[STM32][SPI]在H7芯片下修复时钟频率获取错误问题并添加DMA驱动 (#6741)

* [STM32][SPI]在H7芯片下修复时钟频率获取错误问题并添加DMA驱动
* H7下SPI时钟不再为外设总线时钟频率
* H7下DMA驱动需要进行CacheLine对齐
This commit is contained in:
wdfk-prog 2022-12-15 14:05:56 +08:00 committed by GitHub
parent 012aa0e0d0
commit 63e7633246
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -140,47 +140,55 @@ static rt_err_t stm32_spi_init(struct stm32_spi *spi_drv, struct rt_spi_configur
spi_handle->Init.NSS = SPI_NSS_SOFT; spi_handle->Init.NSS = SPI_NSS_SOFT;
uint32_t SPI_APB_CLOCK; uint32_t SPI_CLOCK;
/* Some series may only have APBPERIPH_BASE, but don't have HAL_RCC_GetPCLK2Freq */ /* Some series may only have APBPERIPH_BASE, but don't have HAL_RCC_GetPCLK2Freq */
#if defined(APBPERIPH_BASE) #if defined(APBPERIPH_BASE)
SPI_APB_CLOCK = HAL_RCC_GetPCLK1Freq(); SPI_CLOCK = HAL_RCC_GetPCLK1Freq();
#elif defined(APB1PERIPH_BASE) || defined(APB2PERIPH_BASE) #elif defined(APB1PERIPH_BASE) || defined(APB2PERIPH_BASE)
/* The SPI clock for H7 cannot be configured with a peripheral bus clock, so it needs to be written separately */
#if defined(SOC_SERIES_STM32H7)
/* When the configuration is generated using CUBEMX, the configuration for the SPI clock is placed in the HAL_SPI_Init function.
Therefore, it is necessary to initialize and configure the SPI clock to automatically configure the frequency division */
HAL_SPI_Init(spi_handle);
SPI_CLOCK = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SPI123);
#else
if ((rt_uint32_t)spi_drv->config->Instance >= APB2PERIPH_BASE) if ((rt_uint32_t)spi_drv->config->Instance >= APB2PERIPH_BASE)
{ {
SPI_APB_CLOCK = HAL_RCC_GetPCLK2Freq(); SPI_CLOCK = HAL_RCC_GetPCLK2Freq();
} }
else else
{ {
SPI_APB_CLOCK = HAL_RCC_GetPCLK1Freq(); SPI_CLOCK = HAL_RCC_GetPCLK1Freq();
} }
#endif #endif /* SOC_SERIES_STM32H7) */
#endif /* APBPERIPH_BASE */
if (cfg->max_hz >= SPI_APB_CLOCK / 2) if (cfg->max_hz >= SPI_CLOCK / 2)
{ {
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2; spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
} }
else if (cfg->max_hz >= SPI_APB_CLOCK / 4) else if (cfg->max_hz >= SPI_CLOCK / 4)
{ {
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4; spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
} }
else if (cfg->max_hz >= SPI_APB_CLOCK / 8) else if (cfg->max_hz >= SPI_CLOCK / 8)
{ {
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8; spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
} }
else if (cfg->max_hz >= SPI_APB_CLOCK / 16) else if (cfg->max_hz >= SPI_CLOCK / 16)
{ {
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16; spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
} }
else if (cfg->max_hz >= SPI_APB_CLOCK / 32) else if (cfg->max_hz >= SPI_CLOCK / 32)
{ {
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32; spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
} }
else if (cfg->max_hz >= SPI_APB_CLOCK / 64) else if (cfg->max_hz >= SPI_CLOCK / 64)
{ {
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64; spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
} }
else if (cfg->max_hz >= SPI_APB_CLOCK / 128) else if (cfg->max_hz >= SPI_CLOCK / 128)
{ {
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128; spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128;
} }
@ -190,15 +198,15 @@ static rt_err_t stm32_spi_init(struct stm32_spi *spi_drv, struct rt_spi_configur
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
} }
LOG_D("sys freq: %d, pclk2 freq: %d, SPI limiting freq: %d, BaudRatePrescaler: %d", LOG_D("sys freq: %d, pclk freq: %d, SPI limiting freq: %d, SPI usage freq: %d",
#if defined(SOC_SERIES_STM32MP1) #if defined(SOC_SERIES_STM32MP1)
HAL_RCC_GetSystemCoreClockFreq(), HAL_RCC_GetSystemCoreClockFreq(),
#else #else
HAL_RCC_GetSysClockFreq(), HAL_RCC_GetSysClockFreq(),
#endif #endif
SPI_APB_CLOCK, SPI_CLOCK,
cfg->max_hz, cfg->max_hz,
spi_handle->Init.BaudRatePrescaler); SPI_CLOCK / (rt_size_t)pow(2,(spi_handle->Init.BaudRatePrescaler >> 28) + 1));
if (cfg->mode & RT_SPI_MSB) if (cfg->mode & RT_SPI_MSB)
{ {
@ -326,6 +334,24 @@ static rt_uint32_t spixfer(struct rt_spi_device *device, struct rt_spi_message *
send_buf = (rt_uint8_t *)message->send_buf + already_send_length; send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length; recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
#if defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7)
rt_uint32_t* dma_buf = RT_NULL;
if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG))
{
dma_buf = (rt_uint32_t *)rt_malloc_align(send_length,32);
if(send_buf)
{
rt_memcpy(dma_buf, send_buf, send_length);
}
else
{
rt_memset(dma_buf, 0xFF, send_length);
}
SCB_CleanDCache_by_Addr(dma_buf, send_length);
state = HAL_SPI_TransmitReceive_DMA(spi_handle, (uint8_t *)dma_buf, (uint8_t *)dma_buf, send_length);
}
else
#endif /* SOC_SERIES_STM32H7 || SOC_SERIES_STM32F7 */
/* start once data exchange in DMA mode */ /* start once data exchange in DMA mode */
if (message->send_buf && message->recv_buf) if (message->send_buf && message->recv_buf)
{ {
@ -393,6 +419,17 @@ static rt_uint32_t spixfer(struct rt_spi_device *device, struct rt_spi_message *
{ {
while (HAL_SPI_GetState(spi_handle) != HAL_SPI_STATE_READY); while (HAL_SPI_GetState(spi_handle) != HAL_SPI_STATE_READY);
} }
#if defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7)
if(dma_buf)
{
if(recv_buf)
{
SCB_InvalidateDCache_by_Addr(dma_buf, send_length);
rt_memcpy(recv_buf, dma_buf,send_length);
}
rt_free_align(dma_buf);
}
#endif /* SOC_SERIES_STM32H7 || SOC_SERIES_STM32F7 */
} }
if (message->cs_release && !(device->config.mode & RT_SPI_NO_CS)) if (message->cs_release && !(device->config.mode & RT_SPI_NO_CS))