define CR1_SWRST_Set ((uint16_t)0x8000)
#define CR1_SWRST_Set ((uint16_t)0x8000)
/* I2C SPE mask */
#define CR1_PE_Set ((uint16_t)0x0001)
#define CR1_PE_Reset ((uint16_t)0xFFFE)
@ -97,12 +97,12 @@
#define I2C1_DMA_CHANNEL_TX DMA1_Stream6
#define I2C1_DMA_CHANNEL_RX DMA1_Stream0
#define I2C1_DMA_TX_IRQn DMA1_Stream6_IRQn
#define I2C1_DMA_TX_IRQn DMA1_Stream6_IRQn
#define I2C1_DMA_RX_IRQn DMA1_Stream0_IRQn
#define I2C2_DMA_CHANNEL_TX DMA1_Stream2
#define I2C2_DMA_CHANNEL_RX DMA1_Stream7
#define I2C2_DMA_TX_IRQn DMA1_Stream2_IRQn
#define I2C2_DMA_TX_IRQn DMA1_Stream2_IRQn
#define I2C2_DMA_RX_IRQn DMA1_Stream7_IRQn
#define I2C1_DR_Address 0x40005410
@ -112,20 +112,20 @@
#define I2C1_SCL_PIN GPIO_Pin_6
#define I2C1_SDA_SOURCE GPIO_PinSource7
#define I2C1_SCL_SOURCE GPIO_PinSource6
#define I2C1_GPIO_PORT GPIOB
#define I2C1_GPIO_CLK RCC_AHB1Periph_GPIOB
#define I2C1_GPIO_PORT GPIOB
#define I2C1_GPIO_CLK RCC_AHB1Periph_GPIOB
#define I2C1_CLK RCC_APB1Periph_I2C1
#define I2C2_SDA_PIN GPIO_Pin_11
#define I2C2_SCL_PIN GPIO_Pin_10
#define I2C2_SDA_SOURCE GPIO_PinSource11
#define I2C2_SCL_SOURCE GPIO_PinSource10
#define I2C2_GPIO_PORT GPIOB
#define I2C2_GPIO_CLK RCC_AHB1Periph_GPIOB
#define I2C2_GPIO_PORT GPIOB
#define I2C2_GPIO_CLK RCC_AHB1Periph_GPIOB
#define I2C2_CLK RCC_APB1Periph_I2C1
#define I2C_MEM_1Byte 1
#define I2C_MEM_2Bytes 2
#define I2C_MEM_1Byte 1
#define I2C_MEM_2Bytes 2
typedef enum
{
@ -144,4 +144,4 @@ void I2C1_INIT();
Status I2C_AcknowledgePolling(I2C_TypeDef* I2Cx ,uint8_t Addr);
Status I2C_IORW(I2C_TypeDef* I2Cx, uint8_t* pBuffer, uint32_t NumByteToRead, uint16_t memAddr, uint8_t SlaveAddress , uint8_t MemType );
#endif
#endif

File diff suppressed because it is too large Load Diff

View File

@ -4,7 +4,7 @@
* @author MCD Application Team
* @version V4.6.1
* @date 18-April-2011
* @brief This file contains all the functions prototypes for the SD Card
* @brief This file contains all the functions prototypes for the SD Card
* stm32_eval_sdio_sd driver firmware library.
******************************************************************************
* @attention
@ -17,8 +17,8 @@
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* <h2><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h2>
******************************************************************************
*/
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __STM32_EVAL_SDIO_SD_H
@ -34,27 +34,27 @@
/** @addtogroup Utilities
* @{
*/
/** @addtogroup STM32_EVAL
* @{
*/
*/
/** @addtogroup Common
* @{
*/
/** @addtogroup STM32_EVAL_SDIO_SD
* @{
*/
*/
/** @defgroup STM32_EVAL_SDIO_SD_Exported_Types
* @{
*/
*/
typedef enum
{
/**
* @brief SDIO specific error defines
*/
/**
* @brief SDIO specific error defines
*/
SD_CMD_CRC_FAIL = (1), /*!< Command response received (but CRC check failed) */
SD_DATA_CRC_FAIL = (2), /*!< Data bock sent/received (CRC check Failed) */
SD_CMD_RSP_TIMEOUT = (3), /*!< Command response timeout */
@ -89,23 +89,23 @@ typedef enum
SD_SDIO_FUNCTION_FAILED = (32),
SD_SDIO_UNKNOWN_FUNCTION = (33),
/**
* @brief Standard error defines
*/
SD_INTERNAL_ERROR,
/**
* @brief Standard error defines
*/
SD_INTERNAL_ERROR,
SD_NOT_CONFIGURED,
SD_REQUEST_PENDING,
SD_REQUEST_NOT_APPLICABLE,
SD_INVALID_PARAMETER,
SD_UNSUPPORTED_FEATURE,
SD_UNSUPPORTED_HW,
SD_ERROR,
SD_OK = 0
SD_REQUEST_PENDING,
SD_REQUEST_NOT_APPLICABLE,
SD_INVALID_PARAMETER,
SD_UNSUPPORTED_FEATURE,
SD_UNSUPPORTED_HW,
SD_ERROR,
SD_OK = 0
} SD_Error;
/**
* @brief SDIO Transfer state
*/
/**
* @brief SDIO Transfer state
*/
typedef enum
{
SD_TRANSFER_OK = 0,
@ -113,9 +113,9 @@ typedef enum
SD_TRANSFER_ERROR
} SDTransferState;
/**
* @brief SD Card States
*/
/**
* @brief SD Card States
*/
typedef enum
{
SD_CARD_READY = ((uint32_t)0x00000001),
@ -130,9 +130,9 @@ typedef enum
}SDCardState;
/**
* @brief Card Specific Data: CSD Register
*/
/**
* @brief Card Specific Data: CSD Register
*/
typedef struct
{
__IO uint8_t CSDStruct; /*!< CSD structure */
@ -174,8 +174,8 @@ typedef struct
__IO uint8_t Reserved4; /*!< always 1*/
} SD_CSD;
/**
* @brief Card Identification Data: CID Register
/**
* @brief Card Identification Data: CID Register
*/
typedef struct
{
@ -191,8 +191,8 @@ typedef struct
__IO uint8_t Reserved2; /*!< always 1 */
} SD_CID;
/**
* @brief SD Card Status
/**
* @brief SD Card Status
*/
typedef struct
{
@ -209,8 +209,8 @@ typedef struct
} SD_CardStatus;
/**
* @brief SD Card information
/**
* @brief SD Card information
*/
typedef struct
{
@ -225,13 +225,13 @@ typedef struct
/**
* @}
*/
/** @defgroup STM32_EVAL_SDIO_SD_Exported_Constants
* @{
*/
*/
/**
* @brief SDIO Commands Index
/**
* @brief SDIO Commands Index
*/
#define SD_CMD_GO_IDLE_STATE ((uint8_t)0)
#define SD_CMD_SEND_OP_COND ((uint8_t)1)
@ -280,9 +280,9 @@ typedef struct
#define SD_CMD_GEN_CMD ((uint8_t)56)
#define SD_CMD_NO_CMD ((uint8_t)64)
/**
/**
* @brief Following commands are SD Card Specific commands.
* SDIO_APP_CMD should be sent before sending these commands.
* SDIO_APP_CMD should be sent before sending these commands.
*/
#define SD_CMD_APP_SD_SET_BUSWIDTH ((uint8_t)6) /*!< For SD Card only */
#define SD_CMD_SD_APP_STAUS ((uint8_t)13) /*!< For SD Card only */
@ -293,9 +293,9 @@ typedef struct
#define SD_CMD_SDIO_RW_DIRECT ((uint8_t)52) /*!< For SD I/O Card only */
#define SD_CMD_SDIO_RW_EXTENDED ((uint8_t)53) /*!< For SD I/O Card only */
/**
/**
* @brief Following commands are SD Card Specific security commands.
* SDIO_APP_CMD should be sent before sending these commands.
* SDIO_APP_CMD should be sent before sending these commands.
