[components/drivers]update hwtimer (#8565)

This commit is contained in:
zms123456 2024-02-29 22:27:38 +08:00 committed by GitHub
parent 97c5edf947
commit 6b5058ba5c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 503 additions and 14 deletions

View File

@ -81,10 +81,6 @@ if RT_USING_CAN
default n
endif
config RT_USING_HWTIMER
bool "Using hardware timer device drivers"
default n
config RT_USING_CPUTIME
bool "Enable CPU time for high resolution clock counter"
default n
@ -970,6 +966,7 @@ source "$RTT_DIR/components/drivers/pin/Kconfig"
source "$RTT_DIR/components/drivers/pinctrl/Kconfig"
source "$RTT_DIR/components/drivers/ktime/Kconfig"
source "$RTT_DIR/components/drivers/clk/Kconfig"
source "$RTT_DIR/components/drivers/hwtimer/Kconfig"
menu "Using USB"
config RT_USING_USB

View File

@ -0,0 +1,10 @@
menuconfig RT_USING_HWTIMER
bool "Using Hardware Timer device drivers"
default n
config RT_HWTIMER_ARM_ARCH
bool "ARM ARCH Timer"
depends on RT_USING_DM
depends on RT_USING_HWTIMER
depends on ARCH_ARM_CORTEX_A || ARCH_ARMV8
default n

View File

@ -1,8 +1,18 @@
from building import *
cwd = GetCurrentDir()
src = Glob('*.c')
group = []
if not GetDepend(['RT_USING_HWTIMER']):
Return('group')
cwd = GetCurrentDir()
CPPPATH = [cwd + '/../include']
group = DefineGroup('DeviceDrivers', src, depend = ['RT_USING_HWTIMER'], CPPPATH = CPPPATH)
src = ['hwtimer.c']
if GetDepend(['RT_HWTIMER_ARM_ARCH']):
src += ['hwtimer-arm_arch.c']
group = DefineGroup('DeviceDrivers', src, depend = [''], CPPPATH = CPPPATH)
Return('group')