*/
#define SD_CMD_SD_APP_GET_MKB ((uint8_t)43) /*!< For SD Card only */
#define SD_CMD_SD_APP_GET_MID ((uint8_t)44) /*!< For SD Card only */
@ -308,8 +308,8 @@ typedef struct
#define SD_CMD_SD_APP_SECURE_ERASE ((uint8_t)38) /*!< For SD Card only */
#define SD_CMD_SD_APP_CHANGE_SECURE_AREA ((uint8_t)49) /*!< For SD Card only */
#define SD_CMD_SD_APP_SECURE_WRITE_MKB ((uint8_t)48) /*!< For SD Card only */
/* Uncomment the following line to select the SDIO Data transfer mode */
/* Uncomment the following line to select the SDIO Data transfer mode */
#define SD_DMA_MODE ((uint32_t)0x00000000)
/*#define SD_POLLING_MODE ((uint32_t)0x00000002)*/
@ -319,8 +319,8 @@ typedef struct
#define SD_PRESENT ((uint8_t)0x01)
#define SD_NOT_PRESENT ((uint8_t)0x00)
/**
* @brief Supported SD Memory Cards
/**
* @brief Supported SD Memory Cards
*/
#define SDIO_STD_CAPACITY_SD_CARD_V1_1 ((uint32_t)0x00000000)
#define SDIO_STD_CAPACITY_SD_CARD_V2_0 ((uint32_t)0x00000001)
@ -333,18 +333,18 @@ typedef struct
/**
* @}
*/
*/
/** @defgroup STM32_EVAL_SDIO_SD_Exported_Macros
* @{
*/
*/
/**
* @}
*/
*/
/** @defgroup STM32_EVAL_SDIO_SD_Exported_Functions
* @{
*/
*/
void SD_DeInit(void);
SD_Error SD_Init(void);
SDTransferState SD_GetStatus(void);
@ -388,10 +388,10 @@ SD_Error SD_WaitWriteOperation(void);
/**
* @}
*/
*/
/**
* @}
*/
*/
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
@ -16,7 +16,7 @@
#include <stm32f2xx_usart.h>
static void rt_serial_enable_dma(DMA_Stream_TypeDef* dma_channel,
rt_uint32_t address, rt_uint32_t size);
rt_uint32_t address, rt_uint32_t size);
/**
* @addtogroup STM32
@ -26,252 +26,252 @@ static void rt_serial_enable_dma(DMA_Stream_TypeDef* dma_channel,
/* RT-Thread Device Interface */
static rt_err_t rt_serial_init (rt_device_t dev)
{
struct stm32_serial_device* uart = (struct stm32_serial_device*) dev->user_data;
struct stm32_serial_device* uart = (struct stm32_serial_device*) dev->user_data;
if (!(dev->flag & RT_DEVICE_FLAG_ACTIVATED))
{
if (dev->flag & RT_DEVICE_FLAG_INT_RX)
{
rt_memset(uart->int_rx->rx_buffer, 0,
sizeof(uart->int_rx->rx_buffer));
uart->int_rx->read_index = 0;
uart->int_rx->save_index = 0;
}
if (!(dev->flag & RT_DEVICE_FLAG_ACTIVATED))
{
if (dev->flag & RT_DEVICE_FLAG_INT_RX)
{
rt_memset(uart->int_rx->rx_buffer, 0,
sizeof(uart->int_rx->rx_buffer));
uart->int_rx->read_index = 0;
uart->int_rx->save_index = 0;
}
if (dev->flag & RT_DEVICE_FLAG_DMA_TX)
{
RT_ASSERT(uart->dma_tx->dma_channel != RT_NULL);
uart->dma_tx->list_head = uart->dma_tx->list_tail = RT_NULL;
if (dev->flag & RT_DEVICE_FLAG_DMA_TX)
{
RT_ASSERT(uart->dma_tx->dma_channel != RT_NULL);
uart->dma_tx->list_head = uart->dma_tx->list_tail = RT_NULL;
/* init data node memory pool */
rt_mp_init(&(uart->dma_tx->data_node_mp), "dn",
uart->dma_tx->data_node_mem_pool,
sizeof(uart->dma_tx->data_node_mem_pool),
sizeof(struct stm32_serial_data_node));
}
/* init data node memory pool */
rt_mp_init(&(uart->dma_tx->data_node_mp), "dn",
uart->dma_tx->data_node_mem_pool,
sizeof(uart->dma_tx->data_node_mem_pool),
sizeof(struct stm32_serial_data_node));
}
/* Enable USART */
USART_Cmd(uart->uart_device, ENABLE);
/* Enable USART */
USART_Cmd(uart->uart_device, ENABLE);
dev->flag |= RT_DEVICE_FLAG_ACTIVATED;
}
dev->flag |= RT_DEVICE_FLAG_ACTIVATED;
}
return RT_EOK;
return RT_EOK;
}
static rt_err_t rt_serial_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
return RT_EOK;
}
static rt_err_t rt_serial_close(rt_device_t dev)
{
return RT_EOK;
return RT_EOK;
}
static rt_size_t rt_serial_read (rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
rt_uint8_t* ptr;
rt_err_t err_code;
struct stm32_serial_device* uart;
rt_uint8_t* ptr;
rt_err_t err_code;
struct stm32_serial_device* uart;
ptr = buffer;
err_code = RT_EOK;
uart = (struct stm32_serial_device*)dev->user_data;
ptr = buffer;
err_code = RT_EOK;
uart = (struct stm32_serial_device*)dev->user_data;
if (dev->flag & RT_DEVICE_FLAG_INT_RX)
{
/* interrupt mode Rx */
while (size)
{
rt_base_t level;
if (dev->flag & RT_DEVICE_FLAG_INT_RX)
{
/* interrupt mode Rx */
while (size)
{
rt_base_t level;
/* disable interrupt */
level = rt_hw_interrupt_disable();
/* disable interrupt */
level = rt_hw_interrupt_disable();
if (uart->int_rx->read_index != uart->int_rx->save_index)
{
/* read a character */
*ptr++ = uart->int_rx->rx_buffer[uart->int_rx->read_index];
size--;
if (uart->int_rx->read_index != uart->int_rx->save_index)
{
/* read a character */
*ptr++ = uart->int_rx->rx_buffer[uart->int_rx->read_index];
size--;
/* move to next position */
uart->int_rx->read_index ++;
if (uart->int_rx->read_index >= UART_RX_BUFFER_SIZE)
uart->int_rx->read_index = 0;
}
else
{
/* set error code */
err_code = -RT_EEMPTY;
/* move to next position */
uart->int_rx->read_index ++;
if (uart->int_rx->read_index >= UART_RX_BUFFER_SIZE)
uart->int_rx->read_index = 0;
}
else
{
/* set error code */
err_code = -RT_EEMPTY;
/* enable interrupt */
rt_hw_interrupt_enable(level);
break;
}
/* enable interrupt */
rt_hw_interrupt_enable(level);
break;
}
/* enable interrupt */
rt_hw_interrupt_enable(level);
}
}
else
{
/* polling mode */
while ((rt_uint32_t)ptr - (rt_uint32_t)buffer < size)
{
while (uart->uart_device->SR & USART_FLAG_RXNE)
{
*ptr = uart->uart_device->DR & 0xff;
ptr ++;
}
}
}
/* enable interrupt */
rt_hw_interrupt_enable(level);
}
}
else
{
/* polling mode */
while ((rt_uint32_t)ptr - (rt_uint32_t)buffer < size)
{
while (uart->uart_device->SR & USART_FLAG_RXNE)
{
*ptr = uart->uart_device->DR & 0xff;
ptr ++;
}
}
}
/* set error code */
rt_set_errno(err_code);
return (rt_uint32_t)ptr - (rt_uint32_t)buffer;
/* set error code */
rt_set_errno(err_code);
return (rt_uint32_t)ptr - (rt_uint32_t)buffer;
}
static void rt_serial_enable_dma(DMA_Stream_TypeDef* dma_channel,
rt_uint32_t address, rt_uint32_t size)
rt_uint32_t address, rt_uint32_t size)
{
RT_ASSERT(dma_channel != RT_NULL);
RT_ASSERT(dma_channel != RT_NULL);
/* disable DMA */
DMA_Cmd(dma_channel, DISABLE);
/* disable DMA */
DMA_Cmd(dma_channel, DISABLE);
/* set buffer address */
dma_channel->M0AR = address;
/* set size */
dma_channel->NDTR = size;
/* set buffer address */
dma_channel->M0AR = address;
/* set size */
dma_channel->NDTR = size;
/* enable DMA */
DMA_Cmd(dma_channel, ENABLE);
/* enable DMA */
DMA_Cmd(dma_channel, ENABLE);
}
static rt_size_t rt_serial_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
rt_uint8_t* ptr;
rt_err_t err_code;
struct stm32_serial_device* uart;
rt_uint8_t* ptr;
rt_err_t err_code;
struct stm32_serial_device* uart;
err_code = RT_EOK;
ptr = (rt_uint8_t*)buffer;
uart = (struct stm32_serial_device*)dev->user_data;
err_code = RT_EOK;
ptr = (rt_uint8_t*)buffer;
uart = (struct stm32_serial_device*)dev->user_data;
if (dev->flag & RT_DEVICE_FLAG_INT_TX)
{
/* interrupt mode Tx, does not support */
RT_ASSERT(0);
}
else if (dev->flag & RT_DEVICE_FLAG_DMA_TX)
{
/* DMA mode Tx */
if (dev->flag & RT_DEVICE_FLAG_INT_TX)
{
/* interrupt mode Tx, does not support */
RT_ASSERT(0);
}
else if (dev->flag & RT_DEVICE_FLAG_DMA_TX)
{
/* DMA mode Tx */
/* allocate a data node */
struct stm32_serial_data_node* data_node = (struct stm32_serial_data_node*)
rt_mp_alloc (&(uart->dma_tx->data_node_mp), RT_WAITING_FOREVER);
if (data_node == RT_NULL)
{
/* set error code */
err_code = -RT_ENOMEM;
}
else
{
rt_uint32_t level;
/* allocate a data node */
struct stm32_serial_data_node* data_node = (struct stm32_serial_data_node*)