View File

@ -0,0 +1,383 @@
/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-12-20 GuEe-GUI first version
* 2022-08-24 GuEe-GUI Add OFW support
*/
#include <rthw.h>
#include <rtthread.h>
#include <rtdevice.h>
/* support registers access and timer registers in libcpu */
#include <cpu.h>
#include <cpuport.h>
typedef void (*timer_ctrl_handle)(rt_bool_t enable);
typedef rt_uint64_t (*timer_value_handle)(rt_uint64_t val);
static volatile rt_uint64_t timer_step;
static int arm_arch_timer_irq = -1;
static timer_ctrl_handle arm_arch_timer_ctrl_handle = RT_NULL;
static timer_value_handle arm_arch_timer_value_handle = RT_NULL;
/* CTL */
static void mon_ptimer_ctrl(rt_bool_t enable)
{
rt_hw_sysreg_write(CNTPS_CTL, !!enable);
}
static void hyp_s_ptimer_ctrl(rt_bool_t enable)
{
#if ARCH_ARMV8_EXTENSIONS > 1
rt_hw_sysreg_write(CNTHPS_CTL, !!enable);
#endif
}
static void hyp_ns_ptimer_ctrl(rt_bool_t enable)
{
rt_hw_sysreg_write(CNTHP_CTL, !!enable);
}
static void hyp_s_vtimer_ctrl(rt_bool_t enable)
{
#if ARCH_ARMV8_EXTENSIONS > 1
rt_hw_sysreg_write(CNTHVS_CTL, !!enable);
#endif
}
static void hyp_ns_vtimer_ctrl(rt_bool_t enable)
{
#if ARCH_ARMV8_EXTENSIONS > 1
rt_hw_sysreg_write(CNTHV_CTL, !!enable);
#endif
}
static void os_ptimer_ctrl(rt_bool_t enable)
{
rt_hw_sysreg_write(CNTP_CTL, !!enable);
}
static void os_vtimer_ctrl(rt_bool_t enable)
{
rt_hw_sysreg_write(CNTV_CTL, !!enable);
}
/* TVAL */
static rt_uint64_t mon_ptimer_value(rt_uint64_t val)
{
if (val)
{
rt_hw_sysreg_write(CNTPS_TVAL, val);
}
else
{
rt_hw_sysreg_read(CNTPS_TVAL, val);
}
return val;
}
static rt_uint64_t hyp_s_ptimer_value(rt_uint64_t val)
{
#if ARCH_ARMV8_EXTENSIONS > 1
if (val)
{
rt_hw_sysreg_write(CNTHPS_TVAL, val);
}
else
{
rt_hw_sysreg_read(CNTHPS_TVAL, val);
}
return val;
#else
return 0;
#endif
}
static rt_uint64_t hyp_ns_ptimer_value(rt_uint64_t val)
{
if (val)
{
rt_hw_sysreg_write(CNTHP_TVAL, val);
}
else
{
rt_hw_sysreg_read(CNTHP_TVAL, val);
}
return val;
}
static rt_uint64_t hyp_s_vtimer_value(rt_uint64_t val)
{
#if ARCH_ARMV8_EXTENSIONS > 1
if (val)
{
rt_hw_sysreg_write(CNTHVS_TVAL, val);
}
else
{
rt_hw_sysreg_read(CNTHVS_TVAL, val);
}
return val;
#else
return 0;
#endif
}
static rt_uint64_t hyp_ns_vtimer_value(rt_uint64_t val)
{
#if ARCH_ARMV8_EXTENSIONS > 1
if (val)
{
rt_hw_sysreg_write(CNTHV_TVAL, val);
}
else
{
rt_hw_sysreg_read(CNTHV_TVAL, val);
}
return val;
#else
return 0;
#endif
}
static rt_uint64_t os_ptimer_value(rt_uint64_t val)
{
if (val)
{
rt_hw_sysreg_write(CNTP_TVAL, val);
}
else
{
rt_hw_sysreg_read(CNTP_TVAL, val);
}
return val;
}
static rt_uint64_t os_vtimer_value(rt_uint64_t val)
{
if (val)
{
rt_hw_sysreg_write(CNTV_TVAL, val);
}
else
{
rt_hw_sysreg_read(CNTV_TVAL, val);
}
return val;
}
static timer_ctrl_handle ctrl_handle[] =
{
mon_ptimer_ctrl,
hyp_s_ptimer_ctrl,
hyp_ns_ptimer_ctrl,
hyp_s_vtimer_ctrl,
hyp_ns_vtimer_ctrl,
os_ptimer_ctrl,
os_vtimer_ctrl,
};
static timer_value_handle value_handle[] =
{
mon_ptimer_value,
hyp_s_ptimer_value,
hyp_ns_ptimer_value,
hyp_s_vtimer_value,