rt_mp_alloc (&(uart->dma_tx->data_node_mp), RT_WAITING_FOREVER);
if (data_node == RT_NULL)
{
/* set error code */
err_code = -RT_ENOMEM;
}
else
{
rt_uint32_t level;
/* fill data node */
data_node->data_ptr = ptr;
data_node->data_size = size;
/* fill data node */
data_node->data_ptr = ptr;
data_node->data_size = size;
/* insert to data link */
data_node->next = RT_NULL;
/* insert to data link */
data_node->next = RT_NULL;
/* disable interrupt */
level = rt_hw_interrupt_disable();
/* disable interrupt */
level = rt_hw_interrupt_disable();
data_node->prev = uart->dma_tx->list_tail;
if (uart->dma_tx->list_tail != RT_NULL)
uart->dma_tx->list_tail->next = data_node;
uart->dma_tx->list_tail = data_node;
data_node->prev = uart->dma_tx->list_tail;
if (uart->dma_tx->list_tail != RT_NULL)
uart->dma_tx->list_tail->next = data_node;
uart->dma_tx->list_tail = data_node;
if (uart->dma_tx->list_head == RT_NULL)
{
/* start DMA to transmit data */
uart->dma_tx->list_head = data_node;
if (uart->dma_tx->list_head == RT_NULL)
{
/* start DMA to transmit data */
uart->dma_tx->list_head = data_node;
/* Enable DMA Channel */
rt_serial_enable_dma(uart->dma_tx->dma_channel,
(rt_uint32_t)uart->dma_tx->list_head->data_ptr,
uart->dma_tx->list_head->data_size);
}
/* Enable DMA Channel */
rt_serial_enable_dma(uart->dma_tx->dma_channel,
(rt_uint32_t)uart->dma_tx->list_head->data_ptr,
uart->dma_tx->list_head->data_size);
}
/* enable interrupt */
rt_hw_interrupt_enable(level);
}
}
else
{
/* polling mode */
if (dev->flag & RT_DEVICE_FLAG_STREAM)
{
/* stream mode */
while (size)
{
if (*ptr == '\n')
{
while (!(uart->uart_device->SR & USART_FLAG_TXE));
uart->uart_device->DR = '\r';
}
/* enable interrupt */
rt_hw_interrupt_enable(level);
}
}
else
{
/* polling mode */
if (dev->flag & RT_DEVICE_FLAG_STREAM)
{
/* stream mode */
while (size)
{
if (*ptr == '\n')
{
while (!(uart->uart_device->SR & USART_FLAG_TXE));
uart->uart_device->DR = '\r';
}
while (!(uart->uart_device->SR & USART_FLAG_TXE));
uart->uart_device->DR = (*ptr & 0x1FF);
while (!(uart->uart_device->SR & USART_FLAG_TXE));
uart->uart_device->DR = (*ptr & 0x1FF);
++ptr; --size;
}
}
else
{
/* write data directly */
while (size)
{
while (!(uart->uart_device->SR & USART_FLAG_TXE));
uart->uart_device->DR = (*ptr & 0x1FF);
++ptr; --size;
}
}
else
{
/* write data directly */
while (size)
{
while (!(uart->uart_device->SR & USART_FLAG_TXE));
uart->uart_device->DR = (*ptr & 0x1FF);
++ptr; --size;
}
}
}
++ptr; --size;
}
}
}
/* set error code */
rt_set_errno(err_code);
/* set error code */
rt_set_errno(err_code);
return (rt_uint32_t)ptr - (rt_uint32_t)buffer;
return (rt_uint32_t)ptr - (rt_uint32_t)buffer;
}
static rt_err_t rt_serial_control (rt_device_t dev, int cmd, void *args)
{
struct stm32_serial_device* uart;
struct stm32_serial_device* uart;
RT_ASSERT(dev != RT_NULL);
RT_ASSERT(dev != RT_NULL);
uart = (struct stm32_serial_device*)dev->user_data;
switch (cmd)
{
case RT_DEVICE_CTRL_SUSPEND:
/* suspend device */
dev->flag |= RT_DEVICE_FLAG_SUSPENDED;
USART_Cmd(uart->uart_device, DISABLE);
break;
uart = (struct stm32_serial_device*)dev->user_data;
switch (cmd)
{
case RT_DEVICE_CTRL_SUSPEND:
/* suspend device */
dev->flag |= RT_DEVICE_FLAG_SUSPENDED;
USART_Cmd(uart->uart_device, DISABLE);
break;
case RT_DEVICE_CTRL_RESUME:
/* resume device */
dev->flag &= ~RT_DEVICE_FLAG_SUSPENDED;
USART_Cmd(uart->uart_device, ENABLE);
break;
}
case RT_DEVICE_CTRL_RESUME:
/* resume device */
dev->flag &= ~RT_DEVICE_FLAG_SUSPENDED;
USART_Cmd(uart->uart_device, ENABLE);
break;
}
return RT_EOK;
return RT_EOK;
}
/*
@ -280,87 +280,87 @@ static rt_err_t rt_serial_control (rt_device_t dev, int cmd, void *args)
*/
rt_err_t rt_hw_serial_register(rt_device_t device, const char* name, rt_uint32_t flag, struct stm32_serial_device *serial)
{
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device != RT_NULL);
if ((flag & RT_DEVICE_FLAG_DMA_RX) ||
(flag & RT_DEVICE_FLAG_INT_TX))
{
RT_ASSERT(0);
}
if ((flag & RT_DEVICE_FLAG_DMA_RX) ||
(flag & RT_DEVICE_FLAG_INT_TX))
{
RT_ASSERT(0);
}
device->type = RT_Device_Class_Char;
device->rx_indicate = RT_NULL;
device->tx_complete = RT_NULL;
device->init = rt_serial_init;
device->open = rt_serial_open;
device->close = rt_serial_close;
device->read = rt_serial_read;
device->write = rt_serial_write;
device->control = rt_serial_control;
device->user_data = serial;
device->type = RT_Device_Class_Char;
device->rx_indicate = RT_NULL;
device->tx_complete = RT_NULL;
device->init = rt_serial_init;
device->open = rt_serial_open;
device->close = rt_serial_close;
device->read = rt_serial_read;
device->write = rt_serial_write;
device->control = rt_serial_control;
device->user_data = serial;
/* register a character device */
return rt_device_register(device, name, RT_DEVICE_FLAG_RDWR | flag);
/* register a character device */
return rt_device_register(device, name, RT_DEVICE_FLAG_RDWR | flag);
}
/* ISR for serial interrupt */
void rt_hw_serial_isr(rt_device_t device)
{
struct stm32_serial_device* uart = (struct stm32_serial_device*) device->user_data;
struct stm32_serial_device* uart = (struct stm32_serial_device*) device->user_data;
if(USART_GetITStatus(uart->uart_device, USART_IT_RXNE) != RESET)
{
/* interrupt mode receive */
RT_ASSERT(device->flag & RT_DEVICE_FLAG_INT_RX);
if(USART_GetITStatus(uart->uart_device, USART_IT_RXNE) != RESET)
{
/* interrupt mode receive */
RT_ASSERT(device->flag & RT_DEVICE_FLAG_INT_RX);
/* save on rx buffer */
while (uart->uart_device->SR & USART_FLAG_RXNE)
{
rt_base_t level;
/* save on rx buffer */
while (uart->uart_device->SR & USART_FLAG_RXNE)
{
rt_base_t level;
/* disable interrupt */
level = rt_hw_interrupt_disable();
/* disable interrupt */
level = rt_hw_interrupt_disable();
/* save character */
uart->int_rx->rx_buffer[uart->int_rx->save_index] = uart->uart_device->DR & 0xff;
uart->int_rx->save_index ++;
if (uart->int_rx->save_index >= UART_RX_BUFFER_SIZE)
uart->int_rx->save_index = 0;
/* save character */
uart->int_rx->rx_buffer[uart->int_rx->save_index] = uart->uart_device->DR & 0xff;
uart->int_rx->save_index ++;
if (uart->int_rx->save_index >= UART_RX_BUFFER_SIZE)
uart->int_rx->save_index = 0;
/* if the next position is read index, discard this 'read char' */
if (uart->int_rx->save_index == uart->int_rx->read_index)
{
uart->int_rx->read_index ++;
if (uart->int_rx->read_index >= UART_RX_BUFFER_SIZE)
uart->int_rx->read_index = 0;
}
/* if the next position is read index, discard this 'read char' */
if (uart->int_rx->save_index == uart->int_rx->read_index)
{
uart->int_rx->read_index ++;
if (uart->int_rx->read_index >= UART_RX_BUFFER_SIZE)
uart->int_rx->read_index = 0;
}
/* enable interrupt */
rt_hw_interrupt_enable(level);
}
/* enable interrupt */
rt_hw_interrupt_enable(level);
}
/* clear interrupt */
USART_ClearITPendingBit(uart->uart_device, USART_IT_RXNE);
/* clear interrupt */
USART_ClearITPendingBit(uart->uart_device, USART_IT_RXNE);
/* invoke callback */
if (device->rx_indicate != RT_NULL)
{
rt_size_t rx_length;
/* invoke callback */
if (device->rx_indicate != RT_NULL)
{
rt_size_t rx_length;
/* get rx length */
rx_length = uart->int_rx->read_index > uart->int_rx->save_index ?
UART_RX_BUFFER_SIZE - uart->int_rx->read_index + uart->int_rx->save_index :
uart->int_rx->save_index - uart->int_rx->read_index;
/* get rx length */
rx_length = uart->int_rx->read_index > uart->int_rx->save_index ?
UART_RX_BUFFER_SIZE - uart->int_rx->read_index + uart->int_rx->save_index :
uart->int_rx->save_index - uart->int_rx->read_index;
device->rx_indicate(device, rx_length);
}
}
device->rx_indicate(device, rx_length);
}
}
if (USART_GetITStatus(uart->uart_device, USART_IT_TC) != RESET)
{
/* clear interrupt */
USART_ClearITPendingBit(uart->uart_device, USART_IT_TC);
}
if (USART_GetITStatus(uart->uart_device, USART_IT_TC) != RESET)
{
/* clear interrupt */
USART_ClearITPendingBit(uart->uart_device, USART_IT_TC);
}
}
/*
@ -368,47 +368,47 @@ void rt_hw_serial_isr(rt_device_t device)
*/
void rt_hw_serial_dma_tx_isr(rt_device_t device)
{
rt_uint32_t level;
struct stm32_serial_data_node* data_node;
struct stm32_serial_device* uart = (struct stm32_serial_device*) device->user_data;
rt_uint32_t level;
struct stm32_serial_data_node* data_node;
struct stm32_serial_device* uart = (struct stm32_serial_device*) device->user_data;
/* DMA mode receive */
RT_ASSERT(device->flag & RT_DEVICE_FLAG_DMA_TX);
/* DMA mode receive */
RT_ASSERT(device->flag & RT_DEVICE_FLAG_DMA_TX);
/* get the first data node */
data_node = uart->dma_tx->list_head;
RT_ASSERT(data_node != RT_NULL);
/* get the first data node */
data_node = uart->dma_tx->list_head;
RT_ASSERT(data_node != RT_NULL);
/* invoke call to notify tx complete */
if (device->tx_complete != RT_NULL)
device->tx_complete(device, data_node->data_ptr);
/* invoke call to notify tx complete */
if (device->tx_complete != RT_NULL)
device->tx_complete(device, data_node->data_ptr);
/* disable interrupt */
level = rt_hw_interrupt_disable();
/* disable interrupt */
level = rt_hw_interrupt_disable();
/* remove list head */
uart->dma_tx->list_head = data_node->next;
if (uart->dma_tx->list_head == RT_NULL) /* data link empty */
uart->dma_tx->list_tail = RT_NULL;
/* remove list head */
uart->dma_tx->list_head = data_node->next;
if (uart->dma_tx->list_head == RT_NULL) /* data link empty */
uart->dma_tx->list_tail = RT_NULL;
/* enable interrupt */
rt_hw_interrupt_enable(level);
/* enable interrupt */
rt_hw_interrupt_enable(level);
/* release data node memory */
rt_mp_free(data_node);
/* release data node memory */
rt_mp_free(data_node);
if (uart->dma_tx->list_head != RT_NULL)
{
/* transmit next data node */
rt_serial_enable_dma(uart->dma_tx->dma_channel,
(rt_uint32_t)uart->dma_tx->list_head->data_ptr,
uart->dma_tx->list_head->data_size);
}
else
{
/* no data to be transmitted, disable DMA */
DMA_Cmd(uart->dma_tx->dma_channel, DISABLE);
}
if (uart->dma_tx->list_head != RT_NULL)
{
/* transmit next data node */
rt_serial_enable_dma(uart->dma_tx->dma_channel,
(rt_uint32_t)uart->dma_tx->list_head->data_ptr,
uart->dma_tx->list_head->data_size);
}
else
{
/* no data to be transmitted, disable DMA */
DMA_Cmd(uart->dma_tx->dma_channel, DISABLE);
}
}
/*@}*/

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
@ -17,45 +17,45 @@
/* STM32F10x library definitions */
#include <stm32f2xx.h>
#define UART_RX_BUFFER_SIZE 64
#define UART_TX_DMA_NODE_SIZE 4
#define UART_RX_BUFFER_SIZE 64
#define UART_TX_DMA_NODE_SIZE 4
/* data node for Tx Mode */
struct stm32_serial_data_node
{
rt_uint8_t *data_ptr;
rt_size_t data_size;
struct stm32_serial_data_node *next, *prev;
rt_uint8_t *data_ptr;
rt_size_t data_size;
struct stm32_serial_data_node *next, *prev;
};
struct stm32_serial_dma_tx
{
/* DMA Channel */
DMA_Stream_TypeDef* dma_channel;
/* DMA Channel */
DMA_Stream_TypeDef* dma_channel;
/* data list head and tail */
struct stm32_serial_data_node *list_head, *list_tail;
/* data list head and tail */
struct stm32_serial_data_node *list_head, *list_tail;
/* data node memory pool */
struct rt_mempool data_node_mp;
rt_uint8_t data_node_mem_pool[UART_TX_DMA_NODE_SIZE *
(sizeof(struct stm32_serial_data_node) + sizeof(void*))];
/* data node memory pool */
struct rt_mempool data_node_mp;
rt_uint8_t data_node_mem_pool[UART_TX_DMA_NODE_SIZE *
(sizeof(struct stm32_serial_data_node) + sizeof(void*))];
};
struct stm32_serial_int_rx
{
rt_uint8_t rx_buffer[UART_RX_BUFFER_SIZE];
rt_uint32_t read_index, save_index;
rt_uint8_t rx_buffer[UART_RX_BUFFER_SIZE];
rt_uint32_t read_index, save_index;
};
struct stm32_serial_device
{
USART_TypeDef* uart_device;
USART_TypeDef* uart_device;
/* rx structure */
struct stm32_serial_int_rx* int_rx;
/* rx structure */
struct stm32_serial_int_rx* int_rx;
/* tx structure */
struct stm32_serial_dma_tx* dma_tx;
/* tx structure */
struct stm32_serial_dma_tx* dma_tx;
};
rt_err_t rt_hw_serial_register(rt_device_t device, const char* name, rt_uint32_t flag, struct stm32_serial_device *serial);

View File

@ -10,14 +10,14 @@
#include "stm32f2x7_eth.h"
#include "stm32f2x7_eth_conf.h"
#define STM32_ETH_DEBUG 0
#define STM32_ETH_DEBUG 0
//#define CHECKSUM_BY_HARDWARE /* don't ues hardware checksum. */
/* MII and RMII mode selection, for STM322xG-EVAL Board(MB786) RevB ***********/
//#define MII_MODE
//#define MII_MODE
#define RMII_MODE // In this case the System clock frequency is configured
// to 100 MHz, for more details refer to system_stm32f2xx.c
// to 100 MHz, for more details refer to system_stm32f2xx.c
#define DP83848_PHY_ADDRESS 0x01 /* Relative to STM322xG-EVAL Board */
@ -27,10 +27,10 @@
extern ETH_DMADESCTypeDef DMARxDscrTab[ETH_RXBUFNB], DMATxDscrTab[ETH_TXBUFNB];
/* Ethernet Receive buffers */
extern uint8_t Rx_Buff[ETH_RXBUFNB][ETH_RX_BUF_SIZE];
extern uint8_t Rx_Buff[ETH_RXBUFNB][ETH_RX_BUF_SIZE];
/* Ethernet Transmit buffers */
extern uint8_t Tx_Buff[ETH_TXBUFNB][ETH_TX_BUF_SIZE];
extern uint8_t Tx_Buff[ETH_TXBUFNB][ETH_TX_BUF_SIZE];
/* Global pointers to track current transmit and receive descriptors */
extern ETH_DMADESCTypeDef *DMATxDescToSet;
@ -42,11 +42,11 @@ extern ETH_DMA_Rx_Frame_infos *DMA_RX_FRAME_infos;
#define MAX_ADDR_LEN 6
struct rt_stm32_eth
{
/* inherit from ethernet device */
struct eth_device parent;
/* inherit from ethernet device */
struct eth_device parent;
/* interface address info. */
rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
/* interface address info. */
rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
};
static struct rt_stm32_eth stm32_eth_device;
static struct rt_semaphore tx_wait;
@ -61,29 +61,29 @@ void ETH_IRQHandler(void)
{
rt_uint32_t status;
status = ETH->DMASR;
status = ETH->DMASR;
/* Frame received */
if ( ETH_GetDMAFlagStatus(ETH_DMA_FLAG_R) == SET)
{
rt_err_t result;
//rt_kprintf("Frame comming\n");
/* Clear the interrupt flags. */
/* Clear the Eth DMA Rx IT pending bits */
ETH_DMAClearITPendingBit(ETH_DMA_IT_R);
/* Frame received */
if ( ETH_GetDMAFlagStatus(ETH_DMA_FLAG_R) == SET)
{
rt_err_t result;
//rt_kprintf("Frame comming\n");
/* Clear the interrupt flags. */
/* Clear the Eth DMA Rx IT pending bits */
ETH_DMAClearITPendingBit(ETH_DMA_IT_R);
/* a frame has been received */
result = eth_device_ready(&(stm32_eth_device.parent));
if( result != RT_EOK ) rt_kprintf("RX err =%d\n", result );
//RT_ASSERT(result == RT_EOK);
}
if (ETH_GetDMAITStatus(ETH_DMA_IT_T) == SET) /* packet transmission */
{
ETH_DMAClearITPendingBit(ETH_DMA_IT_T);
}
ETH_DMAClearITPendingBit(ETH_DMA_IT_NIS);
//
/* a frame has been received */
result = eth_device_ready(&(stm32_eth_device.parent));
if( result != RT_EOK ) rt_kprintf("RX err =%d\n", result );
//RT_ASSERT(result == RT_EOK);
}
if (ETH_GetDMAITStatus(ETH_DMA_IT_T) == SET) /* packet transmission */
{
ETH_DMAClearITPendingBit(ETH_DMA_IT_T);
}
ETH_DMAClearITPendingBit(ETH_DMA_IT_NIS);
//
}
@ -91,244 +91,244 @@ void ETH_IRQHandler(void)
/* initialize the interface */