hyp_ns_vtimer_value,
os_ptimer_value,
os_vtimer_value,
};
static rt_err_t arm_arch_timer_local_enable(void)
{
rt_err_t ret = RT_EOK;
if (arm_arch_timer_irq >= 0)
{
arm_arch_timer_ctrl_handle(RT_FALSE);
arm_arch_timer_value_handle(timer_step);
rt_hw_interrupt_umask(arm_arch_timer_irq);
arm_arch_timer_ctrl_handle(RT_TRUE);
}
else
{
ret = -RT_ENOSYS;
}
return ret;
}
rt_used
static rt_err_t arm_arch_timer_local_disable(void)
{
rt_err_t ret = RT_EOK;
if (arm_arch_timer_ctrl_handle)
{
arm_arch_timer_ctrl_handle(RT_FALSE);
rt_hw_interrupt_mask(arm_arch_timer_irq);
}
else
{
ret = -RT_ENOSYS;
}
return ret;
}
rt_used
static rt_err_t arm_arch_timer_set_frequency(rt_uint64_t frq)
{
rt_err_t ret = RT_EOK;
#ifdef ARCH_SUPPORT_TEE
rt_hw_isb();
rt_hw_sysreg_write(CNTFRQ, frq);
rt_hw_dsb();
#else
ret = -RT_ENOSYS;
#endif
return ret;
}
rt_used
static rt_uint64_t arm_arch_timer_get_frequency(void)
{
rt_uint64_t frq;
rt_hw_isb();
rt_hw_sysreg_read(CNTFRQ, frq);
rt_hw_isb();
return frq;
}
rt_used
static rt_err_t arm_arch_timer_set_value(rt_uint64_t val)
{
rt_err_t ret = RT_EOK;
if (arm_arch_timer_value_handle)
{
val = arm_arch_timer_value_handle(val);
}
else
{
ret = -RT_ENOSYS;
}
return ret;
}
rt_used
static rt_uint64_t arm_arch_timer_get_value(void)
{
rt_uint64_t val = 0;
if (arm_arch_timer_value_handle)
{
val = arm_arch_timer_value_handle(0);
}
return val;
}
static void arm_arch_timer_isr(int vector, void *param)
{
arm_arch_timer_set_value(timer_step);
rt_tick_increase();
}
static int arm_arch_timer_post_init(void)
{
arm_arch_timer_local_enable();
return 0;
}
INIT_SECONDARY_CPU_EXPORT(arm_arch_timer_post_init);
static rt_err_t arm_arch_timer_probe(struct rt_platform_device *pdev)
{
int mode_idx, irq_idx;
const char *irq_name[] =
{
"phys", /* Secure Phys IRQ */
"virt", /* Non-secure Phys IRQ */
"hyp-phys", /* Virt IRQ */
"hyp-virt", /* Hyp IRQ */
};
#if defined(ARCH_SUPPORT_TEE)
mode_idx = 0;
irq_idx = 0;
#elif defined(ARCH_SUPPORT_HYP)
mode_idx = 2;
irq_idx = 3;
#else
mode_idx = 5;
irq_idx = 1;
#endif
arm_arch_timer_irq = rt_dm_dev_get_irq_by_name(&pdev->parent, irq_name[irq_idx]);
if (arm_arch_timer_irq < 0)
{
arm_arch_timer_irq = rt_dm_dev_get_irq(&pdev->parent, irq_idx);
}
if (arm_arch_timer_irq < 0)
{
return -RT_EEMPTY;
}
arm_arch_timer_ctrl_handle = ctrl_handle[mode_idx];
arm_arch_timer_value_handle = value_handle[mode_idx];
rt_hw_interrupt_install(arm_arch_timer_irq, arm_arch_timer_isr, RT_NULL, "tick-arm-timer");
timer_step = arm_arch_timer_get_frequency() / RT_TICK_PER_SECOND;
arm_arch_timer_local_enable();
return RT_EOK;
}
static const struct rt_ofw_node_id arm_arch_timer_ofw_ids[] =
{
{ .compatible = "arm,armv7-timer", },
{ .compatible = "arm,armv8-timer", },
{ /* sentinel */ }
};
static struct rt_platform_driver arm_arch_timer_driver =
{
.name = "arm-arch-timer",
.ids = arm_arch_timer_ofw_ids,
.probe = arm_arch_timer_probe,
};
static int arm_arch_timer_drv_register(void)
{
rt_platform_driver_register(&arm_arch_timer_driver);
return 0;
}
INIT_SUBSYS_EXPORT(arm_arch_timer_drv_register);