static rt_err_t rt_stm32_eth_init(rt_device_t dev)
{
int i;
int i;
/* MAC address configuration */
ETH_MACAddressConfig(ETH_MAC_Address0, (u8*)&stm32_eth_device.dev_addr[0]);
/* Initialize Tx Descriptors list: Chain Mode */
ETH_DMATxDescChainInit(DMATxDscrTab, &Tx_Buff[0][0], ETH_TXBUFNB);
/* Initialize Rx Descriptors list: Chain Mode */
ETH_DMARxDescChainInit(DMARxDscrTab, &Rx_Buff[0][0], ETH_RXBUFNB);
/* MAC address configuration */
ETH_MACAddressConfig(ETH_MAC_Address0, (u8*)&stm32_eth_device.dev_addr[0]);
/* Enable Ethernet Rx interrrupt */
{
for(i=0; i<ETH_RXBUFNB; i++)
{
ETH_DMARxDescReceiveITConfig(&DMARxDscrTab[i], ENABLE);
}
}
#ifdef CHECKSUM_BY_HARDWARE
/* Enable the checksum insertion for the Tx frames */
{
for(i=0; i<ETH_TXBUFNB; i++)
{
ETH_DMATxDescChecksumInsertionConfig(&DMATxDscrTab[i], ETH_DMATxDesc_ChecksumTCPUDPICMPFull);
}
}
#endif
/* Initialize Tx Descriptors list: Chain Mode */
ETH_DMATxDescChainInit(DMATxDscrTab, &Tx_Buff[0][0], ETH_TXBUFNB);
/* Initialize Rx Descriptors list: Chain Mode */
ETH_DMARxDescChainInit(DMARxDscrTab, &Rx_Buff[0][0], ETH_RXBUFNB);
{
uint16_t tmp, i=10000;
/* Enable Ethernet Rx interrrupt */
{
for(i=0; i<ETH_RXBUFNB; i++)
{
ETH_DMARxDescReceiveITConfig(&DMARxDscrTab[i], ENABLE);
}
}
tmp = ETH_ReadPHYRegister(DP83848_PHY_ADDRESS, PHY_CR);
ETH_WritePHYRegister(DP83848_PHY_ADDRESS, PHY_CDCTRL1, BIST_CONT_MODE );
ETH_WritePHYRegister(DP83848_PHY_ADDRESS, PHY_CR, tmp | BIST_START );//BIST_START
#ifdef CHECKSUM_BY_HARDWARE
/* Enable the checksum insertion for the Tx frames */
{
for(i=0; i<ETH_TXBUFNB; i++)
{
ETH_DMATxDescChecksumInsertionConfig(&DMATxDscrTab[i], ETH_DMATxDesc_ChecksumTCPUDPICMPFull);
}
}
#endif
while(i--);
{
uint16_t tmp, i=10000;
//tmp = ETH_ReadPHYRegister(DP83848_PHY_ADDRESS, PHY_CR);
tmp = ETH_ReadPHYRegister(DP83848_PHY_ADDRESS, PHY_CR);
ETH_WritePHYRegister(DP83848_PHY_ADDRESS, PHY_CDCTRL1, BIST_CONT_MODE );
ETH_WritePHYRegister(DP83848_PHY_ADDRESS, PHY_CR, tmp | BIST_START );//BIST_START
if( ETH_ReadPHYRegister(DP83848_PHY_ADDRESS, PHY_CR) & BIST_STATUS == BIST_STATUS )
{
rt_kprintf("BIST pass\n");
}
else
{
uint16_t ctrl;
while(i--);
ctrl = ETH_ReadPHYRegister(DP83848_PHY_ADDRESS, PHY_CDCTRL1);
rt_kprintf("BIST faild count =%d\n", BIST_ERROR_COUNT(ctrl) );
}
tmp &= ~BIST_START; //Stop BIST
ETH_WritePHYRegister(DP83848_PHY_ADDRESS, PHY_CR, tmp);
//tmp = ETH_ReadPHYRegister(DP83848_PHY_ADDRESS, PHY_CR);
if( ETH_ReadPHYRegister(DP83848_PHY_ADDRESS, PHY_CR) & BIST_STATUS == BIST_STATUS )
{
rt_kprintf("BIST pass\n");
}
else
{
uint16_t ctrl;
ctrl = ETH_ReadPHYRegister(DP83848_PHY_ADDRESS, PHY_CDCTRL1);
rt_kprintf("BIST faild count =%d\n", BIST_ERROR_COUNT(ctrl) );
}
tmp &= ~BIST_START; //Stop BIST
ETH_WritePHYRegister(DP83848_PHY_ADDRESS, PHY_CR, tmp);
}
}
/* Enable MAC and DMA transmission and reception */
ETH_Start();
/* Enable MAC and DMA transmission and reception */
ETH_Start();
//rt_kprintf("DMASR = 0x%X\n", ETH->DMASR );
// rt_kprintf("ETH Init\n");
//rt_kprintf("DMASR = 0x%X\n", ETH->DMASR );
// rt_kprintf("ETH Init\n");
return RT_EOK;
}
static rt_err_t rt_stm32_eth_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
return RT_EOK;
}
static rt_err_t rt_stm32_eth_close(rt_device_t dev)
{
return RT_EOK;
return RT_EOK;
}
static rt_size_t rt_stm32_eth_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_size_t rt_stm32_eth_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t rt_stm32_eth_control(rt_device_t dev, int cmd, void *args)
{
switch(cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if(args) rt_memcpy(args, stm32_eth_device.dev_addr, 6);
else return -RT_ERROR;
break;
switch(cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if(args) rt_memcpy(args, stm32_eth_device.dev_addr, 6);
else return -RT_ERROR;
break;
default :
break;
}
default :
break;
}
return RT_EOK;
return RT_EOK;
}
void show_frame(struct pbuf *q)
{
int i = 0;
int j = 0;
char *ptr = q->payload;
int i = 0;
int j = 0;
char *ptr = q->payload;
for( i = 0; i < q->len; i++ )
rt_kprintf("0x%02X ", *(ptr++));
rt_kprintf("\n");
for( i = 0; i < q->len; i++ )
rt_kprintf("0x%02X ", *(ptr++));
rt_kprintf("\n");
}
/* ethernet device interface */
/* transmit packet. */
rt_err_t rt_stm32_eth_tx( rt_device_t dev, struct pbuf* p)
{
rt_err_t ret;
struct pbuf *q;
uint32_t l = 0;
u8 *buffer ;
if (( ret = rt_sem_take(&tx_wait, netifGUARD_BLOCK_TIME) ) == RT_EOK)
{
buffer = (u8 *)(DMATxDescToSet->Buffer1Addr);
for(q = p; q != NULL; q = q->next)
{
//show_frame(q);
rt_memcpy((u8_t*)&buffer[l], q->payload, q->len);
l = l + q->len;
}
if( ETH_Prepare_Transmit_Descriptors(l) == ETH_ERROR )
rt_kprintf("Tx Error\n");
//rt_sem_release(xTxSemaphore);
rt_sem_release(&tx_wait);
//rt_kprintf("Tx packet, len = %d\n", l);
}
else
{
rt_kprintf("Tx Timeout\n");
return ret;
}
rt_err_t ret;
struct pbuf *q;
uint32_t l = 0;
u8 *buffer ;
/* Return SUCCESS */
return RT_EOK;
if (( ret = rt_sem_take(&tx_wait, netifGUARD_BLOCK_TIME) ) == RT_EOK)
{
buffer = (u8 *)(DMATxDescToSet->Buffer1Addr);
for(q = p; q != NULL; q = q->next)
{
//show_frame(q);
rt_memcpy((u8_t*)&buffer[l], q->payload, q->len);
l = l + q->len;
}
if( ETH_Prepare_Transmit_Descriptors(l) == ETH_ERROR )
rt_kprintf("Tx Error\n");
//rt_sem_release(xTxSemaphore);
rt_sem_release(&tx_wait);
//rt_kprintf("Tx packet, len = %d\n", l);
}
else
{
rt_kprintf("Tx Timeout\n");
return ret;
}
/* Return SUCCESS */
return RT_EOK;
}
/* reception packet. */
struct pbuf *rt_stm32_eth_rx(rt_device_t dev)
{
struct pbuf *p, *q;
u16_t len;
uint32_t l=0,i =0;
FrameTypeDef frame;
static framecnt = 1;
u8 *buffer;
__IO ETH_DMADESCTypeDef *DMARxNextDesc;
p = RT_NULL;
// rt_kprintf("ETH rx\n");
/* Get received frame */
frame = ETH_Get_Received_Frame_interrupt();
if( frame.length > 0 )
{
/* check that frame has no error */
if ((frame.descriptor->Status & ETH_DMARxDesc_ES) == (uint32_t)RESET)
{
//rt_kprintf("Get a frame %d buf = 0x%X, len= %d\n", framecnt++, frame.buffer, frame.length);
/* Obtain the size of the packet and put it into the "len" variable. */
len = frame.length;
buffer = (u8 *)frame.buffer;
/* We allocate a pbuf chain of pbufs from the pool. */
p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
//p = pbuf_alloc(PBUF_LINK, len, PBUF_RAM);
struct pbuf *p, *q;
u16_t len;
uint32_t l=0,i =0;
FrameTypeDef frame;
static framecnt = 1;
u8 *buffer;
__IO ETH_DMADESCTypeDef *DMARxNextDesc;
/* Copy received frame from ethernet driver buffer to stack buffer */
if (p != NULL)
{
for (q = p; q != NULL; q = q->next)
{
rt_memcpy((u8_t*)q->payload, (u8_t*)&buffer[l], q->len);
l = l + q->len;
}
}
}
/* Release descriptors to DMA */
/* Check if received frame with multiple DMA buffer segments */
if (DMA_RX_FRAME_infos->Seg_Count > 1)
{
DMARxNextDesc = DMA_RX_FRAME_infos->FS_Rx_Desc;
}
else
{
DMARxNextDesc = frame.descriptor;
}
/* Set Own bit in Rx descriptors: gives the buffers back to DMA */
for (i=0; i<DMA_RX_FRAME_infos->Seg_Count; i++)
{
DMARxNextDesc->Status = ETH_DMARxDesc_OWN;
DMARxNextDesc = (ETH_DMADESCTypeDef *)(DMARxNextDesc->Buffer2NextDescAddr);
}
/* Clear Segment_Count */
DMA_RX_FRAME_infos->Seg_Count =0;
/* When Rx Buffer unavailable flag is set: clear it and resume reception */
if ((ETH->DMASR & ETH_DMASR_RBUS) != (u32)RESET)
{
/* Clear RBUS ETHERNET DMA flag */
ETH->DMASR = ETH_DMASR_RBUS;
/* Resume DMA reception */
ETH->DMARPDR = 0;
}
}
return p;
p = RT_NULL;
// rt_kprintf("ETH rx\n");
/* Get received frame */
frame = ETH_Get_Received_Frame_interrupt();
if( frame.length > 0 )
{
/* check that frame has no error */
if ((frame.descriptor->Status & ETH_DMARxDesc_ES) == (uint32_t)RESET)
{
//rt_kprintf("Get a frame %d buf = 0x%X, len= %d\n", framecnt++, frame.buffer, frame.length);
/* Obtain the size of the packet and put it into the "len" variable. */
len = frame.length;
buffer = (u8 *)frame.buffer;
/* We allocate a pbuf chain of pbufs from the pool. */
p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
//p = pbuf_alloc(PBUF_LINK, len, PBUF_RAM);
/* Copy received frame from ethernet driver buffer to stack buffer */
if (p != NULL)
{
for (q = p; q != NULL; q = q->next)
{
rt_memcpy((u8_t*)q->payload, (u8_t*)&buffer[l], q->len);
l = l + q->len;
}
}
}
/* Release descriptors to DMA */
/* Check if received frame with multiple DMA buffer segments */
if (DMA_RX_FRAME_infos->Seg_Count > 1)
{
DMARxNextDesc = DMA_RX_FRAME_infos->FS_Rx_Desc;
}
else
{
DMARxNextDesc = frame.descriptor;
}
/* Set Own bit in Rx descriptors: gives the buffers back to DMA */
for (i=0; i<DMA_RX_FRAME_infos->Seg_Count; i++)
{
DMARxNextDesc->Status = ETH_DMARxDesc_OWN;
DMARxNextDesc = (ETH_DMADESCTypeDef *)(DMARxNextDesc->Buffer2NextDescAddr);
}
/* Clear Segment_Count */
DMA_RX_FRAME_infos->Seg_Count =0;
/* When Rx Buffer unavailable flag is set: clear it and resume reception */
if ((ETH->DMASR & ETH_DMASR_RBUS) != (u32)RESET)
{
/* Clear RBUS ETHERNET DMA flag */
ETH->DMASR = ETH_DMASR_RBUS;
/* Resume DMA reception */
ETH->DMARPDR = 0;
}
}
return p;
}
static void NVIC_Configuration(void)
{
NVIC_InitTypeDef NVIC_InitStructure;
/* 2 bit for pre-emption priority, 2 bits for subpriority */
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
/* Enable the Ethernet global Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = ETH_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
NVIC_InitTypeDef NVIC_InitStructure;
/* 2 bit for pre-emption priority, 2 bits for subpriority */
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
/* Enable the Ethernet global Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = ETH_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
}
/*
@ -383,15 +383,15 @@ static void GPIO_Configuration(void)
ETH_MII_TXD0/ETH_RMII_TXD0 -------> PB12
ETH_MII_TXD1/ETH_RMII_TXD1 -------> PB13
**** Just for MII Mode ****
ETH_MII_CRS ----------------------> PA0
ETH_MII_COL ----------------------> PA3
ETH_MII_TX_CLK -------------------> PC3
ETH_MII_RX_ER --------------------> PB10
ETH_MII_RXD2 ---------------------> PB0
ETH_MII_RXD3 ---------------------> PB1
ETH_MII_TXD2 ---------------------> PC2
ETH_MII_TXD3 ---------------------> PB8
**** Just for MII Mode ****
ETH_MII_CRS ----------------------> PA0
ETH_MII_COL ----------------------> PA3
ETH_MII_TX_CLK -------------------> PC3
ETH_MII_RX_ER --------------------> PB10
ETH_MII_RXD2 ---------------------> PB0
ETH_MII_RXD3 ---------------------> PB1
ETH_MII_TXD2 ---------------------> PC2
ETH_MII_TXD3 ---------------------> PB8
*/
/* Configure PC1, PC4 and PC5 */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 |GPIO_Pin_4 | GPIO_Pin_5;
@ -450,7 +450,7 @@ static void ETH_MACDMA_Config(void)
/* Enable ETHERNET clock */
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_ETH_MAC | RCC_AHB1Periph_ETH_MAC_Tx |
RCC_AHB1Periph_ETH_MAC_Rx, ENABLE);
RCC_AHB1Periph_ETH_MAC_Rx, ENABLE);
/* Reset ETHERNET on AHB Bus */
ETH_DeInit();
@ -468,9 +468,9 @@ static void ETH_MACDMA_Config(void)
/* Fill ETH_InitStructure parametrs */
/*------------------------ MAC -----------------------------------*/
ETH_InitStructure.ETH_AutoNegotiation = ETH_AutoNegotiation_Enable;
//ETH_InitStructure.ETH_AutoNegotiation = ETH_AutoNegotiation_Disable;
//ETH_InitStructure.ETH_AutoNegotiation = ETH_AutoNegotiation_Disable;
// ETH_InitStructure.ETH_Speed = ETH_Speed_10M;
// ETH_InitStructure.ETH_Mode = ETH_Mode_FullDuplex;
// ETH_InitStructure.ETH_Mode = ETH_Mode_FullDuplex;
ETH_InitStructure.ETH_LoopbackMode = ETH_LoopbackMode_Disable;
ETH_InitStructure.ETH_RetryTransmission = ETH_RetryTransmission_Disable;
@ -484,95 +484,95 @@ static void ETH_MACDMA_Config(void)
ETH_InitStructure.ETH_ChecksumOffload = ETH_ChecksumOffload_Enable;
#endif
/*------------------------ DMA -----------------------------------*/
/* When we use the Checksum offload feature, we need to enable the Store and Forward mode:
the store and forward guarantee that a whole frame is stored in the FIFO, so the MAC can insert/verify the checksum,
/*------------------------ DMA -----------------------------------*/
/* When we use the Checksum offload feature, we need to enable the Store and Forward mode:
the store and forward guarantee that a whole frame is stored in the FIFO, so the MAC can insert/verify the checksum,
if the checksum is OK the DMA can handle the frame otherwise the frame is dropped */
ETH_InitStructure.ETH_DropTCPIPChecksumErrorFrame = ETH_DropTCPIPChecksumErrorFrame_Enable;
ETH_InitStructure.ETH_ReceiveStoreForward = ETH_ReceiveStoreForward_Enable;
ETH_InitStructure.ETH_TransmitStoreForward = ETH_TransmitStoreForward_Enable;
ETH_InitStructure.ETH_ForwardErrorFrames = ETH_ForwardErrorFrames_Disable;
ETH_InitStructure.ETH_ForwardUndersizedGoodFrames = ETH_ForwardUndersizedGoodFrames_Disable;
ETH_InitStructure.ETH_DropTCPIPChecksumErrorFrame = ETH_DropTCPIPChecksumErrorFrame_Enable;
ETH_InitStructure.ETH_ReceiveStoreForward = ETH_ReceiveStoreForward_Enable;
ETH_InitStructure.ETH_TransmitStoreForward = ETH_TransmitStoreForward_Enable;
ETH_InitStructure.ETH_ForwardErrorFrames = ETH_ForwardErrorFrames_Disable;
ETH_InitStructure.ETH_ForwardUndersizedGoodFrames = ETH_ForwardUndersizedGoodFrames_Disable;
ETH_InitStructure.ETH_SecondFrameOperate = ETH_SecondFrameOperate_Enable;
ETH_InitStructure.ETH_AddressAlignedBeats = ETH_AddressAlignedBeats_Enable;
ETH_InitStructure.ETH_FixedBurst = ETH_FixedBurst_Enable;
ETH_InitStructure.ETH_RxDMABurstLength = ETH_RxDMABurstLength_32Beat;
ETH_InitStructure.ETH_AddressAlignedBeats = ETH_AddressAlignedBeats_Enable;
ETH_InitStructure.ETH_FixedBurst = ETH_FixedBurst_Enable;
ETH_InitStructure.ETH_RxDMABurstLength = ETH_RxDMABurstLength_32Beat;
ETH_InitStructure.ETH_TxDMABurstLength = ETH_TxDMABurstLength_32Beat;
ETH_InitStructure.ETH_DMAArbitration = ETH_DMAArbitration_RoundRobin_RxTx_2_1;
/* Configure Ethernet */
if( ETH_Init(&ETH_InitStructure, DP83848_PHY_ADDRESS) == ETH_ERROR )
rt_kprintf("ETH init error, may be no link\n");
rt_kprintf("ETH init error, may be no link\n");
/* Enable the Ethernet Rx Interrupt */
ETH_DMAITConfig(ETH_DMA_IT_NIS | ETH_DMA_IT_R , ENABLE);
}
#define DevID_SNo0 (*((rt_uint32_t *)0x1FFF7A10));
#define DevID_SNo1 (*((rt_uint32_t *)0x1FFF7A10+32));
#define DevID_SNo0 (*((rt_uint32_t *)0x1FFF7A10));
#define DevID_SNo1 (*((rt_uint32_t *)0x1FFF7A10+32));
#define DevID_SNo2 (*((rt_uint32_t *)0x1FFF7A10+64));
void rt_hw_stm32_eth_init(void)
{
GPIO_Configuration();
NVIC_Configuration();
ETH_MACDMA_Config();
GPIO_Configuration();
NVIC_Configuration();
ETH_MACDMA_Config();
stm32_eth_device.dev_addr[0] = 0x00;
stm32_eth_device.dev_addr[1] = 0x60;
stm32_eth_device.dev_addr[2] = 0x6e;
{
uint32_t cpu_id[3] = {0};
cpu_id[2] = DevID_SNo2; cpu_id[1] = DevID_SNo1; cpu_id[0] = DevID_SNo0;
// generate MAC addr from 96bit unique ID (only for test)
stm32_eth_device.dev_addr[3] = (uint8_t)((cpu_id[0]>>16)&0xFF);
stm32_eth_device.dev_addr[4] = (uint8_t)((cpu_id[0]>>8)&0xFF);
stm32_eth_device.dev_addr[5] = (uint8_t)(cpu_id[0]&0xFF);
{
uint32_t cpu_id[3] = {0};
cpu_id[2] = DevID_SNo2; cpu_id[1] = DevID_SNo1; cpu_id[0] = DevID_SNo0;
// stm32_eth_device.dev_addr[3] = *(rt_uint8_t*)(0x1FFF7A10+7);