View File

@ -15,6 +15,24 @@
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#ifdef RT_USING_DM
void (*rt_device_hwtimer_us_delay)(rt_uint32_t us) = RT_NULL;
void rt_hw_us_delay(rt_uint32_t us)
{
if (rt_device_hwtimer_us_delay)
{
rt_device_hwtimer_us_delay(us);
}
else
{
LOG_E("Implemented at least in the libcpu");
RT_ASSERT(0);
}
}
#endif /* RT_USING_DM */
rt_inline rt_uint32_t timeout_calc(rt_hwtimer_t *timer, rt_hwtimerval_t *tv)
{
float overflow;

View File

@ -78,6 +78,10 @@ typedef struct rt_hwtimer_device
rt_err_t rt_device_hwtimer_register(rt_hwtimer_t *timer, const char *name, void *user_data);
void rt_device_hwtimer_isr(rt_hwtimer_t *timer);
#ifdef RT_USING_DM
extern void (*rt_device_hwtimer_us_delay)(rt_uint32_t us);
#endif
#ifdef __cplusplus
}
#endif

View File

@ -183,6 +183,7 @@ extern "C" {
#ifdef RT_USING_DM
#include "drivers/core/dm.h"
#include "drivers/platform.h"
#ifdef RT_USING_OFW
#include "drivers/ofw.h"

View File

@ -24,11 +24,6 @@
#include <ioremap.h>
#include <rtdevice.h>
#define rt_sysreg_write(sysreg, val) \
__asm__ volatile ("msr "RT_STRINGIFY(sysreg)", %0"::"r"((rt_uint64_t)(val)))
#define rt_sysreg_read(sysreg, val) \
__asm__ volatile ("mrs %0, "RT_STRINGIFY(sysreg)"":"=r"((val)))
#define SIZE_KB 1024
#define SIZE_MB (1024 * SIZE_KB)
#define SIZE_GB (1024 * SIZE_MB)
@ -73,6 +68,68 @@ void rt_hw_fdt_install_early(void *fdt)
}
}
#ifdef RT_USING_HWTIMER
static rt_ubase_t loops_per_tick[RT_CPUS_NR];
static rt_ubase_t cpu_get_cycles(void)
{
rt_ubase_t cycles;
rt_hw_sysreg_read(cntpct_el0, cycles);
return cycles;
}
static void cpu_loops_per_tick_init(void)
{
rt_ubase_t offset;
volatile rt_ubase_t freq, step, cycles_end1, cycles_end2;
volatile rt_uint32_t cycles_count1 = 0, cycles_count2 = 0;
rt_hw_sysreg_read(cntfrq_el0, freq);
step = freq / RT_TICK_PER_SECOND;
cycles_end1 = cpu_get_cycles() + step;
while (cpu_get_cycles() < cycles_end1)
{
__asm__ volatile ("nop");
__asm__ volatile ("add %0, %0, #1":"=r"(cycles_count1));
}
cycles_end2 = cpu_get_cycles() + step;
while (cpu_get_cycles() < cycles_end2)
{
__asm__ volatile ("add %0, %0, #1":"=r"(cycles_count2));
}
if ((rt_int32_t)(cycles_count2 - cycles_count1) > 0)
{
offset = cycles_count2 - cycles_count1;
}
else
{
/* Impossible, but prepared for any eventualities */
offset = cycles_count2 / 4;
}
loops_per_tick[rt_hw_cpu_id()] = offset;
}
static void cpu_us_delay(rt_uint32_t us)
{
volatile rt_base_t start = cpu_get_cycles(), cycles;
cycles = ((us * 0x10c7UL) * loops_per_tick[rt_hw_cpu_id()] * RT_TICK_PER_SECOND) >> 32;
while ((cpu_get_cycles() - start) < cycles)
{
rt_hw_cpu_relax();
}
}
#endif /* RT_USING_HWTIMER */
rt_weak void rt_hw_idle_wfi(void)
{
__asm__ volatile ("wfi");
@ -90,7 +147,7 @@ rt_inline void cpu_info_init(void)
struct rt_ofw_node *np;
/* get boot cpu info */
rt_sysreg_read(mpidr_el1, mpidr);
rt_hw_sysreg_read(mpidr_el1, mpidr);
rt_ofw_foreach_cpu_node(np)
{
@ -128,6 +185,15 @@ rt_inline void cpu_info_init(void)
}
rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, rt_cpu_mpidr_table, sizeof(rt_cpu_mpidr_table));
#ifdef RT_USING_HWTIMER
cpu_loops_per_tick_init();
if (!rt_device_hwtimer_us_delay)
{
rt_device_hwtimer_us_delay = &cpu_us_delay;
}
#endif /* RT_USING_HWTIMER */
}
rt_inline rt_bool_t is_kernel_aspace(const char *name)
@ -421,7 +487,7 @@ rt_weak void rt_hw_secondary_cpu_bsp_start(void)
rt_hw_spin_lock(&_cpus_lock);
/* Save all mpidr */
rt_sysreg_read(mpidr_el1, rt_cpu_mpidr_table[cpu_id]);
rt_hw_sysreg_read(mpidr_el1, rt_cpu_mpidr_table[cpu_id]);
rt_hw_mmu_ktbl_set((unsigned long)MMUTable);