// stm32_eth_device.dev_addr[4] = *(rt_uint8_t*)(0x1FFF7A10+8);
// stm32_eth_device.dev_addr[5] = *(rt_uint8_t*)(0x1FFF7A10+9);
}
// generate MAC addr from 96bit unique ID (only for test)
stm32_eth_device.dev_addr[3] = (uint8_t)((cpu_id[0]>>16)&0xFF);
stm32_eth_device.dev_addr[4] = (uint8_t)((cpu_id[0]>>8)&0xFF);
stm32_eth_device.dev_addr[5] = (uint8_t)(cpu_id[0]&0xFF);
stm32_eth_device.parent.parent.init = rt_stm32_eth_init;
stm32_eth_device.parent.parent.open = rt_stm32_eth_open;
stm32_eth_device.parent.parent.close = rt_stm32_eth_close;
stm32_eth_device.parent.parent.read = rt_stm32_eth_read;
stm32_eth_device.parent.parent.write = rt_stm32_eth_write;
stm32_eth_device.parent.parent.control = rt_stm32_eth_control;
stm32_eth_device.parent.parent.user_data = RT_NULL;
// stm32_eth_device.dev_addr[3] = *(rt_uint8_t*)(0x1FFF7A10+7);
// stm32_eth_device.dev_addr[4] = *(rt_uint8_t*)(0x1FFF7A10+8);
// stm32_eth_device.dev_addr[5] = *(rt_uint8_t*)(0x1FFF7A10+9);
}
stm32_eth_device.parent.eth_rx = rt_stm32_eth_rx;
stm32_eth_device.parent.eth_tx = rt_stm32_eth_tx;
stm32_eth_device.parent.parent.init = rt_stm32_eth_init;
stm32_eth_device.parent.parent.open = rt_stm32_eth_open;
stm32_eth_device.parent.parent.close = rt_stm32_eth_close;
stm32_eth_device.parent.parent.read = rt_stm32_eth_read;
stm32_eth_device.parent.parent.write = rt_stm32_eth_write;
stm32_eth_device.parent.parent.control = rt_stm32_eth_control;
stm32_eth_device.parent.parent.user_data = RT_NULL;
/* init tx semaphore */
rt_sem_init(&tx_wait, "tx_wait", 1, RT_IPC_FLAG_FIFO);
stm32_eth_device.parent.eth_rx = rt_stm32_eth_rx;
stm32_eth_device.parent.eth_tx = rt_stm32_eth_tx;
/* register eth device */
eth_device_init(&(stm32_eth_device.parent), "e0");
/* init tx semaphore */
rt_sem_init(&tx_wait, "tx_wait", 1, RT_IPC_FLAG_FIFO);
/* register eth device */
eth_device_init(&(stm32_eth_device.parent), "e0");
}
static char led = 0;
void dp83483()
{
uint16_t bsr,sts, bcr, phycr;
uint16_t bsr,sts, bcr, phycr;
bsr = ETH_ReadPHYRegister(DP83848_PHY_ADDRESS, PHY_BSR);
sts = ETH_ReadPHYRegister(DP83848_PHY_ADDRESS, PHY_SR);
bcr = ETH_ReadPHYRegister(DP83848_PHY_ADDRESS, PHY_BCR);
phycr = ETH_ReadPHYRegister(DP83848_PHY_ADDRESS, PHY_CR);
bsr = ETH_ReadPHYRegister(DP83848_PHY_ADDRESS, PHY_BSR);
sts = ETH_ReadPHYRegister(DP83848_PHY_ADDRESS, PHY_SR);
bcr = ETH_ReadPHYRegister(DP83848_PHY_ADDRESS, PHY_BCR);
phycr = ETH_ReadPHYRegister(DP83848_PHY_ADDRESS, PHY_CR);
rt_kprintf("BCR = 0x%X\tBSR = 0x%X\tPHY_STS = 0x%X\tPHY_CR = 0x%X\n", bcr,bsr,sts, phycr);
rt_kprintf("BCR = 0x%X\tBSR = 0x%X\tPHY_STS = 0x%X\tPHY_CR = 0x%X\n", bcr,bsr,sts, phycr);
rt_kprintf("PHY_FCSCR = 0x%X\n", ETH_ReadPHYRegister(DP83848_PHY_ADDRESS, PHY_FCSCR ) );
rt_kprintf("PHY_MISR = 0x%X\n", ETH_ReadPHYRegister(DP83848_PHY_ADDRESS, PHY_MISR ) );
rt_kprintf("PHY_FCSCR = 0x%X\n", ETH_ReadPHYRegister(DP83848_PHY_ADDRESS, PHY_FCSCR ) );
rt_kprintf("PHY_MISR = 0x%X\n", ETH_ReadPHYRegister(DP83848_PHY_ADDRESS, PHY_MISR ) );
rt_kprintf("DMASR = 0x%X\n", ETH->DMASR );
rt_kprintf("DMASR = 0x%X\n", ETH->DMASR );
//ETH_WritePHYRegister(DP83848_PHY_ADDRESS, PHY_LEDCR, (uint16_t)(0x38 | led));
led = (led==7)?0:7;
//ETH_WritePHYRegister(DP83848_PHY_ADDRESS, PHY_LEDCR, (uint16_t)(0x38 | led));
led = (led==7)?0:7;
}
#ifdef RT_USING_FINSH

View File

@ -1,11 +1,11 @@
/**
******************************************************************************
* @file Project/STM32F2xx_StdPeriph_Template/stm32f2xx_it.c
* @file Project/STM32F2xx_StdPeriph_Template/stm32f2xx_it.c
* @author MCD Application Team
* @version V1.0.0
* @date 18-April-2011
* @brief Main Interrupt Service Routines.
* This file provides template for all exceptions handler and
* This file provides template for all exceptions handler and
* peripherals interrupt service routine.
******************************************************************************
* @attention
@ -19,7 +19,7 @@
*
* <h2><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h2>
******************************************************************************
*/
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f2xx.h"
@ -126,7 +126,7 @@ void DebugMon_Handler(void)
/**
* @}
*/
*/
#if defined(RT_USING_DFS) && STM32_USE_SDIO
/*******************************************************************************
@ -145,7 +145,7 @@ void SDIO_IRQHandler(void)
/* Process All SDIO Interrupt Sources */
if( SD_ProcessIRQSrc() == 2)
rt_kprintf("SD Error\n");
rt_kprintf("SD Error\n");
/* leave interrupt */
rt_interrupt_leave();

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
@ -34,9 +34,9 @@
struct stm32_serial_int_rx uart1_int_rx;
struct stm32_serial_device uart1 =
{
USART1,
&uart1_int_rx,
RT_NULL
USART1,
&uart1_int_rx,
RT_NULL
};
struct rt_device uart1_device;
#endif
@ -45,9 +45,9 @@ struct rt_device uart1_device;
struct stm32_serial_int_rx uart6_int_rx;
struct stm32_serial_device uart6 =
{
USART6,
&uart6_int_rx,
RT_NULL
USART6,
&uart6_int_rx,
RT_NULL
};
struct rt_device uart6_device;
#endif
@ -56,9 +56,9 @@ struct rt_device uart6_device;
struct stm32_serial_int_rx uart2_int_rx;
struct stm32_serial_device uart2 =
{
USART2,
&uart2_int_rx,
RT_NULL
USART2,
&uart2_int_rx,
RT_NULL
};
struct rt_device uart2_device;
#endif
@ -68,9 +68,9 @@ struct stm32_serial_int_rx uart3_int_rx;
struct stm32_serial_dma_tx uart3_dma_tx;
struct stm32_serial_device uart3 =
{
USART3,
&uart3_int_rx,
&uart3_dma_tx
USART3,
&uart3_int_rx,
&uart3_dma_tx
};
struct rt_device uart3_device;
#endif
@ -80,110 +80,110 @@ struct rt_device uart3_device;
#define USART3_DR_Base 0x40004804
/* USART1_REMAP = 0 */
#define UART1_GPIO_TX GPIO_Pin_9
#define UART1_GPIO_RX GPIO_Pin_10
#define UART1_GPIO GPIOA
#define RCC_APBPeriph_UART1 RCC_APB2Periph_USART1
#define UART1_TX_DMA DMA1_Channel4
#define UART1_RX_DMA DMA1_Channel5
#define UART1_GPIO_TX GPIO_Pin_9
#define UART1_GPIO_RX GPIO_Pin_10
#define UART1_GPIO GPIOA
#define RCC_APBPeriph_UART1 RCC_APB2Periph_USART1
#define UART1_TX_DMA DMA1_Channel4
#define UART1_RX_DMA DMA1_Channel5
#if defined(STM32F10X_LD) || defined(STM32F10X_MD) || defined(STM32F10X_CL)
#define UART2_GPIO_TX GPIO_Pin_5
#define UART2_GPIO_RX GPIO_Pin_6
#define UART2_GPIO GPIOD
#define RCC_APBPeriph_UART2 RCC_APB1Periph_USART2
#define UART2_GPIO_TX GPIO_Pin_5
#define UART2_GPIO_RX GPIO_Pin_6
#define UART2_GPIO GPIOD
#define RCC_APBPeriph_UART2 RCC_APB1Periph_USART2
#else /* for STM32F10X_HD */
/* USART2_REMAP = 0 */
#define UART2_GPIO_TX GPIO_Pin_2
#define UART2_GPIO_RX GPIO_Pin_3
#define UART2_GPIO GPIOA
#define RCC_APBPeriph_UART2 RCC_APB1Periph_USART2
#define UART2_TX_DMA DMA1_Channel7
#define UART2_RX_DMA DMA1_Channel6
#define UART2_GPIO_TX GPIO_Pin_2
#define UART2_GPIO_RX GPIO_Pin_3
#define UART2_GPIO GPIOA
#define RCC_APBPeriph_UART2 RCC_APB1Periph_USART2
#define UART2_TX_DMA DMA1_Channel7
#define UART2_RX_DMA DMA1_Channel6
#endif
/* USART3_REMAP[1:0] = 00 */
#define UART3_GPIO_RX GPIO_Pin_11
#define UART3_GPIO_TX GPIO_Pin_10
#define UART3_GPIO GPIOB
#define RCC_APBPeriph_UART3 RCC_APB1Periph_USART3
#define UART3_TX_DMA DMA1_Channel2
#define UART3_RX_DMA DMA1_Channel3
#define UART3_GPIO_RX GPIO_Pin_11
#define UART3_GPIO_TX GPIO_Pin_10
#define UART3_GPIO GPIOB
#define RCC_APBPeriph_UART3 RCC_APB1Periph_USART3
#define UART3_TX_DMA DMA1_Channel2
#define UART3_RX_DMA DMA1_Channel3
/* USART6_REMAP = 0 */
#define UART6_GPIO_TX GPIO_Pin_6
#define UART6_GPIO_RX GPIO_Pin_7
#define UART6_GPIO GPIOC
#define RCC_APBPeriph_UART6 RCC_APB2Periph_USART6
//#define UART1_TX_DMA DMA1_Channel?
//#define UART1_RX_DMA DMA1_Channel?
#define UART6_GPIO_TX GPIO_Pin_6
#define UART6_GPIO_RX GPIO_Pin_7
#define UART6_GPIO GPIOC
#define RCC_APBPeriph_UART6 RCC_APB2Periph_USART6
//#define UART1_TX_DMA DMA1_Channel?
//#define UART1_RX_DMA DMA1_Channel?
static void RCC_Configuration(void)
{
#ifdef RT_USING_UART1
/* Enable USART1 and GPIOA clocks */
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
/* Enable USART1 and GPIOA clocks */
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
#endif
#ifdef RT_USING_UART6
/* Enable USART6 and GPIOC clocks */
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART6, ENABLE);
/* Enable USART6 and GPIOC clocks */
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART6, ENABLE);
#endif
}
static void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitTypeDef GPIO_InitStruct;
#ifdef RT_USING_UART1
GPIO_InitStruct.GPIO_Mode=GPIO_Mode_AF;
GPIO_InitStruct.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_InitStruct.GPIO_OType=GPIO_OType_PP;
GPIO_InitStruct.GPIO_PuPd=GPIO_PuPd_UP;
GPIO_InitStruct.GPIO_Mode=GPIO_Mode_AF;
GPIO_InitStruct.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_InitStruct.GPIO_OType=GPIO_OType_PP;
GPIO_InitStruct.GPIO_PuPd=GPIO_PuPd_UP;
GPIO_InitStruct.GPIO_Pin=GPIO_Pin_9|GPIO_Pin_10;
GPIO_Init(GPIOA,&GPIO_InitStruct);
GPIO_InitStruct.GPIO_Pin=GPIO_Pin_9|GPIO_Pin_10;
GPIO_Init(GPIOA,&GPIO_InitStruct);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource9, GPIO_AF_USART1);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource10, GPIO_AF_USART1);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource9, GPIO_AF_USART1);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource10, GPIO_AF_USART1);
#endif
#ifdef RT_USING_UART6
GPIO_InitStruct.GPIO_Mode=GPIO_Mode_AF;
GPIO_InitStruct.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_InitStruct.GPIO_OType=GPIO_OType_PP;
GPIO_InitStruct.GPIO_PuPd=GPIO_PuPd_UP;
GPIO_InitStruct.GPIO_Mode=GPIO_Mode_AF;
GPIO_InitStruct.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_InitStruct.GPIO_OType=GPIO_OType_PP;
GPIO_InitStruct.GPIO_PuPd=GPIO_PuPd_UP;
GPIO_InitStruct.GPIO_Pin=UART6_GPIO_TX|UART6_GPIO_RX;
GPIO_Init(UART6_GPIO,&GPIO_InitStruct);
GPIO_InitStruct.GPIO_Pin=UART6_GPIO_TX|UART6_GPIO_RX;
GPIO_Init(UART6_GPIO,&GPIO_InitStruct);
GPIO_PinAFConfig(UART6_GPIO, GPIO_PinSource6, GPIO_AF_USART6);
GPIO_PinAFConfig(UART6_GPIO, GPIO_PinSource7, GPIO_AF_USART6);
GPIO_PinAFConfig(UART6_GPIO, GPIO_PinSource6, GPIO_AF_USART6);
GPIO_PinAFConfig(UART6_GPIO, GPIO_PinSource7, GPIO_AF_USART6);
#endif
}
static void NVIC_Configuration(void)
{
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
#ifdef RT_USING_UART1
/* Enable the USART1 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* Enable the USART1 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
#endif
#ifdef RT_USING_UART6
/* Enable the USART1 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = USART6_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* Enable the USART1 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = USART6_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
#endif
}
@ -193,60 +193,60 @@ static void NVIC_Configuration(void)
*/
void rt_hw_usart_init()
{
USART_InitTypeDef USART_InitStructure;
USART_InitTypeDef USART_InitStructure;
RCC_Configuration();
RCC_Configuration();
GPIO_Configuration();
GPIO_Configuration();
NVIC_Configuration();
NVIC_Configuration();
/* uart init */
/* uart init */
#ifdef RT_USING_UART1
USART_DeInit(USART1);
USART_InitStructure.USART_BaudRate = 115200;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No ;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_DeInit(USART1);
USART_InitStructure.USART_BaudRate = 115200;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No ;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USART1, &USART_InitStructure);
USART_Init(USART1, &USART_InitStructure);
/* register uart1 */
rt_hw_serial_register(&uart1_device, "uart1",
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_STREAM,
&uart1);
/* register uart1 */
rt_hw_serial_register(&uart1_device, "uart1",
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_STREAM,
&uart1);
/* enable interrupt */
USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);
/* Enable USART1 */
USART_Cmd(USART1, ENABLE);
USART_ClearFlag(USART1,USART_FLAG_TXE);
/* enable interrupt */
USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);
/* Enable USART1 */
USART_Cmd(USART1, ENABLE);
USART_ClearFlag(USART1,USART_FLAG_TXE);
#endif
/* uart init */
/* uart init */
#ifdef RT_USING_UART6
USART_DeInit(USART6);
USART_InitStructure.USART_BaudRate = 115200;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No ;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_DeInit(USART6);
USART_InitStructure.USART_BaudRate = 115200;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No ;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USART6, &USART_InitStructure);
USART_Init(USART6, &USART_InitStructure);
/* register uart1 */
rt_hw_serial_register(&uart6_device, "uart6",
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_STREAM,
&uart6);
/* register uart1 */
rt_hw_serial_register(&uart6_device, "uart6",
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_STREAM,
&uart6);
/* enable interrupt */
USART_ITConfig(USART6, USART_IT_RXNE, ENABLE);
/* Enable USART6 */
USART_Cmd(USART6, ENABLE);
USART_ClearFlag(USART6,USART_FLAG_TXE);
/* enable interrupt */
USART_ITConfig(USART6, USART_IT_RXNE, ENABLE);
/* Enable USART6 */
USART_Cmd(USART6, ENABLE);
USART_ClearFlag(USART6,USART_FLAG_TXE);
#endif
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
@ -42,11 +42,11 @@ extern int __bss_end;
*******************************************************************************/
void assert_failed(u8* file, u32 line)
{
rt_kprintf("\n\r Wrong parameter value detected on\r\n");
rt_kprintf(" file %s\r\n", file);
rt_kprintf(" line %d\r\n", line);
rt_kprintf("\n\r Wrong parameter value detected on\r\n");
rt_kprintf(" file %s\r\n", file);
rt_kprintf(" line %d\r\n", line);
while (1) ;
while (1) ;
}
#endif
@ -55,58 +55,58 @@ void assert_failed(u8* file, u32 line)
*/
void rtthread_startup(void)
{
/* init board */
rt_hw_board_init();
/* init board */
rt_hw_board_init();
/* show version */
rt_show_version();
/* show version */
rt_show_version();
/* init timer system */
rt_system_timer_init();
/* init timer system */
rt_system_timer_init();
#ifdef RT_USING_HEAP
#if STM32_EXT_SRAM
rt_system_heap_init((void*)STM32_EXT_SRAM_BEGIN, (void*)STM32_EXT_SRAM_END);
rt_system_heap_init((void*)STM32_EXT_SRAM_BEGIN, (void*)STM32_EXT_SRAM_END);
#else
#if defined(__CC_ARM) || defined(__CLANG_ARM)
rt_system_heap_init((void*)&Image$$RW_IRAM1$$ZI$$Limit, (void*)STM32_SRAM_END);
#elif __ICCARM__
rt_system_heap_init(__segment_end("HEAP"), (void*)STM32_SRAM_END);
#else
/* init memory system */
rt_system_heap_init((void*)&__bss_end, (void*)STM32_SRAM_END);
#endif
#if defined(__CC_ARM) || defined(__CLANG_ARM)
rt_system_heap_init((void*)&Image$$RW_IRAM1$$ZI$$Limit, (void*)STM32_SRAM_END);
#elif __ICCARM__
rt_system_heap_init(__segment_end("HEAP"), (void*)STM32_SRAM_END);
#else
/* init memory system */
rt_system_heap_init((void*)&__bss_end, (void*)STM32_SRAM_END);
#endif
#endif
#endif
/* init scheduler system */
rt_system_scheduler_init();
/* init scheduler system */
rt_system_scheduler_init();
/* init application */
rt_application_init();
/* init application */
rt_application_init();
/* init timer thread */
rt_system_timer_thread_init();
/* init idle thread */
rt_thread_idle_init();
/* init idle thread */
rt_thread_idle_init();
/* start scheduler */
rt_system_scheduler_start();
/* start scheduler */
rt_system_scheduler_start();
/* never reach here */
return ;
/* never reach here */
return ;
}
int main(void)
{
/* disable interrupt first */
rt_hw_interrupt_disable();
/* disable interrupt first */
rt_hw_interrupt_disable();
/* startup RT-Thread RTOS */
rtthread_startup();
/* startup RT-Thread RTOS */
rtthread_startup();
return 0;
return 0;
}
/*@}*/